Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Molecularly Imprinted Sensor for Ascorbic Acid Based on Gold Nanoparticles and Multiwalled Carbon Nanotubes

Author(s): Youyuan Peng* and Qingshan Miao

Volume 16 , Issue 7 , 2020

Page: [905 - 913] Pages: 9

DOI: 10.2174/1573411015666191029152332

Price: $65

Abstract

Background: L-Ascorbic acid (AA) is a kind of water soluble vitamin, which is mainly present in fruits, vegetables and biological fluids. As a low cost antioxidant and effective scavenger of free radicals, AA may help to prevent diseases such as cancer and Parkinson’s disease. Owing to its role in the biological metabolism, AA has also been utilized for the therapy of mental illness, common cold and for improving the immunity. Therefore, it is very necessary and urgent to develop a simple, rapid and selective strategy for the detection of AA in various samples.

Methods: The molecularly imprinted poly(o-phenylenediamine) (PoPD) film was prepared for the analysis of L-ascorbic acid (AA) on gold nanoparticles (AuNPs) - multiwalled carbon nanotubes (MWCNTs) modified glass carbon electrode (GCE) by electropolymerization of o-phenylenediamine (oPD) and AA. Experimental parameters including pH value of running buffer and scan rates were optimized. Scanning electron microscope (SEM), fourier-transform infrared (FTIR) spectra, cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were utilized for the characterization of the imprinted polymer film.

Results: Under the selected experimental conditions, the DPV peak currents of AA exhibit two distinct linear responses ranging from 0.01 to 2 μmol L-1 and 2 to 100 μmol L-1 towards the concentrations of AA, and the detection limit was 2 nmol L-1 (S/N=3).

Conclusion: The proposed electrochemical sensor possesses excellent selectivity for AA, along with good reproducibility and stability. The results obtained from the analysis of AA in real samples demonstrated the applicability of the proposed sensor to practical analysis.

Keywords: Ascorbic acid, electrochemical sensor, gold nanoparticles, molecularly imprinted polymer, multiwalled carbon nanotubes, poly(o-phenylenediamine) film.

Graphical Abstract
[1]
Prasad, B.B.; Jauhari, D.; Tiwari, M.P. A dual-template imprinted polymer-modified carbon ceramic electrode for ultra trace simultaneous analysis of ascorbic acid and dopamine. Biosens. Bioelectron., 2013, 50, 19-27.
[http://dx.doi.org/10.1016/j.bios.2013.05.062] [PMID: 23831643]
[2]
Habibi, B.; Jahanbakhshi, M.; Pournaghi-Azar, M.H. Differential pulse voltammetric simultaneous determination of acetaminophen and ascorbic acid using single-walled carbon nanotube-modified carbon-ceramic electrode. Anal. Biochem., 2011, 411(2), 167-175.
[http://dx.doi.org/10.1016/j.ab.2011.01.005] [PMID: 21236238]
[3]
Kalimuthu, P.; John, S.A. Simultaneous determination of ascorbic acid, dopamine, uric acid and xanthine using a nanostructured polymer film modified electrode. Talanta, 2010, 80(5), 1686-1691.
[http://dx.doi.org/10.1016/j.talanta.2009.10.007] [PMID: 20152397]
[4]
Lee, H.L.; Chen, S.C. Microchip capillary electrophoresis with electrochemical detector for precolumn enzymatic analysis of glucose, creatinine, uric acid and ascorbic acid in urine and serum. Talanta, 2004, 64(3), 750-757.
[http://dx.doi.org/10.1016/j.talanta.2004.03.046] [PMID: 18969668]
[5]
Wang, J.; Zhou, M.; Dong, R.; Cong, X.; Zhang, R.; Wang, X. Simultaneous dtermination of peroxide hydrogen and ascorbic acid by capillary electrophoresis with platinum nanoparticles modified micro-disk electrode. Electroanalysis, 2017, 29, 2483-2490.
[http://dx.doi.org/10.1002/elan.201600407]
[6]
Khan, A.; Khan, M.I.; Iqbal, Z.; Shah, Y.; Ahmad, L.; Nazir, S.; Watson, D.G.; Khan, J.A.; Nasir, F.; Khan, A. Ismail, A new HPLC method for the simultaneous determination of ascorbic acid and aminothiols in human plasma and erythrocytes using electrochemical detection. Talanta, 2011, 84(3), 789-801.
[http://dx.doi.org/10.1016/j.talanta.2011.02.019] [PMID: 21482284]
[7]
Lima, D.R.S.; Cossenza, M.; Garcia, C.G.; Portugal, C.C.; Marques, F.F.D.; Paes-de-Carvalho, R.; Netto, A.D.P. Determination of ascorbic acid in the retina during chicken embryo development using high performance liquid chromatography and UV detection. Anal. Methods, 2016, 8, 5441-5447.
[http://dx.doi.org/10.1039/C6AY01249C]
[8]
Zuo, R.; Zhou, S.; Zuo, Y.; Deng, Y. Determination of creatinine, uric and ascorbic acid in bovine milk and orange juice by hydrophilic interaction HPLC. Food Chem., 2015, 182, 242-245.
[http://dx.doi.org/10.1016/j.foodchem.2015.02.142] [PMID: 25842333]
[9]
Tukimin, N.; Abdullah, J.; Sulaiman, Y. Review-electrochemical detection of uric acid, dopamine and ascorbic acid. J. Electrochem. Soc., 2018, 165, B258-B267.
[http://dx.doi.org/10.1149/2.0201807jes]
[10]
Taleb, M.; Ivanov, R.; Bereznev, S.; Kazemi, S.H.; Hussainova, I. Graphene-ceramic hybrid nanofibers for ultrasensitive electrochemical determination of ascorbic acid. Microchim. Acta, 2017, 184, 897-905.
[http://dx.doi.org/10.1007/s00604-017-2085-7]
[11]
Wang, L.; Gong, C.C.; Shen, Y.; Ye, W.H.; Xu, M.L.; Song, Y.H. A novel ratiometric electrochemical biosensor for sensitive detection of ascorbic acid. Sens. Actuators B Chem., 2017, 242, 625-631.
[http://dx.doi.org/10.1016/j.snb.2016.11.100]
[12]
Wulff, G.; Sarhan, A. Use of polymers with enzyme-analogous structures for resolution of racemates. Angew. Chem. Int. Ed. Engl., 1972, 11, 341-344.
[13]
Li, T.; Yao, T.; Zhang, C.; Liu, G.; She, Y.; Jin, M.; Jin, F.; Wang, S.; Shao, H.; Wang, J. Electrochemical detection of ractopamine based on a molecularly imprinted poly-o-phenylenediamine/gold nanoparticle-ionic liquid-graphene film modified glass carbon electrode. RSC Advances, 2016, 6, 66949-66956.
[http://dx.doi.org/10.1039/C6RA11999A]
[14]
Guo, W.; Pi, F.; Zhang, H.; Sun, J.; Zhang, Y.; Sun, X. A novel molecularly imprinted electrochemical sensor modified with carbon dots, chitosan, gold nanoparticles for the determination of patulin. Biosens. Bioelectron., 2017, 98, 299-304.
[http://dx.doi.org/10.1016/j.bios.2017.06.036] [PMID: 28697441]
[15]
Mohanan, V.M.A.; Kunnummal, A.K.; Biju, V.M.N. Selective electrochemical detection of dopamine based on molecularly imprinted poly(5-amino 8-hydroxy quinoline) immobilized reduced graphene oxide. J. Mater. Sci., 2018, 53, 10627-10639.
[http://dx.doi.org/10.1007/s10853-018-2355-8]
[16]
Fang, M.; Zhou, L.; Zhang, H.; Liu, L.; Gong, Z.Y. A molecularly imprinted polymers/carbon dots-grafted paper sensor for 3-monochloropropane-1,2-diol determination. Food Chem., 2019, 274, 156-161.
[http://dx.doi.org/10.1016/j.foodchem.2018.08.133] [PMID: 30372920]
[17]
Zheng, W.; Wu, H.; Jiang, Y.; Xu, J.; Li, X.; Zhang, W.; Qiu, F. A molecularly-imprinted-electrochemical-sensor modified with nano-carbon-dots with high sensitivity and selectivity for rapid determination of glucose. Anal. Biochem., 2018, 555, 42-49.
[http://dx.doi.org/10.1016/j.ab.2018.06.004] [PMID: 29908860]
[18]
Roushani, M.; Jalilian, Z.; Nezhadali, A. A novel electrochemical sensor based on electrode modified with gold nanoparticles and molecularly imprinted polymer for rapid determination of trazosin. Colloids Surf. B Biointerfaces, 2018, 172, 594-600.
[http://dx.doi.org/10.1016/j.colsurfb.2018.09.015] [PMID: 30218985]
[19]
Menon, S.; Jesny, S.; Girish Kumar, K. A voltammetric sensor for acetaminophen based on electropolymerized-molecularly imprinted poly(o-aminophenol) modified gold electrode. Talanta, 2018, 179, 668-675.
[http://dx.doi.org/10.1016/j.talanta.2017.11.074] [PMID: 29310292]
[20]
Peng, Y.; Wu, Z.; Liu, Z. An electrochemical sensor for paracetamol based on an electropolymerized molecularly imprinted o-phenylenediamine film on a multi-walled carbon nanotube modified glassy carbon electrode. Anal. Methods, 2014, 6, 5673-5681.
[http://dx.doi.org/10.1039/C4AY00753K]
[21]
Alizadeh, T.; Atashi, F.; Ganjali, M.R. Molecularly imprinted polymer nano-sphere/multi-walled carbon nanotube coated glassy carbon electrode as an ultra-sensitive voltammetric sensor for picomolar level determination of RDX. Talanta, 2019, 194, 415-421.
[http://dx.doi.org/10.1016/j.talanta.2018.10.040] [PMID: 30609552]
[22]
Zhang, H.; Liu, G.; Chai, C. A novel amperometric sensor based on screen-printed electrode modified with multi-walled carbon nanotubes and molecularly imprinted membrane for rapid determination of ractopamine in pig urine. Sens. Actuators B Chem., 2012, 168, 103-110.
[http://dx.doi.org/10.1016/j.snb.2012.03.032]
[23]
Wang, W.; Wang, F.; Yao, Y.; Hu, S.; Shiu, K.K. Amperometric bienzyme glucose biosensor based on carbon nanotube modified electrode with electropolymerized poly(toluidine blue O) film. Electrochim. Acta, 2010, 55, 7055-7060.
[http://dx.doi.org/10.1016/j.electacta.2010.06.074]
[24]
Choi, H.J.; Jeon, I.Y.; Chang, D.W.; Yu, D.; Dai, L.; Tan, L.S.; Baek, J.B. Preparation and electrocatalytic activity of gold nanoparticles immobilized on the surface of 4-mercaptobenzoyl-functionalized multiwalled carbon nanotubes. J. Phys. Chem. C, 2011, 115, 1746-1751.
[http://dx.doi.org/10.1021/jp109890u]
[25]
Huang, J.; Xing, X.; Zhang, X.; He, X.; Lin, Q.; Lian, W.; Zhu, H. Molecularly imprinted electrochemical sensor based on multiwalled carbon nanotube-gold nanoparticle composites and chitosan for the detection of tyramine. Food Res. Int., 2011, 44, 276-281.
[http://dx.doi.org/10.1016/j.foodres.2010.10.020]
[26]
Prasad, B.B.; Kumar, D.; Madhuri, R.; Tiwari, M.P. Ascorbic acid imprinted polymer-modified graphite electrode: A diagnostic sensor for hypovitaminosis C at ultra trace ascorbic acid level. Sens. Actuators B Chem., 2011, 160, 418-427.
[http://dx.doi.org/10.1016/j.snb.2011.08.003]
[27]
Prasad, B.B.; Srivastava, S.; Tiwari, K.; Sharma, P.S. Ascorbic acid sensor based on molecularly imprinted polymer-modified hanging mercury drop electrode. Mater. Sci. Eng. C, 2009, 29, 1082-1087.
[http://dx.doi.org/10.1016/j.msec.2008.09.025]
[28]
Saksena, K.; Shrivastava, A.; Kant, R. Chiral analysis of ascorbic acid in bovine serum using ultrathin molecular imprinted polyaniline/graphite electrode. J. Electroanal. Chem. (Lausanne Switz.), 2017, 795, 103-109.
[http://dx.doi.org/10.1016/j.jelechem.2017.04.043]
[29]
Roy, A.K.; Nisha, V.S.; Dhand, C.; Malhotra, B.D. Molecularly imprinted polyaniline film for ascorbic acid detection. J. Mol. Recognit., 2011, 24(4), 700-706.
[http://dx.doi.org/10.1002/jmr.1104] [PMID: 21584880]
[30]
Pandey, I.; Jha, S.S. Molecularly imprinted polyaniline-ferrocene-sulfonic acid-Carbon dots modified pencil graphite electrodes for chiral selective sensing of D-Ascorbic acid and L-Ascorbic acid: A clinical biomarker for preeclampsia. Electrochim. Acta, 2015, 182, 917-928.
[http://dx.doi.org/10.1016/j.electacta.2015.10.005]
[31]
Tonelli, D.; Ballarin, B.; Guadagnini, L.; Mignani, A.; Scavetta, E. A novel potentiometric sensor for l-ascorbic acid based on molecularly imprinted polypyrrole. Electrochim. Acta, 2011, 56, 7149-7154.
[http://dx.doi.org/10.1016/j.electacta.2011.05.076]
[32]
Mehdinia, A.; Aziz-Zanjani, M.O.; Ahmadifar, M.; Jabbari, A. Design and synthesis of molecularly imprinted polypyrrole based on nanoreactor SBA-15 for recognition of ascorbic acid. Biosens. Bioelectron., 2013, 39(1), 88-93.
[http://dx.doi.org/10.1016/j.bios.2012.06.052] [PMID: 22871516]
[33]
Zhao, X.; Zhang, W.; Chen, H.; Chen, Y.; Huang, G.D. Disposable electrochemical ascorbic acid sensor based on molecularly imprinted poly(o-phenylenediamine) -modified dual channel screen-printed electrode for orange juice analysis. Food Anal. Methods, 2014, 7, 1557-1563.
[http://dx.doi.org/10.1007/s12161-013-9788-0]
[34]
Kong, Y.; Shan, X.; Ma, J.; Chen, M.; Chen, Z. A novel voltammetric sensor for ascorbic acid based on molecularly imprinted poly(o-phenylenediamine-co-o-aminophenol). Anal. Chim. Acta, 2014, 809, 54-60.
[http://dx.doi.org/10.1016/j.aca.2013.12.003] [PMID: 24418133]
[35]
Yan, C.; Liu, X.; Zhang, R.; Chen, Y.; Wang, G. A selective strategy for determination of ascorbic acid based onmolecular imprinted copolymer of o-phenylenediamine and pyrrole. J. Electroanal. Chem. (Lausanne Switz.), 2016, 780, 276-281.
[http://dx.doi.org/10.1016/j.jelechem.2016.09.046]
[36]
Liu, L.P.; Yin, Z.J.; Yang, Z.S. A L-cysteine sensor based on Pt nanoparticles/poly(o-aminophenol) film on glassy carbon electrode. Bioelectrochemistry, 2010, 79(1), 84-89.
[http://dx.doi.org/10.1016/j.bioelechem.2009.12.003] [PMID: 20051325]
[37]
Lian, W.; Liu, S.; Wang, L.; Liu, H. A novel strategy to improve the sensitivity of antibiotics determination based on bioelectrocatalysis at molecularly imprinted polymer film electrodes. Biosens. Bioelectron., 2015, 73, 214-220.
[http://dx.doi.org/10.1016/j.bios.2015.06.006] [PMID: 26079673]
[38]
Losito, T.; Palmisano, F.; Zambonin, P.G. o-Phenylenediamine electropolymerization by cyclic voltammetry combined with electrospray ionization-ion trap mass spectrometry. Anal. Chem., 2003, 75, 4988-4995.
[http://dx.doi.org/10.1021/ac0342424]
[39]
Li, X.G.; Huang, M.R.; Duan, W.; Yang, Y.L. Novel multifunctional polymers from aromatic diamines by oxidative polymerizations. Chem. Rev., 2002, 102(9), 2925-3030.
[http://dx.doi.org/10.1021/cr010423z] [PMID: 12222980]
[40]
Camurri, G.; Ferrarini, P.; Giovanardi, R.; Benassi, R.; Fontanesi, C. Modelling of the initial stages of the electropolymerization mechanism of o-phenylenediamine. J. Electroanal. Chem. (Lausanne Switz.), 2005, 585, 181-190.
[http://dx.doi.org/10.1016/j.jelechem.2005.08.016]
[41]
Sayyah, S.M.; El-Deeb, M.M.; Kamal, S.M.; Azooz, R.E. Electropolymerization of o-phenylenediamine on Pt-electrode from aqueous acidic solution: kinetic, mechanism, electrochemical studies and characterization of the polymer obtained. J. Appl. Polym. Sci., 2009, 112, 3695-3706.
[http://dx.doi.org/10.1002/app.29802]
[42]
Peng, H.; Liang, C.; Zhou, A.; Zhang, Y.; Xie, Q.; Yao, S. Development of a new atropine sulfate bulk acoustic wave sensor based on a molecularly imprinted electrosynthesized copolymer of aniline with o-phenylenediamine. Anal. Chim. Acta, 2000, 423, 221-228.
[http://dx.doi.org/10.1016/S0003-2670(00)01104-1]
[43]
Ding, H.; Jiao, H.F.; Shi, X.Z.; Sun, A.L.; Guo, X.Q.; Li, D.X.; Chen, J. Molecularly imprinted optosensing sensor for highly selective andsensitive recognition of sulfadiazine in seawater and shrimp samples. Sens. Actuators B Chem., 2017, 246, 510-517.
[http://dx.doi.org/10.1016/j.snb.2017.02.096]
[44]
Behzadi, M.; Noroozian, E.; Mirzaei, M. A novel coating based on carbon nanotubes/poly-ortho-phenylenediamine composite for headspace solid-phase microextraction of polycyclic aromatic hydrocarbons. Talanta, 2013, 108, 66-73.
[http://dx.doi.org/10.1016/j.talanta.2013.02.040] [PMID: 23601871]
[45]
Samanta, S.; Roy, P.; Kar, P. Influence of pH of the reaction medium on the structure and property of conducting poly(o-phenylenediamine). Mater. Today Proc., 2015, 2, 1301-1308.
[http://dx.doi.org/10.1016/j.matpr.2015.07.046]
[46]
Qin, Q.; Bai, X.; Hua, Z. Electropolymerization of a conductive β-cyclodextrin polymer on reduced graphene oxide modified screen-printed electrode for simultaneous determination of ascorbic acid, dopamine and uric acid. J. Electroanal. Chem. (Lausanne Switz.), 2016, 782, 50-58.
[http://dx.doi.org/10.1016/j.jelechem.2016.10.004]
[47]
Liu, X.; Zhong, J.; Rao, H.; Lu, Z.; Ge, H.; Chen, B.; Zou, P.; Wang, X.; He, H.; Zeng, X.; Wang, Y. Electrochemical dipyridamole sensor based on molecularly imprinted polymer on electrode modified with Fe3O4@Au/amine-multi-walled carbon nanotubes. J. Solid State Electrochem., 2017, 21, 3071-3082.
[http://dx.doi.org/10.1007/s10008-017-3650-z]
[48]
Motaharian, A.; Motaharian, F.; Abnous, K.; Hosseini, M.R.M.; Hassanzadeh-Khayyat, M. Molecularly imprinted polymer nanoparticles-based electrochemical sensor for determination of diazinon pesticide in well water and apple fruit samples. Anal. Bioanal. Chem., 2016, 408(24), 6769-6779.
[http://dx.doi.org/10.1007/s00216-016-9802-7] [PMID: 27497964]
[49]
Peng, Y.; Zhang, Y.; Ye, J. Determination of phenolic compounds and ascorbic acid in different fractions of tomato by capillary electrophoresis with electrochemical detection. J. Agric. Food Chem., 2008, 56(6), 1838-1844.
[http://dx.doi.org/10.1021/jf0727544] [PMID: 18284201]

Rights & Permissions Print Export Cite as
© 2022 Bentham Science Publishers | Privacy Policy