Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article (Mini-Review)

Aromatase Inhibitors for Ovarian Stimulation in Patients with Breast Cancer

Author(s): Esteban Ferreiro , Belén López de Uralde , Rita Abreu , Juan A García-Velasco and Elkin Muñoz *

Volume 21 , Issue 9 , 2020

Page: [910 - 921] Pages: 12

DOI: 10.2174/1389450121666200220124607

Price: $65

Abstract

Background: Breast cancer is the most common malignancy diagnosed in women, and its treatment has a high probability of loss of fertility. Oocyte vitrification is the most commonly used technique to preserve fertility before starting oncological treatment. Aromatase inhibitors induce hypoestrogenemia while promoting the release of gonadotropins and constitute an alternative drug for ovarian stimulation in patients with breast cancer.

Objective: In this mini-review, we update and describe the current status of aromatase inhibitor use in controlled ovarian stimulation for oocyte vitrification in patients with breast cancer.

Results: Aromatase inhibitors are commonly used in combination with gonadotropins for ovarian stimulation in patients with breast cancer who preserve their fertility through oocyte vitrification. They achieve similar ovarian responses as conventional ovarian stimulation protocols in regards to the number of oocytes, and no additional complications after their use have been reported. Furthermore, aromatase inhibitors seem to be safe not only for offspring, as no more congenital defects occur in newborns from pregnancies achieved after their use, but also for the patients, as no more malignancy recurrence or increased mortality was found in cohort studies.

Conclusion: Aromatase inhibitors are elective drugs for ovarian stimulation in patients with breast cancer who decide to preserve their fertility through oocyte vitrification.

Keywords: Aromatase inhibitors, breast cancer, ovarian stimulation, fertility preservation, hypoestrogenemia, safety.

Graphical Abstract
[1]
Coughlin SS. Epidemiology of Breast Cancer in Women. Adv Exp Med Biol 2019; 1152: 9-29.
[http://dx.doi.org/10.1007/978-3-030-20301-6_2] [PMID: 31456177]
[2]
Xu L, Zhang Z, Xiang Q, et al. Extended Adjuvant Therapy With Aromatase Inhibitors for Early Breast Cancer: A Meta-analysis of Randomized Controlled Trials. Clin Breast Cancer 2019; 19(5): e578-88.
[http://dx.doi.org/10.1016/j.clbc.2019.03.005] [PMID: 31257015]
[3]
McDonnell DP, Norris JD. Connections and regulation of the human estrogen receptor. Science 2002; 296(5573): 1642-4.
[http://dx.doi.org/10.1126/science.1071884] [PMID: 12040178]
[4]
Chumsri S, Howes T, Bao T, Sabnis G, Brodie A. Aromatase, aromatase inhibitors, and breast cancer. J Steroid Biochem Mol Biol 2011; 125(1-2): 13-22.
[http://dx.doi.org/10.1016/j.jsbmb.2011.02.001] [PMID: 21335088]
[5]
Requena A, Herrero J, Landeras J, et al. Use of letrozole in assisted reproduction: a systematic review and meta-analysis. Hum Reprod Update 2008; 14(6): 571-82.
[http://dx.doi.org/10.1093/humupd/dmn033] [PMID: 18812422]
[6]
Aromatase inhibitors versus tamoxifen in early breast cancer: patient-level meta-analysis of the randomised trials. Lancet 2015; 386(10001): 1341-52.
[http://dx.doi.org/10.1016/S0140-6736(15)61074-1] [PMID: 26211827]
[7]
Ayala de la Peña F, Andrés R, Garcia-Sáenz JA, et al. SEOM clinical guidelines in early stage breast cancer (2018). Clin Transl Oncol 2019; 21(1): 18-30.
[http://dx.doi.org/10.1007/s12094-018-1973-6] [PMID: 30443868]
[8]
Domingo J, Guillén V, Ayllón Y, et al. Ovarian response to controlled ovarian hyperstimulation in cancer patients is diminished even before oncological treatment. Fertil Steril 2012; 97(4): 930-4.
[http://dx.doi.org/10.1016/j.fertnstert.2012.01.093] [PMID: 22283969]
[9]
Zhang W, Tian Y, Xie D, Miao Y, Liu J, Wang X. The impact of peak estradiol during controlled ovarian stimulation on the cumulative live birth rate of IVF/ICSI in non-PCOS patients. J Assist Reprod Genet 2019; 36(11): 2333-44.
[http://dx.doi.org/10.1007/s10815-019-01568-w] [PMID: 31485870]
[10]
Ghosh D, Lo J, Egbuta C. Recent Progress in the Discovery of Next Generation Inhibitors of Aromatase from the Structure-Function Perspective. J Med Chem 2016; 59(11): 5131-48.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01281] [PMID: 26689671]
[11]
Ghosh D, Egbuta C, Kanyo JE, Lam TT. Phosphorylation of human placental aromatase CYP19A1. Biochem J 2019; 476(21): 3313-31.
[http://dx.doi.org/10.1042/BCJ20190633] [PMID: 31652308]
[12]
Laughlin GA, Barrett-Connor E, Kritz-Silverstein D, von Mühlen D. Hysterectomy, oophorectomy, and endogenous sex hormone levels in older women: the Rancho Bernardo Study. J Clin Endocrinol Metab 2000; 85(2): 645-51.
[PMID: 10690870]
[13]
Kamath MS, Maheshwari A, Bhattacharya S, Lor KY, Gibreel A. Oral medications including clomiphene citrate or aromatase inhibitors with gonadotropins for controlled ovarian stimulation in women undergoing in vitro fertilisation. Cochrane Database Syst Rev 2017. 11CD008528
[http://dx.doi.org/10.1002/14651858.CD008528.pub3] [PMID: 29096046]
[14]
Garcia-Velasco JA, Moreno L, Pacheco A, et al. The aromatase inhibitor letrozole increases the concentration of intraovarian androgens and improves in vitro fertilization outcome in low responder patients: a pilot study. Fertil Steril 2005; 84(1): 82-7.
[http://dx.doi.org/10.1016/j.fertnstert.2005.01.117] [PMID: 16009161]
[15]
Lønning P, Pfister C, Martoni A, Zamagni C. Pharmacokinetics of third-generation aromatase inhibitors. Semin Oncol 2003; 30(4)(Suppl. 14): 23-32.
[http://dx.doi.org/10.1016/S0093-7754(03)00305-1] [PMID: 14513434]
[16]
Sioufi A, Gauducheau N, Pineau V, et al. Absolute bioavailability of letrozole in healthy postmenopausal women. Biopharm Drug Dispos 1997; 18(9): 779-89.
[http://dx.doi.org/10.1002/(SICI)1099-081X(199712)18:9<779:AID-BDD64>3.0.CO;2-5] [PMID: 9429742]
[17]
Pfister CU, Martoni A, Zamagni C, et al. Effect of age and single versus multiple dose pharmacokinetics of letrozole (Femara) in breast cancer patients. Biopharm Drug Dispos 2001; 22(5): 191-7.
[http://dx.doi.org/10.1002/bdd.273] [PMID: 11745921]
[18]
Tanii H, Shitara Y, Horie T. Population pharmacokinetic analysis of letrozole in Japanese postmenopausal women. Eur J Clin Pharmacol 2011; 67(10): 1017-25.
[http://dx.doi.org/10.1007/s00228-011-1042-3] [PMID: 21494765]
[19]
Azim AA, Costantini-Ferrando M, Lostritto K, Oktay K. Relative potencies of anastrozole and letrozole to suppress estradiol in breast cancer patients undergoing ovarian stimulation before in vitro fertilization. J Clin Endocrinol Metab 2007; 92(6): 2197-200.
[http://dx.doi.org/10.1210/jc.2007-0247] [PMID: 17356042]
[20]
Cakmak H, Rosen MP. Random-start ovarian stimulation in patients with cancer. Curr Opin Obstet Gynecol 2015; 27(3): 215-21.
[http://dx.doi.org/10.1097/GCO.0000000000000180] [PMID: 25919235]
[21]
Klement AH, Casper RF. The use of aromatase inhibitors for ovulation induction. Curr Opin Obstet Gynecol 2015; 27(3): 206-9.
[http://dx.doi.org/10.1097/GCO.0000000000000163] [PMID: 25710389]
[22]
Noriega-Portella L, Noriega-Hoces L, Delgado A, Rubio J, Gonzales-Castañeda C, Gonzales GF. Effect of letrozole at 2.5 mg or 5.0 mg/day on ovarian stimulation with gonadotropins in women undergoing intrauterine insemination. Fertil Steril 2008; 90(5): 1818-25.
[http://dx.doi.org/10.1016/j.fertnstert.2007.08.060] [PMID: 18083169]
[23]
Lee S, Oktay K. Does higher starting dose of FSH stimulation with letrozole improve fertility preservation outcomes in women with breast cancer? Fertil Steril 2012; 98(4): 961-4.e1.
[http://dx.doi.org/10.1016/j.fertnstert.2012.06.015] [PMID: 22771027]
[24]
Sonigo C, Sermondade N, Calvo J, et al. Impact of letrozole supplementation during ovarian stimulation for fertility preservation in breast cancer patients. Eur J Obstet Gynecol Reprod Biol X 2019; 11(4) 100049
[http://dx.doi.org/10.1016/j.eurox.2019.100049]
[25]
Dahhan T, Balkenende EME, Beerendonk CCM, et al. Stimulation of the ovaries in women with breast cancer undergoing fertility preservation: Alternative versus standard stimulation protocols; the study protocol of the STIM-trial. Contemp Clin Trials 2017; 61: 96-100.
[http://dx.doi.org/10.1016/j.cct.2017.07.009] [PMID: 28710053]
[26]
von Wolff M, Capp E, Jauckus J, Strowitzki T, Germeyer A. Timing of ovarian stimulation in patients prior to gonadotoxic therapy: an analysis of 684 stimulations. Eur J Obstet Gynecol Reprod Biol 2016; 199: 146-9.
[http://dx.doi.org/10.1016/j.ejogrb.2016.02.006] [PMID: 26927896]
[27]
Wald K, Cakmak H, Mok-Lin E, Cedars M, Rosen M, Letourneau J. Back-to-back random-start ovarian stimulation prior to chemotherapy to maximize oocyte yield. J Assist Reprod Genet 2019; 36(6): 1161-8.
[http://dx.doi.org/10.1007/s10815-019-01462-5] [PMID: 31127475]
[28]
Nakasuji T, Kawai K, Ishikawa T, et al. Random-start ovarian stimulation with aromatase inhibitor for fertility preservation in women with Japanese breast cancer. Reprod Med Biol 2019; 18(2): 167-72.
[http://dx.doi.org/10.1002/rmb2.12263] [PMID: 30996680]
[29]
Cavagna F, Pontes A, Cavagna M, et al. Specific protocols of controlled ovarian stimulation for oocyte cryopreservation in breast cancer patients. Curr Oncol 2018; 25(6): e527-32.
[http://dx.doi.org/10.3747/co.25.3889] [PMID: 30607119]
[30]
Letourneau JM, Sinha N, Wald K, et al. Random start ovarian stimulation for fertility preservation appears unlikely to delay initiation of neoadjuvant chemotherapy for breast cancer. Hum Reprod 2017; 32(10): 2123-9.
[http://dx.doi.org/10.1093/humrep/dex276] [PMID: 28938748]
[31]
Pereira N, Kligman I, Hunt R, Kopparam R, Wahmann B, Rosenwaks Z. Fertility preservation with random-start controlled ovarian stimulation and embryo cryopreservation for early pregnancy-associated breast cancer. Gynecol Endocrinol 2019; 35(3): 214-6.
[http://dx.doi.org/10.1080/09513590.2018.1522298] [PMID: 30403906]
[32]
Campos APC, Geber GP, Hurtado R, Sampaio M, Geber S. Ovarian response after random-start controlled ovarian stimulation to cryopreserve oocytes in cancer patients. JBRA Assist Reprod 2018; 22(4): 352-4.
[http://dx.doi.org/10.5935/1518-0557.20180065] [PMID: 30264947]
[33]
Sönmezer M, Türkçüoğlu I, Coşkun U, Oktay K. Random-start controlled ovarian hyperstimulation for emergency fertility preservation in letrozole cycles. Fertil Steril 2011; 95(6): 2125.e9-2125.e11.
[http://dx.doi.org/10.1016/j.fertnstert.2011.01.030] [PMID: 21292255]
[34]
Sarais V, Paffoni A, Pagliardini L, et al. Long-acting recombinant follicle-stimulating hormone in random-start ovarian stimulation protocols for fertility preservation in women with cancer. Acta Obstet Gynecol Scand 2017; 96(8): 949-53.
[http://dx.doi.org/10.1111/aogs.13146] [PMID: 28382680]
[35]
Danis RB, Pereira N, Elias RT. Random Start Ovarian Stimulation for Oocyte or Embryo Cryopreservation in Women Desiring Fertility Preservation Prior to Gonadotoxic Cancer Therapy. Curr Pharm Biotechnol 2017; 18(8): 609-13.
[http://dx.doi.org/10.2174/1389201018666170808122531] [PMID: 28786354]
[36]
Ubaldi FM, Capalbo A, Vaiarelli A, et al. Follicular versus luteal phase ovarian stimulation during the same menstrual cycle (DuoStim) in a reduced ovarian reserve population results in a similar euploid blastocyst formation rate: new insight in ovarian reserve exploitation. Fertil Steril 2016; 105(6): 1488-1495.e1.
[http://dx.doi.org/10.1016/j.fertnstert.2016.03.002] [PMID: 27020168]
[37]
Reddy J, Turan V, Bedoschi G, Moy F, Oktay K. Triggering final oocyte maturation with gonadotropin-releasing hormone agonist (GnRHa) versus human chorionic gonadotropin (hCG) in breast cancer patients undergoing fertility preservation: an extended experience. J Assist Reprod Genet 2014; 31(7): 927-32.
[http://dx.doi.org/10.1007/s10815-014-0248-6] [PMID: 24854484]
[38]
Pereira N, Kelly AG, Stone LD, et al. Gonadotropin-releasing hormone agonist trigger increases the number of oocytes and embryos available for cryopreservation in cancer patients undergoing ovarian stimulation for fertility preservation. Fertil Steril 2017; 108(3): 532-8.
[http://dx.doi.org/10.1016/j.fertnstert.2017.06.027] [PMID: 28865552]
[39]
Engmann L, Benadiva C, Humaidan P. GnRH agonist trigger for the induction of oocyte maturation in GnRH antagonist IVF cycles: a SWOT analysis. Reprod Biomed Online 2016; 32(3): 274-85.
[http://dx.doi.org/10.1016/j.rbmo.2015.12.007] [PMID: 26803205]
[40]
Lawrenz B, Garrido N, Samir S, Ruiz F, Melado L, Fatemi HM. Individual luteolysis pattern after GnRH-agonist trigger for final oocyte maturation. PLoS One 2017; 12(5)e0176600
[http://dx.doi.org/10.1371/journal.pone.0176600] [PMID: 28459828]
[41]
Oktay K, Buyuk E, Libertella N, Akar M, Rosenwaks Z. Fertility preservation in breast cancer patients: a prospective controlled comparison of ovarian stimulation with tamoxifen and letrozole for embryo cryopreservation. J Clin Oncol 2005; 23(19): 4347-53.
[http://dx.doi.org/10.1200/JCO.2005.05.037] [PMID: 15824416]
[42]
Johnson LN, Dillon KE, Sammel MD, et al. Response to ovarian stimulation in patients facing gonadotoxic therapy. Reprod Biomed Online 2013; 26(4): 337-44.
[http://dx.doi.org/10.1016/j.rbmo.2013.01.003] [PMID: 23415997]
[43]
Pereira N, Hancock K, Cordeiro CN, Lekovich JP, Schattman GL, Rosenwaks Z. Comparison of ovarian stimulation response in patients with breast cancer undergoing ovarian stimulation with letrozole and gonadotropins to patients undergoing ovarian stimulation with gonadotropins alone for elective cryopreservation of oocytes. Gynecol Endocrinol 2016; 32(10): 823-6.
[http://dx.doi.org/10.1080/09513590.2016.1177013] [PMID: 27114051]
[44]
Moraes CC, Marinho VFW, Campos ALM, et al. Oocyte cryopreservation for future fertility: comparison of ovarian response between cancer and non-cancer patients. JBRA Assist Reprod 2019; 23(2): 91-8.
[http://dx.doi.org/10.5935/1518-0557.20190010] [PMID: 30875168]
[45]
Ben-Haroush A, Wertheimer A, Klochendler E, Sapir O, Shufaro Y, Oron G. Effect of letrozole added to gonadotropins in controlled ovarian stimulation protocols on the yield and maturity of retrieved oocytes. Gynecol Endocrinol 2019; 35(4): 324-7.
[http://dx.doi.org/10.1080/09513590.2018.1534950] [PMID: 30596311]
[46]
Turan V, Quinn MM, Dayioglu N, Rosen MP, Oktay K. The impact of malignancy on response to ovarian stimulation for fertility preservation: a meta-analysis. Fertil Steril 2018; 110(7): 1347-55.
[http://dx.doi.org/10.1016/j.fertnstert.2018.08.013] [PMID: 30503134]
[47]
von Wolff M, Bruckner T, Strowitzki T, Germeyer A. Fertility preservation: ovarian response to freeze oocytes is not affected by different malignant diseases-an analysis of 992 stimulations. J Assist Reprod Genet 2018; 35(9): 1713-9.
[http://dx.doi.org/10.1007/s10815-018-1227-0] [PMID: 29869766]
[48]
Lefebvre T, Mirallié S, Leperlier F, Reignier A, Barrière P, Fréour T. Ovarian reserve and response to stimulation in women undergoing fertility preservation according to malignancy type. Reprod Biomed Online 2018; 37(2): 201-7.
[http://dx.doi.org/10.1016/j.rbmo.2018.04.047] [PMID: 29784618]
[49]
Oktay K, Kim JY, Barad D, Babayev SN. Association of BRCA1 mutations with occult primary ovarian insufficiency: a possible explanation for the link between infertility and breast/ovarian cancer risks. J Clin Oncol 2010; 28(2): 240-4.
[http://dx.doi.org/10.1200/JCO.2009.24.2057] [PMID: 19996028]
[50]
Phillips KA, Collins IM, Milne RL, et al. Anti-Müllerian hormone serum concentrations of women with germline BRCA1 or BRCA2 mutations. Hum Reprod 2016; 31(5): 1126-32.
[http://dx.doi.org/10.1093/humrep/dew044] [PMID: 27094481]
[51]
Ben-Aharon I, Levi M, Margel D, et al. Premature ovarian aging in BRCA carriers: a prototype of systemic precocious aging? Oncotarget 2018; 9(22): 15931-41.
[http://dx.doi.org/10.18632/oncotarget.24638] [PMID: 29662617]
[52]
Shapira M, Raanani H, Feldman B, et al. BRCA mutation carriers show normal ovarian response in in vitro fertilization cycles. Fertil Steril 2015; 104(5): 1162-7.
[http://dx.doi.org/10.1016/j.fertnstert.2015.07.1162] [PMID: 26335130]
[53]
Goldrat O, Van Den Steen G, Gonzalez-Merino E, et al. Letrozole-associated controlled ovarian hyperstimulation in breast cancer patients versus conventional controlled ovarian hyperstimulation in infertile patients: assessment of oocyte quality related biomarkers. Reprod Biol Endocrinol 2019; 17(1): 3.
[http://dx.doi.org/10.1186/s12958-018-0443-x] [PMID: 30606204]
[54]
Shim YJ, Seol A, Lee D, et al. The serum estradiol/oocyte ratio in patients with breast cancer undergoing ovarian stimulation with letrozole and gonadotropins. Obstet Gynecol Sci 2018; 61(2): 242-6.
[http://dx.doi.org/10.5468/ogs.2018.61.2.242] [PMID: 29564315]
[55]
Cobo A, Coello A, Remohí J, Serrano J, de Los Santos JM, Meseguer M. Effect of oocyte vitrification on embryo quality: time-lapse analysis and morphokinetic evaluation. Fertil Steril 2017; 108(3): 491-497.e3.
[http://dx.doi.org/10.1016/j.fertnstert.2017.06.024] [PMID: 28865549]
[56]
Cobo A, Rubio C, Gerli S, Ruiz A, Pellicer A, Remohí J. Use of fluorescence in situ hybridization to assess the chromosomal status of embryos obtained from cryopreserved oocytes. Fertil Steril 2001; 75(2): 354-60.
[http://dx.doi.org/10.1016/S0015-0282(00)01725-8] [PMID: 11172839]
[57]
Grynberg M, Dagher Hayeck B, Papanikolaou EG, Sifer C, Sermondade N, Sonigo C. BRCA1/2 gene mutations do not affect the capacity of oocytes from breast cancer candidates for fertility preservation to mature in vitro. Hum Reprod 2019; 34(2): 374-9.
[http://dx.doi.org/10.1093/humrep/dey358] [PMID: 30561604]
[58]
Turan V, Bedoschi G, Emirdar V, Moy F, Oktay K. Ovarian Stimulation in Patients With Cancer: Impact of Letrozole and BRCA Mutations on Fertility Preservation Cycle Outcomes. Reprod Sci 2018; 25(1): 26-32.
[http://dx.doi.org/10.1177/1933719117728800] [PMID: 28874104]
[59]
Wennerholm UB, Söderström-Anttila V, Bergh C, et al. Children born after cryopreservation of embryos or oocytes: a systematic review of outcome data. Hum Reprod 2009; 24(9): 2158-72.
[http://dx.doi.org/10.1093/humrep/dep125] [PMID: 19458318]
[60]
Notrica J, Divita A, Neuspiller F, Arenas G, de Fried EP. Healthy girl born after cryopreservation of gametes and ICSI in a patient with seminoma. Reprod Biomed Online 2004; 9(6): 620-2.
[http://dx.doi.org/10.1016/S1472-6483(10)61771-3] [PMID: 15670407]
[61]
Levi Setti PE, Albani E, Novara PV, Cesana A, Bianchi S, Negri L. Normal birth after transfer of cryopreserved human embryos generated by microinjection of cryopreserved testicular spermatozoa into cryopreserved human oocytes. Fertil Steril 2005; 83(4): 1041.
[http://dx.doi.org/10.1016/j.fertnstert.2004.09.034] [PMID: 15820821]
[62]
Azambuja R, Badalotti M, Teloken C, Michelon J, Petracco A. Successful birth after injection of frozen human oocytes with frozen epididymal spermatozoa. Reprod Biomed Online 2005; 11(4): 449-51.
[http://dx.doi.org/10.1016/S1472-6483(10)61138-8] [PMID: 16274606]
[63]
Gook DA, Hale L, Edgar DH. Live birth following transfer of a cryopreserved embryo generated from a cryopreserved oocyte and a cryopreserved sperm: case report. J Assist Reprod Genet 2007; 24(1): 43-5.
[http://dx.doi.org/10.1007/s10815-006-9093-6] [PMID: 17192835]
[64]
Martinez M, Rabadan S, Domingo J, Cobo A, Pellicer A, Garcia-Velasco JA. Obstetric outcome after oocyte vitrification and warming for fertility preservation in women with cancer. Reprod Biomed Online 2014; 29(6): 722-8.
[http://dx.doi.org/10.1016/j.rbmo.2014.09.002] [PMID: 25444506]
[65]
Cobo A, Serra V, Garrido N, Olmo I, Pellicer A, Remohí J. Obstetric and perinatal outcome of babies born from vitrified oocytes. Fertil Steril 2014; 102(4): 1006-1015.e4.
[http://dx.doi.org/10.1016/j.fertnstert.2014.06.019] [PMID: 25064408]
[66]
Biljan MM, Hemmings R, Brassard N. The outcome of 150 babies following the treatment with letrozole or letrozole and gonadotropins. Fertil Steril 2005; 84(Suppl. 1): O-231.
[http://dx.doi.org/10.1016/j.fertnstert.2005.07.230]
[67]
Tulandi T, Martin J, Al-Fadhli R, et al. Congenital malformations among 911 newborns conceived after infertility treatment with letrozole or clomiphene citrate. Fertil Steril 2006; 85(6): 1761-5.
[http://dx.doi.org/10.1016/j.fertnstert.2006.03.014] [PMID: 16650422]
[68]
Legro RS, Brzyski RG, Diamond MP, et al. Letrozole versus clomiphene for infertility in the polycystic ovary syndrome. N Engl J Med 2014; 371(2): 119-29.
[http://dx.doi.org/10.1056/NEJMoa1313517] [PMID: 25006718]
[69]
Sharma S, Ghosh S, Singh S, et al. Congenital malformations among babies born following letrozole or clomiphene for infertility treatment. PLoS One 2014; 9(10)e108219
[http://dx.doi.org/10.1371/journal.pone.0108219] [PMID: 25272289]
[70]
Eden J. Progestins and breast cancer. Am J Obstet Gynecol 2003; 188(5): 1123-31.
[http://dx.doi.org/10.1067/mob.2003.201] [PMID: 12748456]
[71]
Palafox M, Ferrer I, Pellegrini P, et al. RANK induces epithelial-mesenchymal transition and stemness in human mammary epithelial cells and promotes tumorigenesis and metastasis. Cancer Res 2012; 72(11): 2879-88.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-0044] [PMID: 22496457]
[72]
Alviggi C, Marci R, Vallone R, et al. High progesterone levels during the luteal phase related to the use of an aromatase inhibitor in breast cancer patients. Eur Rev Med Pharmacol Sci 2017; 21(13): 3134-8.
[PMID: 28742191]
[73]
Fauser BC, de Jong D, Olivennes F, et al. Endocrine profiles after triggering of final oocyte maturation with GnRH agonist after cotreatment with the GnRH antagonist ganirelix during ovarian hyperstimulation for in vitro fertilization. J Clin Endocrinol Metab 2002; 87(2): 709-15.
[http://dx.doi.org/10.1210/jcem.87.2.8197] [PMID: 11836309]
[74]
Goldrat O, Gervy C, Englert Y, Delbaere A, Demeestere I. Progesterone levels in letrozole associated controlled ovarian stimulation for fertility preservation in breast cancer patients. Hum Reprod 2015; 30(9): 2184-9.
[http://dx.doi.org/10.1093/humrep/dev155] [PMID: 26109617]
[75]
Del Pup L, Peccatori FA. Is ovulation induction with letrozole in breast cancer patients still safe even if it could increase progesterone levels? Eur Rev Med Pharmacol Sci 2018; 22(1): 246-9.
[PMID: 29364493]
[76]
Sergentanis TN, Diamantaras AA, Perlepe C, Kanavidis P, Skalkidou A, Petridou ET. IVF and breast cancer: a systematic review and meta-analysis. Hum Reprod Update 2014; 20(1): 106-23.
