The decline in both antioxidants and aging per se are associated with an increased risk of cognitive impairment, chronic
brain damage, the outcome of which can manifest as neurodegeneration. Based on recent reports, neurodegenerative diseases
affect more than 100 million people worldwide and cause significant economical and personal stress, and require long-term cost
effective care. The main motives and the key driving force in the field of neurodegenerative research, are the desire for solutions
to the ravages of CNS diseases especially, Alzheimer’s, Parkinson’s (respectively AD and PD), and others. An important
topic to address is the use of neuropharmacological-driven approaches that could attenuate neuroinflammatory processes in the
diseased brain, and improve the outcome. In this special issue of Current Neuropharmacology, contributors discuss a variety of
experimental and clinical approaches including the development and delivery of novel central nervous system agents, gene
therapies, and drug- and cell-based strategies, as well as micro RNA therapeutics. All of the treatments target CNS cellular
compartment mechanisms and/or the mediators leading to neurodegenerative diseases in vivo and/or cytotoxicity in vitro as
well. These downstream mechanisms include the activation of pro and/or anti-inflammatory signaling cascades, production of
oxygen, nitric oxide (including nitric oxide oxidation products such as nitrite and nitrate contain reactive species), excitatory
mediators and amino acids, and downregulation of growth factors that may lead to the development of neuronal injuries. Thus,
this special issue focuses on up-to-date research, targeting these pathways and mediators upon CNS damage and potential drug
targets.
Pouran Makhdoumi and coworkers report the molecular mechanism of aniline induced spleen and neuronal toxicity in
experimental rat exposure. It has been reported that the aniline exposure leads to neuron and spleen toxicity specifically, and
results in diverse neurological effects and sarcoma that are defined by splenomegaly, hyperplasia, and fibrosis and tumors’
formation at the end. However, the molecular mechanism(s) of aniline-induced spleen toxicity is not fully understood, and previous
studies have represented that aniline exposure results in iron overload and initiation of oxidative/nitrosative disorder
stress and oxidative damage to proteins, lipids and DNA, and subsequently, in the spleen. Elevated expression of cyclins, cyclin-
dependent kinases (CDKs) and phosphorylation of pRB protein along with increases in A, B and CDK1 as cell cycle regulatory
proteins cyclins, and reduction in CDK inhibitors (p21 and p27) could be critical in cell cycle regulation, which contribute
to tumorigenic response after aniline exposure. Critical analysis of the literature has shown that the aniline-induced splenic
toxicity is correlated to oxidative DNA damage and initiation of DNA glycosylases expression (OGG1, NEIL1/2, NTH1, APE1
and PNK) for removal of oxidative DNA lesions in the rat. Oxidative stress causes transcriptional up-regulation of fibrogenic/
inflammatory factors (cytokines, IL-1, IL-6 and TNF-α) via induction of nuclear factor-kappa B, AP-1 and redoxsensitive
transcription factors, in aniline treated-rats. The upstream signaling events as phosphorylation of IκB kinases (IKKα
and IKKβ) and mitogen-activated protein kinases (MAPKs) could potentially be the causes of activation of NF-κB and AP-1.
All of these events could initiate a fibrogenic and/or tumorigenic response in the spleen. Based on the authors’ interpretation,
most likely, the spleen toxicity of aniline has been studied more, and the different mechanisms are suggested. This review
summarizes those events following aniline exposure that induces spleen toxicity and neurotoxicity.
Muneeb U Rehman and coworkers report recent literature evidence regarding the implication of natural products as neuroprotective
strategies for neurological disorders. It has been well documented and reported that natural products can have a
significant role in the prevention of diseases and in boosting the health of humans and animals. These natural products have
been experimentally documented to possess various biological properties such as antioxidant, anti-inflammatory and antiapoptotic
activities. In vitro and in vivo studies have further established the usefulness of natural products in various preclinical
models of neurodegenerative disorders. Natural products include phytoconstituents, like polyphenolic antioxidants, found in
herbs, fruits, nuts, vegetables and also in marine and fresh water flora. These phytoconstituents may potentially suppress neurodegeneration
and improve memory as well as cognitive functions of the brain. Also, they are known to play a pivotal role in
the prevention and cure of different neurodegenerative diseases, such as AD, epilepsy, PD etc. The large scale neuropharmacological
activities of natural products have been documented which are due to the result of either inhibition of inflammatory
processes, and/or the up-regulation of various cell survival proteins and/or combination of both. Due to the scarcity of
human studies on neuroprotective effects of natural products, this review focuses on the various established activities of natural
products in in vitro and in vivo preclinical models, and their potential neurotherapeutic applications using the available knowledge
in the literature.
Studies by Faheem Hyder Pottoo and coworkers discussed the mechanisms of estrogen and serotonin: the complexity of
interactions and potential implications for epileptic seizures and epileptogenesis. Based on this report, burgeoning literature
documents the confluence of ovarian steroids and central serotonergic systems in the injunction of epileptic seizures and epileptogenesis.
In addition, estrogen administration in animals reduces neuronal death from seizures by up-regulation of the prosurvival
molecule i.e. Bcl-2, anti-oxidant potential and protection of NPY interneurons. Serotonin modulates epileptiform activity
in either direction i.e. by administration of 5-HT agonists or by reuptake of inhibitors that leads to the activation of 5-HT3 and
5-HT1A receptors tending to impede focal and generalized seizures, while depletion of brain 5-HT along with the destruction of serotonergic terminals leads to expanded neuronal excitability hence abatement of seizure threshold in experimental animal
models. Serotonergic neurotransmission is influenced by the organizational activity of steroid hormones in the growing brain
and the actuation effects of steroids which appear in adulthood. It is further established that ovarian steroids bring induction of
dendritic spine proliferation on serotonin neurons thus thawing a profound effect on serotonergic transmission. This review
features 5-HT1A and 5-HT3 receptors as potential targets for ameliorating seizure-induced neurodegeneration and recurrent
hypersynchronous neuronal activity. Indeed 5-HT3 receptors mediate a cross-talk between estrogenic and serotonergic pathways,
and could well be exploited for combinatorial drug therapy against epileptogenesis.
Ylia A. Sidorova and coworkers report the pathophysiology of PD and potential implication of small molecules as a new
treatment option for PD. PD is the second most common neurodegenerative disorder worldwide, the lifetime risk of developing
this disease is 1.5%. Motor diagnostic symptoms of PD are caused by degeneration of nigrostriatal dopamine neurons. Unfortunately,
there is no effective long-term treatment for PD and current therapy is limited to supportive care that partially alleviates
disease signs and symptoms. As diagnostic symptoms of PD result from progressive degeneration of dopaminergic neurons,
drugs restoring these neurons may significantly improve the treatment of PD. A literature search performed by Ylia A. Sidorova
et al., using the PubMed, Web of Science and Scopus databases discussed the progress achieved in the development of neurodegenerative
agents for PD. Based on this study, there are several groups of potential agents capable of protecting and restoring
dopamine neurons in vitro cell cultures as well as animal models that mimic PD including neurotrophic factors and small
molecular weight compounds. Based on the very careful analysis, authors’ conclusion is that in the promising results of in vitro
and in vivo experiments, none of the found agents have yet shown conclusive neurorestorative properties in PD patients.
Meanwhile, a few promising biological and small molecules have been identified. Their further clinical development could
eventually give rise to disease-modifying drugs for PD.
Dr. Iván Carrera and Professor Ramon Cacabelos present a report which demonstrates the current drugs and potential
future neuroprotective compounds in the context of PD. Unfortunately, the progress made so far in understanding the etiology
and pathogenesis of PD has only achieved the development of some clinical approaches intended to treat cognitive and behavioral
symptoms such as memory and perception disorders. Despite the major advances in different genetic causes and risk factors
for PD, which share common pathways to cell dysfunction and death, there is no complete model of PD that can be used to
accurately predict the effect of drugs on disease progression. In addition, clinical trials are also important to test any novel neuroprotective
agent, and recently, there have been great advances in the use of anti-inflammatory drugs and plant flavonoid antioxidants
to protect against specific neuronal degeneration and interference with lipid and cholesterol metabolism. The increasing
knowledge of the molecular events underlying the degenerative process of PD has stimulated research to identify natural
compounds capable of halting or slowing down the progress of neural deterioration. Polyphenols and flavonoids, which play a
neuroprotective role in a wide array of in vitro and in vivo models of neurological disorders, emerged from the multi-target bioagents
found mainly in plants and microorganisms. This review presents a detailed overview of the multimodal activities of
neuroprotective bio-agents tested so far, emphasizing their neurorescue/neuroregenerative activity. The brain-penetrating property
of bio-agents may make these compounds an important class of natural drugs for the treatment of neurodegenerative diseases.
Although there are numerous studies demonstrating beneficial effects in the laboratory by identifying critical molecular
targets, the clinical efficacy of these neuroprotective treatments remains to be proven accurately.
Mahmood Ahmad Khan and co-authors analyzed the current progress of peroxisome proliferator-activated receptor
gamma agonist as an emerging therapeutic approach for the treatment of AD. Peroxisome proliferator-activated receptors
(PPARs) are ligand-activated transcription factors known to play an important role in the regulation of glucose absorption, homeostasis
of lipid metabolism and are further involved in repressing the expression of genes related to inflammation. Thus,
agonists of this receptor represent an attractive therapeutic target for AD. In recent, both clinical and preclinical studies show
that using Peroxisome proliferator-activated receptor gamma (PPARγ) agonist improves both learning and memory along with
other AD-related pathologies. Thus , PPARγ signifies a significant new therapeutic target in treating AD. This review has shed
some light on the recent progress of how PPARγ agonist selectively modulates different cellular targets in AD and its potential
in the future treatment of AD.
Professor Gjumrakch Aliev’s research team critically analyzed the potential implication of dendrimer-based therapy for
AD. AD is characterized by the loss of neurons in different brain regions. It is the most common cause of dementia in the elderly
population accompanied by pathological degeneration of the neurons and formation of neurofibrillary tangles (NFT). Senile
plaques are formed with amyloid-beta (Aβ), hyperphosphorylated tau protein, apolipoprotein E and presenilin associated
with protease activity [Aβ, gamma-secretase (γS)]. The molecular mechanisms of neurodegeneration most likely include but are
not limited to apoptosis, oxidative stress (free radical generation that follows the cellular and subcellular damage), inflammation,
immune activation etc. The lack of effective treatments for AD stems mainly from the incomplete understanding of the
causes of AD. Currently, there are several hypotheses explaining the early mechanisms of AD pathogenesis. Recent years witnessed
an unprecedented research growth in the area of nanotechnology, which uses atomic, molecular and macromolecular
methods to create products in microscale (nanoscale) dimensions. This review article has discussed the role of nanotechnology
in the development and improvement of techniques for early diagnosis and effective treatment of AD. Moreover, since AD pathology
is practically irreversible, applications of disease-modifying treatments could be successful only if early diagnosis of AD is available. This review first time highlights various possibilities for the early diagnosis and therapy of AD, and investigates
potential adaptation of nanoparticles-dendrimers, a class of well-defined branched polymers, chemically synthesized with
a well-defined shape, size and nanoscopic physicochemical properties reminiscent of the proteins for the treatment of neurodegenerative
diseases including AD, PD and many others.
I am confident that review articles which are included in this special issue provide not only novel ideas to the pathophysiological
hallmarks of the different cellular compartments of the brain in the course of neurodegeneration, but also provide new
research directions regarding the treatment of CNS disorders in general.