Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Docking Studies and Antiproliferative Activities of 6-(3-aryl-2-propenoyl)-2(3H)- benzoxazolone Derivatives as Novel Inhibitors of Phosphatidylinositol 3-Kinase (PI3Kα)

Author(s): Sinan Bilginer, Sanaa K. Bardaweel*, Dima A. Sabbah and Halise Inci Gul*

Volume 21 , Issue 6 , 2021

Published on: 07 August, 2020

Page: [716 - 724] Pages: 9

DOI: 10.2174/1871520620666200807221731

Price: $65

Abstract

Background: Cancer is a life-threatening group of diseases and universally, the second main cause of death. The design and development of new scaffolds targeting selective cancer cells are considered a promising goal for cancer treatment.

Aims and Objective: Chalcone derivatives; 6-(3-aryl-2-propenoyl)-2(3H)-benzoxazolone, were previously prepared and evaluated against the oral cavity squamous cell carcinoma cell line, HSC-2, and were reported to have remarkably high tumor selectivity. The aim of this study was to further investigate the anticancer activities of the chalcone derivatives against human colon cancer cells with a possible elucidation of their mechanism of action.

Methods: Computational studies were conducted to explore the potential interaction of the synthesized molecules with the phosphatidylinositol-4,5-bisphosphate 3-kinaseα (PI3Kα). Biological evaluation of the antiproliferative activities associated with compounds 1-23 was carried out against the colon cancer cell line, HCT116. Lactate Dehydrogenase (LDH) activity was measured to study necrosis, while the caspase-3 activation and DNA measurements were used to evaluate apoptosis in the treated cells.

Results: Glide studies against PI3Kα kinase domain demonstrated that the 6-(3-aryl-2-propenoyl)-2(3H)- benzoxazolone scaffold forms H-bond with K802, Y836, E849, V851, N853, Q859, and D933, and it fits the fingerprint of PI3Kα active inhibitors. Biological evaluation of the reported compounds in HCT116 cell line confirmed that the series inhibited PI3Kα activity and induced apoptosis via activation of caspase-3 and reduction of DNA content.

Conclusion: The recently developed compounds might be employed as lead structures for the design of new antitumor drugs targeting PI3Kα.

Keywords: Molecular docking, PI3Kα, colon cancer, apoptosis, chalcone, LDH.

Graphical Abstract
[1]
Caleta, I.; Kralj, M.; Marjanović, M.; Bertosa, B.; Tomić, S.; Pavlović, G.; Pavelić, K.; Karminski-Zamola, G. Novel cyano- and amidinobenzothiazole derivatives: Synthesis, antitumor evaluation, and X-ray and Quantitative Structure-Activity Relationship (QSAR) analysis. J. Med. Chem., 2009, 52(6), 1744-1756.
[http://dx.doi.org/10.1021/jm801566q] [PMID: 19265399]
[2]
World Health Organization. Global Health Observatory; Geneva: World Health Organization, 2018. who.int/gho/database/en/ Accessed March 2020.
[3]
Vanhaesebroeck, B.; Waterfield, M.D. Signaling by distinct classes of phosphoinositide 3-kinases. Exp. Cell Res., 1999, 253(1), 239-254.
[http://dx.doi.org/10.1006/excr.1999.4701] [PMID: 10579926]
[4]
Vanhaesebroeck, B.; Guillermet-Guibert, J.; Graupera, M.; Bilanges, B. The emerging mechanisms of isoform-specific PI3K signalling. Nat. Rev. Mol. Cell Biol., 2010, 11(5), 329-341.
[http://dx.doi.org/10.1038/nrm2882] [PMID: 20379207]
[5]
Zhao, L.; Vogt, P.K. Helical domain and kinase domain mutations in p110α of phosphatidylinositol 3-kinase induce gain of function by different mechanisms. Proc. Natl. Acad. Sci. USA, 2008, 105(7), 2652-2657.
[http://dx.doi.org/10.1073/pnas.0712169105] [PMID: 18268322]
[6]
Praveen, C.; Ananth, D.B. Design, synthesis and cytotoxicity of pyrano[4,3-b]indol-1(5H)-ones: A hybrid pharmacophore approach via gold catalyzed cyclization. Bioorg. Med. Chem. Lett., 2016, 26(10), 2507-2512.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.087] [PMID: 27040658]
[7]
Jeyaveeran, J.; Praveen, C.; Arun, Y.; Prince, A.; Perumal, P. Flexible synthesis of isomeric pyranoindolones and evaluation of cytotoxicity towards HeLa cells. J. Chem. Sci., 2016, 128, 787-802.
[http://dx.doi.org/10.1007/s12039-016-1070-8]
[8]
Kang, S.; Bader, A.G.; Vogt, P.K. Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. Proc. Natl. Acad. Sci. USA, 2005, 102(3), 802-807.
[http://dx.doi.org/10.1073/pnas.0408864102] [PMID: 15647370]
[9]
Sun, M.; Hillmann, P.; Hofmann, B.T.; Hart, J.R.; Vogt, P.K. Cancer-derived mutations in the regulatory subunit p85alpha of phosphoinositide 3-kinase function through the catalytic subunit p110alpha. Proc. Natl. Acad. Sci. USA, 2010, 107(35), 15547-15552.
[http://dx.doi.org/10.1073/pnas.1009652107] [PMID: 20713702]
[10]
Benvenuti, S.; Frattini, M.; Arena, S.; Zanon, C.; Cappelletti, V.; Coradini, D.; Daidone, M.G.; Pilotti, S.; Pierotti, M.A.; Bardelli, A. PIK3CA cancer mutations display gender and tissue specificity patterns. Hum. Mutat., 2008, 29(2), 284-288.
[http://dx.doi.org/10.1002/humu.20648] [PMID: 18022911]
[11]
Liu, Z.; Roberts, T.M. Human tumor mutants in the p110alpha subunit of PI3K. Cell Cycle, 2006, 5(7), 675-677.
[http://dx.doi.org/10.4161/cc.5.7.2605] [PMID: 16627990]
[12]
Miled, N.; Yan, Y.; Hon, W.C.; Perisic, O.; Zvelebil, M.; Inbar, Y.; Schneidman-Duhovny, D.; Wolfson, H.J.; Backer, J.M.; Williams, R.L. Mechanism of two classes of cancer mutations in the phosphoinositide 3-kinase catalytic subunit. Science, 2007, 317(5835), 239-242.
[http://dx.doi.org/10.1126/science.1135394] [PMID: 17626883]
[13]
Mandelker, D.; Gabelli, S.B.; Schmidt-Kittler, O.; Zhu, J.; Cheong, I.; Huang, C-H.; Kinzler, K.W.; Vogelstein, B.; Amzel, L.M. A frequent kinase domain mutation that changes the interaction between PI3Kalpha and the membrane. Proc. Natl. Acad. Sci. USA, 2009, 106(40), 16996-17001.
[http://dx.doi.org/10.1073/pnas.0908444106] [PMID: 19805105]
[14]
Liu, P.; Cheng, H.; Roberts, T.M.; Zhao, J.J. Targeting the phosphoinositide 3-kinase pathway in cancer. Nat. Rev. Drug Discov., 2009, 8(8), 627-644.
[http://dx.doi.org/10.1038/nrd2926] [PMID: 19644473]
[15]
Hayakawa, M.; Kaizawa, H.; Moritomo, H.; Koizumi, T.; Ohishi, T.; Okada, M.; Ohta, M.; Tsukamoto, S.; Parker, P.; Workman, P.; Waterfield, M. Synthesis and biological evaluation of 4-morpholino-2-phenylquinazolines and related derivatives as novel PI3 kinase p110alpha inhibitors. Bioorg. Med. Chem., 2006, 14(20), 6847-6858.
[http://dx.doi.org/10.1016/j.bmc.2006.06.046] [PMID: 16837202]
[16]
Hayakawa, M.; Kaizawa, H.; Kawaguchi, K.; Ishikawa, N.; Koizumi, T.; Ohishi, T.; Yamano, M.; Okada, M.; Ohta, M.; Tsukamoto, S.; Raynaud, F.I.; Waterfield, M.D.; Parker, P.; Workman, P. Synthesis and biological evaluation of imidazo[1,2-a]pyridine derivatives as novel PI3 kinase p110alpha inhibitors. Bioorg. Med. Chem., 2007, 15(1), 403-412.
[http://dx.doi.org/10.1016/j.bmc.2006.09.047] [PMID: 17049248]
[17]
Kendall, J.D.; Rewcastle, G.W.; Frederick, R.; Mawson, C.; Denny, W.A.; Marshall, E.S.; Baguley, B.C.; Chaussade, C.; Jackson, S.P.; Shepherd, P.R. Synthesis, biological evaluation and molecular modelling of sulfonohydrazides as selective PI3K p110alpha inhibitors. Bioorg. Med. Chem., 2007, 15(24), 7677-7687.
[http://dx.doi.org/10.1016/j.bmc.2007.08.062] [PMID: 17869522]
[18]
Knight, S.D.; Adams, N.D.; Burgess, J.L.; Chaudhari, A.M.; Darcy, M.G.; Donatelli, C.A.; Luengo, J.I.; Newlander, K.A.; Parrish, C.A.; Ridgers, L.H.; Sarpong, M.A.; Schmidt, S.J.; Van Aller, G.S.; Carson, J.D.; Diamond, M.A.; Elkins, P.A.; Gardiner, C.M.; Garver, E.; Gilbert, S.A.; Gontarek, R.R.; Jackson, J.R.; Kershner, K.L.; Luo, L.; Raha, K.; Sherk, C.S.; Sung, C.M.; Sutton, D.; Tummino, P.J.; Wegrzyn, R.J.; Auger, K.R.; Dhanak, D. Discovery of GSK2126458, a highly potent inhibitor of PI3K and the mammalian target of rapamycin. ACS Med. Chem. Lett., 2010, 1(1), 39-43.
[http://dx.doi.org/10.1021/ml900028r] [PMID: 24900173]
[19]
Nacht, M.; Qiao, L.; Sheets, M.P.; St Martin, T.; Labenski, M.; Mazdiyasni, H.; Karp, R.; Zhu, Z.; Chaturvedi, P.; Bhavsar, D.; Niu, D.; Westlin, W.; Petter, R.C.; Medikonda, A.P.; Singh, J. Discovery of a potent and isoform-selective targeted covalent inhibitor of the lipid kinase PI3Kα. J. Med. Chem., 2013, 56(3), 712-721.
[http://dx.doi.org/10.1021/jm3008745] [PMID: 23360348]
[20]
Liu, J.L.; Gao, G.R.; Zhang, X.; Cao, S.F.; Guo, C.L.; Wang, X.; Tong, L.J.; Ding, J.; Duan, W.H.; Meng, L.H. DW09849, a selective phosphatidylinositol 3-kinase (PI3K) inhibitor, prevents PI3K signaling and preferentially inhibits proliferation of cells containing the oncogenic mutation p110α (H1047R). J. Pharmacol. Exp. Ther., 2014, 348(3), 432-441.
[http://dx.doi.org/10.1124/jpet.113.210724] [PMID: 24361696]
[21]
Sabbah, D.A.; Saada, M.; Khalaf, R.A.; Bardaweel, S.; Sweidan, K.; Al-Qirim, T.; Al-Zughier, A.; Halim, H.A.; Sheikha, G.A. Molecular modeling based approach, synthesis, and cytotoxic activity of novel benzoin derivatives targeting phosphoinostide 3-kinase (PI3Kα). Bioorg. Med. Chem. Lett., 2015, 25(16), 3120-3124.
[http://dx.doi.org/10.1016/j.bmcl.2015.06.011] [PMID: 26099539]
[22]
Kong, D.; Yamori, T. Advances in development of phosphatidylinositol 3-kinase inhibitors. Curr. Med. Chem., 2009, 16(22), 2839-2854.
[http://dx.doi.org/10.2174/092986709788803222] [PMID: 19689267]
[23]
Wu, P.; Hu, Y.Z. PI3K/Akt/mTOR pathway inhibitors in cancer: A perspective on clinical progress. Curr. Med. Chem., 2010, 17(35), 4326-4341.
[http://dx.doi.org/10.2174/092986710793361234] [PMID: 20939811]
[24]
Rodon, J.; Dienstmann, R.; Serra, V.; Tabernero, J. Development of PI3K inhibitors: Lessons learned from early clinical trials. Nat. Rev. Clin. Oncol., 2013, 10(3), 143-153.
[http://dx.doi.org/10.1038/nrclinonc.2013.10] [PMID: 23400000]
[25]
Bilginer, S.; Gul, H.I.; Erdal, F.S.; Sakagami, H.; Levent, S.; Gulcin, I.; Supuran, C.T. Synthesis, cytotoxicities, and carbonic anhydrase inhibition potential of 6-(3-aryl-2-propenoyl)-2(3H)-benzoxazolones. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 1722-1729.
[http://dx.doi.org/10.1080/14756366.2019.1670657] [PMID: 31576761]
[26]
Bilginer, S. Synthesis of benzoxazolone derived chalcone compounds and investigation of their bioactivity. J. Sci. Technol., 2020, 13, 334-347.
[http://dx.doi.org/10.18185/erzifbed.672163]
[27]
Huang, C-H.; Mandelker, D.; Schmidt-Kittler, O.; Samuels, Y.; Velculescu, V.E.; Kinzler, K.W.; Vogelstein, B.; Gabelli, S.B.; Amzel, L.M. The structure of a human p110 alpha/p85 alpha complex elucidates the effects of oncogenic PI3K alpha mutations. Science, 2007, 318, 1744-1748.
[28]
Sabbah, D.A.; Vennerstrom, J.L.; Zhong, H. Docking studies on isoform-specific inhibition of phosphoinositide-3-kinases. J. Chem. Inf. Model., 2010, 50(10), 1887-1898.
[http://dx.doi.org/10.1021/ci1002679] [PMID: 20866085]
[29]
Schrödinger. Protein Preparation Wizard, Maestro, Macromodel, and QPLD-dock; Schrödinger, LLC: Portland, OR, USA, 2016, p. 97204.
[30]
ISO 10993-5 – Biological Evaluation of Medical Devices. Part 5: Testes for in vitro cytotoxicity E; ISO, 2009.
[31]
Brattain, M.G.; Levine, A.E.; Chakrabarty, S.; Yeoman, L.C.; Willson, J.K.V.; Long, B. Heterogeneity of human colon carcinoma. Cancer Metastasis Rev., 1984, 3(3), 177-191.
[http://dx.doi.org/10.1007/BF00048384] [PMID: 6437669]
[32]
Korzeniewski, C.; Callewaert, D.M. An enzyme-release assay for natural cytotoxicity. J. Immunol. Methods, 1983, 64(3), 313-320.
[http://dx.doi.org/10.1016/0022-1759(83)90438-6] [PMID: 6199426]
[33]
Decker, T.; Lohmann-Matthes, M-L. A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and Tumor Necrosis Factor (TNF) activity. J. Immunol. Methods, 1988, 115(1), 61-69.