[http://dx.doi.org/10.1093/humupd/dmt034] [PMID: 23884897]
[77]
Winer EP, Hudis C, Burstein HJ, et al. American Society of Clinical Oncology technology assessment on the use of aromatase inhibitors as adjuvant therapy for women with hormone receptor-positive breast cancer: status report 2002. J Clin Oncol 2002; 20(15): 3317-27.
[http://dx.doi.org/10.1200/JCO.2002.06.020] [PMID: 12149306]
[78]
Muñoz E, Domingo J, De Castro G, et al. Ovarian stimulation for oocyte vitrification does not modify disease-free survival and overall survival rates in patients with early breast cancer. Reprod Biomed Online 2019; 39(5): 860-7.
[http://dx.doi.org/10.1016/j.rbmo.2019.07.003] [PMID: 31564650]
[79]
Rodgers RJ, Reid GD, Koch J, et al. The safety and efficacy of controlled ovarian hyperstimulation for fertility preservation in women with early breast cancer: a systematic review. Hum Reprod 2017; 32(5): 1033-45.
[http://dx.doi.org/10.1093/humrep/dex027] [PMID: 28333356]
[80]
Méar L, Herr M, Fauconnier A, Pineau C, Vialard F. Polymorphisms and endometriosis: a systematic review and meta-analyses. Hum Reprod Update 2020; 26(1): 73-102.
[http://dx.doi.org/10.1093/humupd/dmz034] [PMID: 31821471]
[81]
Yang S, Fang Z, Suzuki T, et al. Regulation of aromatase P450 expression in endometriotic and endometrial stromal cells by CCAAT/enhancer binding proteins (C/EBPs): decreased C/EBPbeta in endometriosis is associated with overexpression of aromatase. J Clin Endocrinol Metab 2002; 87(5): 2336-45.
[http://dx.doi.org/10.1210/jc.87.5.2336] [PMID: 11994385]
[82]
Attar E, Tokunaga H, Imir G, et al. Prostaglandin E2 via steroidogenic factor-1 coordinately regulates transcription of steroidogenic genes necessary for estrogen synthesis in endometriosis. J Clin Endocrinol Metab 2009; 94(2): 623-31.
[http://dx.doi.org/10.1210/jc.2008-1180] [PMID: 19001523]
[83]
Acién P, Velasco I, Gutiérrez M, Martínez-Beltrán M. Aromatase expression in endometriotic tissues and its relationship to clinical and analytical findings. Fertil Steril 2007; 88(1): 32-8.
[http://dx.doi.org/10.1016/j.fertnstert.2006.11.188] [PMID: 17336977]
[84]
Reis FM, Petraglia F, Taylor RN. Endometriosis: hormone regulation and clinical consequences of chemotaxis and apoptosis. Hum Reprod Update 2013; 19(4): 406-18.
[http://dx.doi.org/10.1093/humupd/dmt010] [PMID: 23539633]
[85]
Mori T, Ito F, Koshiba A, et al. Aromatase as a target for treating endometriosis. J Obstet Gynaecol Res 2018; 44(9): 1673-81.
[http://dx.doi.org/10.1111/jog.13743] [PMID: 30043503]
[86]
Sebastian S, Bulun SE. A highly complex organization of the regulatory region of the human CYP19 (aromatase) gene revealed by the Human Genome Project. J Clin Endocrinol Metab 2001; 86(10): 4600-2.
[http://dx.doi.org/10.1210/jcem.86.10.7947] [PMID: 11600509]
[87]
Colette S, Lousse JC, Defrère S, et al. Absence of aromatase protein and mRNA expression in endometriosis. Hum Reprod 2009; 24(9): 2133-41.
[http://dx.doi.org/10.1093/humrep/dep199] [PMID: 19493871]
[88]
Colette S, Donnez J. Are aromatase inhibitors effective in endometriosis treatment? Expert Opin Investig Drugs 2011; 20(7): 917-31.
[http://dx.doi.org/10.1517/13543784.2011.581226] [PMID: 21529311]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy