Synthetic peptides and amino acids are important sources for developing new drugs, because they have low
toxicity and specificity, are less prone to side effects, and have the advantage of being low-cost. However,
peptides and amino acids have some limitations from the pharmacological point of view, because of their low
residence time in the body and low effective concentration at the site of action, which is mainly due to factors such
as susceptibility to enzymatic degradation, rapid elimination, and low ability to penetrate across membranes [1-3].
The bioavailability and bio-distribution of peptides and amino acids in the body can be improved by chemical
modification. In this context, chemical synthesis can allow obtaining linear, cyclic, polyvalent, and chimeric
peptides, among others. In addition, peptide biological activity can be enhanced by incorporating unnatural amino
acids, steroids, hormones, organometallic compounds, carbohydrates, lipids, antibiotics, organic compounds,
inorganic compounds, etc. This functionalization can be performed directly on the peptide or on the amino acids
that generate the building blocks that are conjugated with these molecules, which can then be used as precursors in order to obtain the
peptides and proteins [4-8].
This thematic issue is a review of the synthetic approaches developed over the last few years for enhancing the biological activity of
promising peptide sequences. Researchers with recognized expertise in organic synthesis as a tool for the development of molecules for
biomedical applications participated in preparing the issue. A brief description of each of these contributions is given below.
In the manuscript entitled “The Role of αvβ6 Integrin Binding Molecules in the Diagnosis and Treatment of Cancer”, Dr. Urquiza, et al.
describe the importance of integrin in cancer treatment and discuss peptides, recombinant proteins, non-peptide molecules, and αvβ6-
antibodies that specifically bind to αvβ6-integrin. In addition, the biological properties and possible uses of these molecules in cancer imaging
and therapy are described since the αvβ6-integrin is over-expressed in most tumor cells [9].
In the manuscript entitled “Resorcin[4]arenes: Generalities and Their Role in the Modification and Detection of Amino Acids”, Dr.
Maldonado, et al. present a valuable review of the properties and characteristics of resorcin[4]arenes, as well as the main synthetic routes used
to form amino acid-conjugated macrocycles that could have multiple applications in the pharmaceutical sciences, engineering, and medicine
[10].
In the manuscript entitled “Ferrocene and organotin (IV) conjugates containing amino acids and peptides: a promissory tool for searching
for new therapeutic and diagnostic tools”, Dr. Farfan, et al. describe the synthesis strategies used for the preparation of amino acids and
peptides containing ferrocene or organotin (IV) derivatives. In addition, the antibacterial and/or anti-cancer properties of these organometallic
compounds are summarized [11].
In the manuscript entitled “Designing short peptides: a Sisyphean task”, Dr. Rivera, et al. review the synthetic approaches and strategies
used to design short peptides, highlighting the achievements, limitations, and advantages of each method. The advantage of short peptides lies
in their stability, ease of production, safety, and low cost, as well as their biomedical and industrial applications [12].
In the manuscript entitled “Development of strategies for glycopeptide synthesis: an overview on the glycosidic linkage”, Dr. Garcia, et
al. present a review of the chemical synthesis of glycoconjugates in solution and/or solid phase. Several methods for the synthesis of
glycosylated amino acid derivatives and/or glycopeptides and their use as drugs to mitigate the impact of microbial resistance and/or cancer
are described [13].
In the manuscript entitled “Electrochemical Detection of Neurotransmitters in the Brain and Other Molecules with Biological Activity on
the Nervous System”, Dr. Bustos, et al. describe the electrochemical techniques used for in vitro or in vivo detection of neurotransmitters and
other molecules with biological activity at the level of the central nervous system, as a contribution to the diagnosis of neurological diseases
[14].
In the manuscript entitled “Bio-organometallic Peptide Conjugates: Recent Advances in their Synthesis and Prospects for Biomedical
Application”, Dr. Guzman, et al. review synthetic strategies for obtaining organometallic peptides and amino acids containing ferrocene,
rutenocene, cimantrene, or osmocene. The authors describe SPPS and/or click chemistry-based methods used for obtaining organometallic
compounds that could be used to develop a new generation of antimicrobial and chemotherapeutic drugs [15].
Finally, as Guest Editor of this issue, I would like to express my thanks to all the authors for their high-quality manuscripts and to the
reviewers for their time and effort in providing constructive critiques in order to guarantee the excellence of this issue. I am also thankful for
the logistical assistance of Ms. Sanober Maqbool, Editorial Manager, during the submission and review procedures.