[http://dx.doi.org/10.1016/0022-1759(88)90310-9] [PMID: 3192948]
[34]
Legrand, C.; Bour, J.M.; Jacob, C.; Capiaumont, J.; Martial, A.; Marc, A.; Wudtke, M.; Kretzmer, G.; Demangel, C.; Duval, D.; Hache, J. Lactate Dehydrogenase (LDH) activity of the number of dead cells in the medium of cultured eukaryotic cells as marker. J. Biotechnol., 1992, 25, 231-243.
[http://dx.doi.org/10.1016/0168-1656(92)90158-6] [PMID: 1368802]
[35]
Jonges, L.E.; Nagelkerke, J.F.; Ensink, N.G.; van der Velde, E.A.; Tollenaar, R.A.; Fleuren, G.J.; van de Velde, C.J.; Morreau, H.; Kuppen, P.J. Caspase-3 activity as a prognostic factor in colorectal carcinoma. Lab. Invest., 2001, 81(5), 681-688.
[http://dx.doi.org/10.1038/labinvest.3780277] [PMID: 11351040]
[36]
Brown, M.F.; Leibowitz, B.J.; Chen, D.; He, K.; Zou, F.; Sobol, R.W.; Beer-Stolz, D.; Zhang, L.; Yu, J. Loss of caspase-3 sensitizes colon cancer cells to genotoxic stress via RIP1-dependent necrosis. Cell Death Dis., 2015, 6e1729
[http://dx.doi.org/10.1038/cddis.2015.104] [PMID: 25906152]
[37]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749.
[http://dx.doi.org/10.1021/jm0306430] [PMID: 15027865]
[38]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196.
[http://dx.doi.org/10.1021/jm051256o] [PMID: 17034125]
[39]
Sabbah, D.A.; Simms, N.A.; Brattain, M.G.; Vennerstrom, J.L.; Zhong, H. Biological evaluation and docking studies of recently identified inhibitors of phosphoinositide-3-kinases. Bioorg. Med. Chem. Lett., 2012, 22(2), 876-880.
[http://dx.doi.org/10.1016/j.bmcl.2011.12.044] [PMID: 22212721]
[40]
Sabbah, D.A.; Simms, N.A.; Wang, W.; Dong, Y.; Ezell, E.L.; Brattain, M.G.; Vennerstrom, J.L.; Zhong, H.A. N-Phenyl-4-hydroxy-2-quinolone-3-carboxamides as selective inhibitors of mutant H1047R phosphoinositide-3-kinase (PI3Kα). Bioorg. Med. Chem., 2012, 20(24), 7175-7183.
[http://dx.doi.org/10.1016/j.bmc.2012.09.059] [PMID: 23121722]
[41]
Sabbah, D.A.; Vennerstrom, J.L.; Zhong, H.A. Binding selectivity studies of phosphoinositide 3-kinases using free energy calculations. J. Chem. Inf. Model., 2012, 52(12), 3213-3224.
[http://dx.doi.org/10.1021/ci3003057] [PMID: 23157418]
[42]
Sweidan, K.; Sabbah, D.A.; Bardaweel, S.; Dush, K.A.; Sheikha, G.A.; Mubarak, M.S. Computer-aided design, synthesis, and biological evaluation of new indole-2-carboxamide derivatives as PI3Kα/EGFR inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(11), 2685-2690.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.011] [PMID: 27084677]
[43]
Kashaw, S.K.; Agarwal, S.; Mishra, M.; Sau, S.; Iyer, A.K. Molecular docking analysis of caspase-3 activators as potential anticancer agents. Curr. Comput.-. Aided Drug Des., 2019, 15, 55-66.
[44]
Ng, S.L.; Yang, P-Y.; Chen, K.Y-T.; Srinivasan, R.; Yao, S.Q. “Click” synthesis of small-molecule inhibitors targeting caspases. Org. Biomol. Chem., 2008, 6(5), 844-847.
[http://dx.doi.org/10.1039/b718304f] [PMID: 18292873]
[45]
Aly, A.A.; Sayed, S.M.; Abdelhafez, E.M.N.; Abdelhafez, S.M.N.; Abdelzaher, W.Y.; Raslan, M.A.; Ahmed, A.E.; Thabet, K.; El-Reedy, A.A.M.; Brown, A.B.; Bräse, S. New quinoline-2-one/pyrazole derivatives; design, synthesis, molecular docking, anti-apoptotic evaluation, and caspase-3 inhibition assay. Bioorg. Chem., 2020, 94103348
[http://dx.doi.org/10.1016/j.bioorg.2019.103348] [PMID: 31699387]
[46]
Alblewi, F.F.; Okasha, R.M.; Eskandrani, A.A.; Afifi, T.H.; Mohamed, H.M.; Halawa, A.H.; Fouda, A.M.; Al-Dies, A.M.; Mora, A.; El-Agrody, A.M. design and synthesis of novel heterocyclic-based 4H-benzo [h] chromene moieties: targeting antitumor caspase 3/7 activities and cell cycle analysis. Molecules, 2019, 24(6), 1060.
[http://dx.doi.org/10.3390/molecules24061060] [PMID: 30889862]
[47]
Zabiulla, Z.; Malojirao, V.H.; Mohammed, Y.H.E.; Thirusangu, P.; Prabhakar, B.; Khanum, S.A. Synthesis, molecular docking, and apoptogenic efficacy of novel N-heterocycle analogs to target B-cell lymphoma 2/X-linked inhibitors of apoptosis proteins to regress melanoma. Med. Chem. Res., 2019, 28, 1132-1160.
[http://dx.doi.org/10.1007/s00044-019-02357-x]
[48]
Almansour, A.I.; Arumugam, N.; Suresh Kumar, R.; Al-Thamili, D.M.; Periyasami, G.; Ponmurugan, K.; Al-Dhabi, N.A.; Perumal, K.; Premnath, D. Domino multicomponent approach for the synthesis of functionalized spiro-indeno[1,2-b]quinoxaline heterocyclic hybrids and their antimicrobial activity, synergistic effect and molecular docking simulation. Molecules, 2019, 24(10), 1962-1977.
[http://dx.doi.org/10.3390/molecules24101962] [PMID: 31121813]
[49]
Al-Said, M.S.; Ghorab, M.M.; Nissan, Y.M. Dapson in heterocyclic chemistry, part VIII: Synthesis, molecular docking and anticancer activity of some novel sulfonylbiscompounds carrying biologically active 1,3-dihydropyridine, chromene and chromenopyridine moieties. Chem. Cent. J., 2012, 6(1), 64-78.
[http://dx.doi.org/10.1186/1752-153X-6-64] [PMID: 22748424]
[50]
Ghorab, M.M.; Al-Said, M.S.; Nissan, Y.M. Dapson in heterocyclic chemistry, part V: Synthesis, molecular docking and anticancer activity of some novel sulfonylbiscompounds carrying biologically active dihydropyridine, dihydroisoquinoline, 1,3-dithiolan, 1,3-dithian, acrylamide, pyrazole, pyrazolopyrimidine and benzochromenemoieties. Chem. Pharm. Bull. (Tokyo), 2012, 60(8), 1019-1028.
[http://dx.doi.org/10.1248/cpb.c12-00292] [PMID: 22863706]
[51]
Ghorab, M.M.; Al-Said, M.S.; Nissan, Y.M. Dapson in heterocyclic chemistry part VI: Synthesis and molecular docking of some novel sulfonebiscompounds of expected anticancer activity. Arzneimittelforschung, 2012, 62(11), 497-507.
[http://dx.doi.org/10.1055/s-0032-1323660] [PMID: 23023519]
[52]
Abdella, A.M.; Mohamed, M.F.; Mohamed, A.F.; Elwahy, A.H.; Abdelhamid, I.A. Novel bis (dihydropyrano [3, 2‐c] chromenes): Synthesis, antiproliferative effect and molecular docking simulation. J. Heterocycl. Chem., 2018, 55, 498-507.
[http://dx.doi.org/10.1002/jhet.3072]
[53]
MOE. The Molecular operating; Environment Chemical Computing Group, Inc Montreal: Quebec, Canada, 2016.

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy