Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Quantification of Vitamin D at Different Levels of Clinical Worsening of COVID-19

Author(s): Lai Yu Tsun, Thaciane Alkmim Bibo, Fernando Luiz Affonso Fonseca*, Glaucia Luciano da Veiga, Ana Carolina Macedo Gaiatto, Nicolle de Godoy Moreira e Costa, Joyce Regina Raimundo, Matheus Moreira Perez, Thaís Gascón, Fulvio Alexandre Scorza, Carla Alessandra Scorza, Helena Nader, Manoel João Batista Castello Girão, Beatriz da Costa Aguiar Alves and Edimar Cristiano Pereira

Volume 23, Issue 14, 2022

Published on: 17 January, 2023

Page: [1124 - 1129] Pages: 6

DOI: 10.2174/1389200224666230109162132

Price: $65

Abstract

Introduction and Aim: Vitamin D is the name given to a group of lipid-soluble steroidal substances of physiological importance in the body, especially in bone metabolism. The active form of vitamin D is believed to have immunomodulatory effects on immune system cells, especially T lymphocytes, as well as on the production and action of several cytokines and on the expression of potent antimicrobial peptides in epithelial cells that line the respiratory tract, playing an important role in protecting the lung from infections. The aim of this study was to assess vitamin D levels in patients with COVID-19 in healthcare service and to verify that these levels are adequate to protect the progression of this infection.

Methods: The aim of this observational study was to evaluate the serum concentration of vitamin D in 300 patients suspected of being infected with COVID-19, treated at Basic Health Units (BHUs) and at the Hospital Complex in the municipality of São Bernardo do Campo.

Results: 294 patients were included, 195 (66%) of which tested positive for COVID-19 and 99 (34%) negative for COVID-19. Among the patients in the positive group, 163 patients were in the mild group (84%); 22 patients in the moderate group (11%); 8 patients in the severe group (4%), and 2 patients in the deceased group (1%).

Conclusion: For the patients in this study, no association was observed for the protective factor of vitamin D against COVID-19 infection, and its role in controlling the clinical staging of the disease was not verified.

Keywords: Vitamin D, COVID-19, clinical laboratory services, prognosis, T lymphocytes, serum concentration.

Graphical Abstract
[1]
Carlberg, C. Vitamin D in the context of evolution. Nutrients, 2022, 14(15), 3018.
[http://dx.doi.org/10.3390/nu14153018] [PMID: 35893872]
[2]
Alvarez, J.A.; Chowdhury, R.; Jones, D.P.; Martin, G.S.; Brigham, K.L.; Binongo, J.N.; Ziegler, T.R.; Tangpricha, V. Vitamin D status is independently associated with plasma glutathione and cysteine thiol/disulphide redox status in adults. Clin. Endocrinol. (Oxf.), 2014, 81(3), 458-466.
[http://dx.doi.org/10.1111/cen.12449] [PMID: 24628365]
[3]
Chang, E. Effects of vitamin D supplementation on adipose tissue inflammation and NF-κB/AMPK activation in obese mice fed a high-fat diet. Int. J. Mol. Sci., 2022, 23(18), 10915.
[http://dx.doi.org/10.3390/ijms231810915] [PMID: 36142842]
[4]
Dancer, R.C.A.; Parekh, D.; Lax, S.; D’Souza, V.; Zheng, S.; Bassford, C.R.; Park, D.; Bartis, D.G.; Mahida, R.; Turner, A.M.; Sapey, E.; Wei, W.; Naidu, B.; Stewart, P.M.; Fraser, W.D.; Christopher, K.B.; Cooper, M.S.; Gao, F.; Sansom, D.M.; Martineau, A.R.; Perkins, G.D.; Thickett, D.R. Vitamin D deficiency contributes directly to the acute respiratory distress syndrome (ARDS). Thorax, 2015, 70(7), 617-624.
[http://dx.doi.org/10.1136/thoraxjnl-2014-206680] [PMID: 25903964]
[5]
Parekh, D.; Thickett, D.; Turner, A. Vitamin D deficiency and acute lung injury. Inflamm. Allergy Drug Targets, 2013, 12(4), 253-261.
[http://dx.doi.org/10.2174/18715281113129990049] [PMID: 23782208]
[6]
Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F.P. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol., 2020, 20(6), 363-374.
[http://dx.doi.org/10.1038/s41577-020-0311-8] [PMID: 32346093]
[7]
Qin, L.; Li, X.; Shi, J.; Yu, M.; Wang, K.; Tao, Y.; Zhou, Y.; Zhou, M.; Xu, S.; Wu, B.; Yang, Z.; Zhang, C.; Yue, J.; Cheng, C.; Liu, X.; Xie, M. Gendered effects on inflammation reaction and outcome of COVID‐19 patients in Wuhan. J. Med. Virol., 2020, 92(11), 2684-2692.
[http://dx.doi.org/10.1002/jmv.26137] [PMID: 32497297]
[8]
Rhodes, J.M.; Subramanian, S.; Laird, E.; Kenny, R.A. Editorial: low population mortality from COVID-19 in countries south of latitude 35 degrees North supports vitamin D as a factor determining severity. Aliment. Pharmacol. Ther., 2020, 51(12), 1434-1437.
[http://dx.doi.org/10.1111/apt.15777] [PMID: 32311755]
[9]
Khare, D.; Godbole, N.M.; Pawar, S.D.; Mohan, V.; Pandey, G.; Gupta, S.; Kumar, D.; Dhole, T.N.; Godbole, M.M. Calcitriol [1, 25[OH]2 D3] pre- and post-treatment suppresses inflammatory response to influenza A (H1N1) infection in human lung A549 epithelial cells. Eur. J. Nutr., 2013, 52(4), 1405-1415.
[http://dx.doi.org/10.1007/s00394-012-0449-7] [PMID: 23015061]
[10]
Grant, W.; Lahore, H.; McDonnell, S.; Baggerly, C.; French, C.; Aliano, J.; Bhattoa, H. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients, 2020, 12(4), 988.
[http://dx.doi.org/10.3390/nu12040988] [PMID: 32252338]
[11]
Rondanelli, M.; Miccono, A.; Lamburghini, S.; Avanzato, I.; Riva, A.; Allegrini, P.; Faliva, M.A.; Peroni, G.; Nichetti, M.; Perna, S. Self-care for common colds: the pivotal role of vitamind, vitamin C, zinc, and echinacea in three main immune interactive clusters (physical barriers, innate and adaptive immunity) involved during an episode of common colds—practical advice on dosages and on the time to take these nutrients/botanicals in order to prevent or treat common colds. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-36.
[http://dx.doi.org/10.1155/2018/5813095] [PMID: 29853961]
[12]
Cantorna, M.; Snyder, L.; Lin, Y.D.; Yang, L. Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients, 2015, 7(4), 3011-3021.
[http://dx.doi.org/10.3390/nu7043011] [PMID: 25912039]
[13]
Kuba, K.; Imai, Y.; Rao, S.; Gao, H.; Guo, F.; Guan, B.; Huan, Y.; Yang, P.; Zhang, Y.; Deng, W.; Bao, L.; Zhang, B.; Liu, G.; Wang, Z.; Chappell, M.; Liu, Y.; Zheng, D.; Leibbrandt, A.; Wada, T.; Slutsky, A.S.; Liu, D.; Qin, C.; Jiang, C.; Penninger, J.M. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat. Med., 2005, 11(8), 875-879.
[http://dx.doi.org/10.1038/nm1267] [PMID: 16007097]
[14]
Otoupalova, E.; Smith, S.; Cheng, G.; Thannickal, V.J. Oxidative stress in pulmonary fibrosis. Compr. Physiol., 2020, 10(2), 509-547.
[http://dx.doi.org/10.1002/cphy.c190017] [PMID: 32163196]
[15]
Li, Y.; Zeng, Z.; Cao, Y.; Liu, Y.; Ping, F.; Liang, M.; Xue, Y.; Xi, C.; Zhou, M.; Jiang, W. Angiotensin-converting enzyme 2 prevents lipopolysaccharide-induced rat acute lung injury via suppressing the ERK1/2 and NF-κB signaling pathways. Sci. Rep., 2016, 6(1), 27911.
[http://dx.doi.org/10.1038/srep27911] [PMID: 27302421]
[16]
Cui, C.; Xu, P.; Li, G.; Qiao, Y.; Han, W.; Geng, C.; Liao, D.; Yang, M.; Chen, D.; Jiang, P. Vitamin D receptor activation regulates microglia polarization and oxidative stress in spontaneously hypertensive rats and angiotensin II-exposed microglial cells: Role of renin-angiotensin system. Redox Biol., 2019, 26, 101295.
[http://dx.doi.org/10.1016/j.redox.2019.101295] [PMID: 31421410]
[17]
Xu, J.; Yang, J.; Chen, J.; Luo, Q.; Zhang, Q.; Zhang, H. Vitamin D alleviates lipopolysaccharide-induced acute lung injury via regulation of the renin-angiotensin system. Mol. Med. Rep., 2017, 16(5), 7432-7438.
[http://dx.doi.org/10.3892/mmr.2017.7546] [PMID: 28944831]
[18]
Li, Y.C. Molecular mechanism of vitamin D in the cardiovascular system. J. Investig. Med., 2011, 59(6), 868-871.
[http://dx.doi.org/10.2310/JIM.0b013e31820ee448] [PMID: 21307778]
[19]
Webb, A.R.; Kline, L.; Holick, M.F. Influence of season and latitude on the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin. J. Clin. Endocrinol. Metab., 1988, 67(2), 373-378.
[http://dx.doi.org/10.1210/jcem-67-2-373] [PMID: 2839537]
[20]
Roomi, M.A.; Roomi, M.A.; Farooq, A.; Ullah, E.; Lone, K.P. Hypovitaminosis D and its association with lifestyle factors. Pak. J. Med. Sci., 2015, 31(5), 1236-1240.
[http://dx.doi.org/10.12669/pjms.315.7196] [PMID: 26649021]
[21]
Dixon, B.M.; Barker, T.; McKinnon, T.; Cuomo, J.; Frei, B.; Borregaard, N.; Gombart, A.F. Positive correlation between circulating cathelicidin antimicrobial peptide (hCAP18/LL-37) and 25-hydroxyvitamin D levels in healthy adults. BMC Res. Notes, 2012, 5(1), 575.
[http://dx.doi.org/10.1186/1756-0500-5-575] [PMID: 23095332]
[22]
Benskin, L.L. A basic review of the preliminary evidence that COVID-19 risk and severity is increased in vitamin D deficiency. Front. Public Health, 2020, 8, 513.
[http://dx.doi.org/10.3389/fpubh.2020.00513] [PMID: 33014983]
[23]
Kaufman, H.W.; Niles, J.K.; Kroll, M.H.; Bi, C.; Holick, M.F. SARS-CoV-2 positivity rates associated with circulating 25-hydroxyvitamin D levels. PLoS One, 2020, 15(9), e0239252.
[http://dx.doi.org/10.1371/journal.pone.0239252] [PMID: 32941512]
[24]
López-Lluch, G.; Hernández-Camacho, J.D.; Fernández-Ayala, D.J.M.; Navas, P. Mitochondrial dysfunction in metabolism and ageing: Shared mechanisms and outcomes? Biogerontology, 2018, 19(6), 461-480.
[http://dx.doi.org/10.1007/s10522-018-9768-2] [PMID: 30143941]
[25]
López-Lluch, G. Essential role of mitochondrial dynamics in muscle physiology. Acta Physiol. (Oxf.), 2017, 219(1), 20-21.
[http://dx.doi.org/10.1111/apha.12750] [PMID: 27390297]
[26]
López-Lluch, G. Mitochondrial activity and dynamics changes regarding metabolism in ageing and obesity. Mech. Ageing Dev., 2017, 162, 108-121.
[http://dx.doi.org/10.1016/j.mad.2016.12.005] [PMID: 27993601]
[27]
Zaki, N.; Alashwal, H.; Ibrahim, S. Association of hypertension, diabetes, stroke, cancer, kidney disease, and high-cholesterol with COVID-19 disease severity and fatality: A systematic review. Diabetes Metab. Syndr., 2020, 14(5), 1133-1142.
[http://dx.doi.org/10.1016/j.dsx.2020.07.005] [PMID: 32663789]
[28]
Kumar, A.; Narayan, R.K.; Kulandhasamy, M.; Prasoon, P.; Kumari, C.; Kumar, S.; Pareek, V.; Sesham, K.; Shekhawat, P.S.; Kant, K.; Kumar, S. COVID-19 pandemic: Insights into molecular mechanisms leading to sex-based differences in patient outcomes. Expert Rev. Mol. Med., 2021, 23, e7.
[http://dx.doi.org/10.1017/erm.2021.9] [PMID: 34340720]
[29]
Gebhard, C.; Regitz-Zagrosek, V.; Neuhauser, H.K.; Morgan, R.; Klein, S.L. Impact of sex and gender on COVID-19 outcomes in Europe. Biol. Sex Differ., 2020, 11(1), 29.
[http://dx.doi.org/10.1186/s13293-020-00304-9] [PMID: 32450906]
[30]
Ghosh, S.; Klein, R.S. Sex drives dimorphic immune responses to viral infections. J. Immunol., 2017, 198(5), 1782-1790.
[http://dx.doi.org/10.4049/jimmunol.1601166] [PMID: 28223406]
[31]
vom Steeg, L.G.; Klein, S.L. Sex and sex steroids impact influenza pathogenesis across the life course. Semin. Immunopathol., 2019, 41(2), 189-194.
[http://dx.doi.org/10.1007/s00281-018-0718-5] [PMID: 30298431]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy