Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

LTBP1 Gene Expression in the Cerebral Cortex and its Neuroprotective Mechanism in Mice with Postischemic Stroke Epilepsy

Author(s): Bo Liu, Yan Wang, Dongruo He, Guochao Han, Hao Wang, Yuan Lin, Tianyu Zhang, Chao Yi and Hui Li*

Volume 24, Issue 2, 2023

Published on: 20 August, 2022

Page: [317 - 329] Pages: 13

DOI: 10.2174/1389201023666220608091511

Price: $65

Abstract

Objective: This study aimed at exploring the expression level of LTBP1 in the mouse model of epilepsy. The mechanism of LTBP1 in epileptic cerebral neural stem cells was deeply investigated to control the occurrence of epilepsy with neuroprotection.

Methods: qRT-PCR was conducted for the expression levels of LTBP1 in clinical human epileptic tissues and neural stem cells, as well as normal cerebral tissues and neural stem cells. The mouse model of postischemic stroke epilepsy (PSE) was established by the middle cerebral artery occlusion (MCAO). Then, qRT-PCR was conducted again for the expression levels of LTBP1 in mouse epileptic tissues and neural stem cells as well as normal cerebral tissues and neural stem cells. The activation and inhibitory vectors of LTBP1 were constructed to detect the effects of LTBP1 on the proliferation of cerebral neural stem cells in the PSE model combined with CCK-8. Finally, Western blot was conducted for the specific mechanism of LTBP1 affecting the development of epileptic cells.

Results: Racine score and epilepsy index of 15 mice showed epilepsy symptoms after the determination with MCAO, showing a successful establishment of the PSE model. LTBP1 expression in both diseased epileptic tissues and cells was higher than that in normal clinical epileptic tissues and cells. Meanwhile, qRT-PCR showed higher LTBP1 expression in both mouse epileptic tissues and their neural stem cells compared to that in normal tissues and cells. CCK-8 showed that the activation of LTBP1 stimulated the increased proliferative capacity of epileptic cells, while the inhibition of LTBP1 expression controlled the proliferation of epileptic cells. Western blot showed an elevated expression of TGFβ/SMAD signaling pathway-associated protein SMAD1/5/8 after activating LTBP1. The expression of molecular MMP-13 associated with the occurrence of inflammation was also activated.

Conclusion: LTBP1 can affect the changes in inflammation-related pathways by activating the TGFβ/SMAD signaling pathway and stimulate the development of epilepsy, and the inhibition of LTBP1 expression can control the occurrence of epilepsy with neuroprotection.

Keywords: LTBP1, TGFβ/SMAD, epilepsy, neuroprotection, cerebral cortex, inflammation.

Graphical Abstract
[1]
Tanaka, T.; Ihara, M. Post-stroke epilepsy. Neurochem. Int., 2017, 107, 219-228.
[http://dx.doi.org/10.1016/j.neuint.2017.02.002] [PMID: 28202284]
[2]
Zhao, Y.; Li, X.; Zhang, K.; Tong, T.; Cui, R. The progress of epilepsy after stroke. Curr. Neuropharmacol., 2018, 16(1), 71-78.
[PMID: 28606039]
[3]
Marchi, A.; Pennaroli, D.; Lagarde, S.; McGonigal, A.; Bonini, F.; Carron, R.; Lépine, A.; Villeneuve, N.; Trebuchon, A.; Pizzo, F.; Scavarda, D.; Bartolomei, F. Epileptogenicity and surgical outcome in post stroke drug resistant epilepsy in children and adults. Epilepsy Res., 2019, 155, 106155.
[http://dx.doi.org/10.1016/j.eplepsyres.2019.106155] [PMID: 31252221]
[4]
Altman, K.; Shavit-Stein, E.; Maggio, N. Post stroke seizures and epilepsy: From proteases to maladaptive plasticity. Front. Cell. Neurosci., 2019, 13, 397.
[http://dx.doi.org/10.3389/fncel.2019.00397] [PMID: 31607864]
[5]
Zhang, B.; Chen, M.; Yang, H.; Wu, T.; Song, C.; Guo, R. Evidence for involvement of the CD40/CD40L system in post-stroke epilepsy. Neurosci. Lett., 2014, 567, 6-10.
[http://dx.doi.org/10.1016/j.neulet.2014.03.003] [PMID: 24657679]
[6]
Chepurnov, S.A.; Suleĭmanova, E.M.; Guliaev, M.V.; Abbasova, K.R.; Pirogov, IuA.; Chepurnova, N.E. Neuroprotection in epilepsy. Usp. Fiziol. Nauk, 2012, 43(2), 55-71.
[PMID: 22690591]
[7]
Rana, A.; Musto, A.E. The role of inflammation in the development of epilepsy. J. Neuroinflammation, 2018, 15(1), 144.
[http://dx.doi.org/10.1186/s12974-018-1192-7] [PMID: 29764485]
[8]
Vezzani, A.; Fujinami, R.S.; White, H.S.; Preux, P.M.; Blümcke, I.; Sander, J.W.; Löscher, W. Infections, inflammation and epilepsy. Acta Neuropathol., 2016, 131(2), 211-234.
[http://dx.doi.org/10.1007/s00401-015-1481-5] [PMID: 26423537]
[9]
Dupuis, N.; Auvin, S. Inflammation and epilepsy in the developing brain: clinical and experimental evidence. CNS Neurosci. Ther., 2015, 21(2), 141-151.
[http://dx.doi.org/10.1111/cns.12371] [PMID: 25604829]
[10]
Davison, K.L.; Crowcroft, N.S.; Ramsay, M.E.; Brown, D.W.; Andrews, N.J. Viral encephalitis in England, 1989-1998: What did we miss? Emerg. Infect. Dis., 2003, 9(2), 234-240.
[http://dx.doi.org/10.3201/eid0902.020218] [PMID: 12603996]
[11]
Iyer, A.; Zurolo, E.; Spliet, W.G.; van Rijen, P.C.; Baayen, J.C.; Gorter, J.A.; Aronica, E. Evaluation of the innate and adaptive immunity in type I and type II focal cortical dysplasias. Epilepsia, 2010, 51(9), 1763-1773.
[http://dx.doi.org/10.1111/j.1528-1167.2010.02547.x] [PMID: 20345941]
[12]
Vezzani, A.; Aronica, E.; Mazarati, A.; Pittman, Q.J. Epilepsy and brain inflammation. Exp. Neurol., 2013, 244, 11-21.
[http://dx.doi.org/10.1016/j.expneurol.2011.09.033] [PMID: 21985866]
[13]
Nakajima, Y.; Miyazono, K.; Nakamura, H. Immunolocalization of latent transforming growth factor-beta binding protein-1 (LTBP1) during mouse development: possible roles in epithelial and mesenchymal cytodifferentiation. Cell Tissue Res., 1999, 295(2), 257-267.
[http://dx.doi.org/10.1007/s004410051232] [PMID: 9931372]
[14]
Robertson, I.B.; Horiguchi, M.; Zilberberg, L.; Dabovic, B.; Hadjiolova, K.; Rifkin, D.B. Latent TGF-β-binding proteins. Matrix Biol., 2015, 47, 44-53.
[http://dx.doi.org/10.1016/j.matbio.2015.05.005] [PMID: 25960419]
[15]
Cao, B.; Yang, L.; Rong, W.; Feng, L.; Han, N.; Zhang, K.; Cheng, S.; Wu, J.; Xiao, T.; Gao, Y. Latent transforming growth factor-beta binding protein-1 in circulating plasma as a novel biomarker for early detection of hepatocellular carcinoma. Int. J. Clin. Exp. Pathol., 2015, 8(12), 16046-16054.
[PMID: 26884881]
[16]
Fu, Y.; Wu, Z.; Guo, Z.; Chen, L.; Ma, Y.; Wang, Z.; Xiao, W.; Wang, Y. Systems-level analysis identifies key regulators driving epileptogenesis in temporal lobe epilepsy. Genomics, 2020, 112(2), 1768-1780.
[http://dx.doi.org/10.1016/j.ygeno.2019.09.020] [PMID: 31669700]
[17]
Coste de Bagneaux, P.; von Elsner, L.; Bierhals, T.; Campiglio, M.; Johannsen, J.; Obermair, G.J.; Hempel, M.; Flucher, B.E.; Kutsche, K. A homozygous missense variant in CACNB4 encoding the auxiliary calcium channel beta4 subunit causes a severe neurodevelopmental disorder and impairs channel and non-channel functions. PLoS Genet., 2020, 16(3), e1008625.
[http://dx.doi.org/10.1371/journal.pgen.1008625] [PMID: 32176688]
[18]
Saharinen, J.; Taipale, J.; Keski-Oja, J. Association of the small latent transforming growth factor-beta with an eight cysteine repeat of its binding protein LTBP-1. EMBO J., 1996, 15(2), 245-253.
[http://dx.doi.org/10.1002/j.1460-2075.1996.tb00355.x] [PMID: 8617200]
[19]
Chen, Y.; Dabovic, B.; Annes, J.P.; Rifkin, D.B. Latent TGF-Beta Binding Protein-3 (LTBP-3) requires binding to TGF-beta for secretion. FEBS Lett., 2002, 517(1-3), 277-280.
[http://dx.doi.org/10.1016/S0014-5793(02)02648-0] [PMID: 12062452]
[20]
Caraci, F.; Spampinato, S.F.; Morgese, M.G.; Tascedda, F.; Salluzzo, M.G.; Giambirtone, M.C.; Caruso, G.; Munafò, A.; Torrisi, S.A.; Leggio, G.M.; Trabace, L.; Nicoletti, F.; Drago, F.; Sortino, M.A.; Copani, A.; Copani, A. Neurobiological links between depression and AD: The role of TGF-β1 signaling as a new pharmacological target. Pharmacol. Res., 2018, 130, 374-384.
[http://dx.doi.org/10.1016/j.phrs.2018.02.007] [PMID: 29438781]
[21]
Dobolyi, A.; Palkovits, M. Expression of latent transforming growth factor beta binding proteins in the rat brain. J. Comp. Neurol., 2008, 507(3), 1393-1408.
[http://dx.doi.org/10.1002/cne.21621] [PMID: 18196529]
[22]
Zhu, Y.; Culmsee, C.; Roth-Eichhorn, S.; Krieglstein, J. Beta(2)-adrenoceptor stimulation enhances latent transforming growth factor-beta-binding protein-1 and transforming growth factor-beta1 expression in rat hippocampus after transient forebrain ischemia. Neuroscience, 2001, 107(4), 593-602.
[http://dx.doi.org/10.1016/S0306-4522(01)00357-8] [PMID: 11720783]
[23]
Chen, X.; Liu, Z.; Cao, B.B.; Qiu, Y.H.; Peng, Y.P. TGF-β1 Neuroprotection via inhibition of microglial activation in a rat model of Parkinson’s disease. J. Neuroimmune Pharmacol., 2017, 12(3), 433-446.
[http://dx.doi.org/10.1007/s11481-017-9732-y] [PMID: 28429275]
[24]
Wang, X.Y.; Ba, Y.C.; Xiong, L.L.; Li, X.L.; Zou, Y.; Zhu, Y.C.; Zhou, X.F.; Wang, T.H.; Wang, F.; Tian, H.L.; Li, J.T. Erratum to: Endogenous TGFβ1 plays a crucial role in functional recovery after traumatic brain injury associated with smad3 signal in rats. Neurochem. Res., 2016, 41(5), 1209.
[http://dx.doi.org/10.1007/s11064-016-1865-5] [PMID: 26915105]
[25]
Ueki, Y.; Reh, T.A. Activation of BMP-Smad1/5/8 signaling promotes survival of retinal ganglion cells after damage in vivo. PLoS One, 2012, 7(6), e38690.
[http://dx.doi.org/10.1371/journal.pone.0038690] [PMID: 22701694]
[26]
Nishida, T.; Kubota, S.; Aoyama, E.; Takigawa, M. Impaired glycolytic metabolism causes chondrocyte hypertrophy-like changes via promotion of phospho-Smad1/5/8 translocation into nucleus. Osteoarthritis Cartilage, 2013, 21(5), 700-709.
[http://dx.doi.org/10.1016/j.joca.2013.01.013] [PMID: 23384547]
[27]
Pittayapruek, P.; Meephansan, J.; Prapapan, O.; Komine, M.; Ohtsuki, M. Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int. J. Mol. Sci., 2016, 17(6), 868.
[http://dx.doi.org/10.3390/ijms17060868] [PMID: 27271600]
[28]
Shi, G.; Cheng, Y.; Zhang, Y.; Guo, R.; Li, S.; Hong, X. Long non-coding RNA LINC00511/miR-150/MMP13 axis promotes breast cancer proliferation, migration and invasion. Biochim. Biophys. Acta Mol. Basis Dis., 2021, 1867(3), 165957.
[http://dx.doi.org/10.1016/j.bbadis.2020.165957] [PMID: 33031905]
[29]
Ji, B.; Ma, Y.; Wang, H.; Fang, X.; Shi, P. Activation of the P38/CREB/MMP13 axis is associated with osteoarthritis. Drug Des. Devel. Ther., 2019, 13, 2195-2204.
[http://dx.doi.org/10.2147/DDDT.S209626] [PMID: 31308631]
[30]
Cabrera, S.; Maciel, M.; Hernández-Barrientos, D.; Calyeca, J.; Gaxiola, M.; Selman, M.; Pardo, A. Delayed resolution of bleomycin-induced pulmonary fibrosis in absence of MMP13 (collagenase 3). Am. J. Physiol. Lung Cell. Mol. Physiol., 2019, 316(5), L961-L976.
[http://dx.doi.org/10.1152/ajplung.00455.2017] [PMID: 30785343]
[31]
Yang, H.; Rajah, G.; Guo, A.; Wang, Y.; Wang, Q. Pathogenesis of epileptic seizures and epilepsy after stroke. Neurol. Res., 2018, 40(6), 426-432.
[http://dx.doi.org/10.1080/01616412.2018.1455014] [PMID: 29681214]
[32]
Wang, J.Z.; Vyas, M.V.; Saposnik, G.; Burneo, J.G. Incidence and management of seizures after ischemic stroke: Systematic review and meta-analysis. Neurology, 2017, 89(12), 1220-1228.
[http://dx.doi.org/10.1212/WNL.0000000000004407] [PMID: 28835405]
[33]
de Araujo Furtado, M.; Rossetti, F.; Chanda, S.; Yourick, D. Exposure to nerve agents: from status epilepticus to neuroinflammation, brain damage, neurogenesis and epilepsy. Neurotoxicology, 2012, 33(6), 1476-1490.
[http://dx.doi.org/10.1016/j.neuro.2012.09.001] [PMID: 23000013]
[34]
Doria, J.W.; Forgacs, P.B. Incidence, implications, and management of seizures following ischemic and hemorrhagic stroke. Curr. Neurol. Neurosci. Rep., 2019, 19(7), 37.
[http://dx.doi.org/10.1007/s11910-019-0957-4] [PMID: 31134438]
[35]
Reddy, D.S.; Bhimani, A.; Kuruba, R.; Park, M.J.; Sohrabji, F. Prospects of modeling poststroke epileptogenesis. J. Neurosci. Res., 2017, 95(4), 1000-1016.
[http://dx.doi.org/10.1002/jnr.23836] [PMID: 27452210]
[36]
Pitkänen, A.; Lukasiuk, K.; Dudek, F.E.; Staley, K.J. Epileptogenesis. Cold Spring Harb. Perspect. Med., 2015, 5(10), a022822.
[http://dx.doi.org/10.1101/cshperspect.a022822] [PMID: 26385090]
[37]
Lopes, R.S.; Cardoso, M.M.; Sampaio, A.O.; Barbosa, M.S., Jr; Souza, C.C.; DA Silva, M.C.; Ferreira, E.M.; Freire, M.A.; Lima, R.R.; Gomes-Leal, W. Indomethacin treatment reduces microglia activation and increases numbers of neuroblasts in the subventricular zone and ischaemic striatum after focal ischaemia. J. Biosci., 2016, 41(3), 381-394.
[http://dx.doi.org/10.1007/s12038-016-9621-1] [PMID: 27581930]
[38]
Lima, R.R.; Santana, L.N.; Fernandes, R.M.; Nascimento, E.M.; Oliveira, A.C.; Fernandes, L.M.; Dos Santos, E.M.; Tavares, P.A.; Dos Santos, I.R.; Gimarães-Santos, A.; Gomes-Leal, W. Neurodegeneration and glial response after acute striatal stroke: Histological basis for neuroprotective studies. Oxid. Med. Cell. Longev., 2016, 2016, 3173564.
[http://dx.doi.org/10.1155/2016/3173564] [PMID: 28090244]
[39]
Fluri, F.; Schuhmann, M.K.; Kleinschnitz, C. Animal models of ischemic stroke and their application in clinical research. Drug Des. Devel. Ther., 2015, 9, 3445-3454.
[PMID: 26170628]
[40]
Dallas, S.L.; Keene, D.R.; Bruder, S.P.; Saharinen, J.; Sakai, L.Y.; Mundy, G.R.; Bonewald, L.F. Role of the latent transforming growth factor beta binding protein 1 in fibrillin-containing microfibrils in bone cells in vitro and in vivo. J. Bone Miner. Res., 2000, 15(1), 68-81.
[http://dx.doi.org/10.1359/jbmr.2000.15.1.68] [PMID: 10646116]
[41]
Zhuang, X.; Zhang, H.; Li, X.; Li, X.; Cong, M.; Peng, F.; Yu, J.; Zhang, X.; Yang, Q.; Hu, G. Differential effects on lung and bone metastasis of breast cancer by Wnt signalling inhibitor DKK1. Nat. Cell Biol., 2017, 19(10), 1274-1285.
[http://dx.doi.org/10.1038/ncb3613] [PMID: 28892080]
[42]
Saharinen, J.; Hyytiäinen, M.; Taipale, J.; Keski-Oja, J. Latent transforming growth factor-beta binding proteins (LTBPs)--structural extracellular matrix proteins for targeting TGF-beta action. Cytokine Growth Factor Rev., 1999, 10(2), 99-117.
[http://dx.doi.org/10.1016/S1359-6101(99)00010-6] [PMID: 10743502]
[43]
Quiñones-Pérez, B.; VanNoy, G.E.; Towne, M.C.; Shen, Y.; Singh, M.N.; Agrawal, P.B.; Smith, S.E. Three-generation family with novel contiguous gene deletion on chromosome 2p22 associated with thoracic aortic aneurysm syndrome. Am. J. Med. Genet. A., 2018, 176(3), 560-569.
[http://dx.doi.org/10.1002/ajmg.a.38590] [PMID: 29350460]
[44]
Beaufort, N.; Scharrer, E.; Kremmer, E.; Lux, V.; Ehrmann, M.; Huber, R.; Houlden, H.; Werring, D.; Haffner, C.; Dichgans, M. Cerebral small vessel disease-related protease HtrA1 processes latent TGF-β binding protein 1 and facilitates TGF-β signaling. Proc. Natl. Acad. Sci. USA, 2014, 111(46), 16496-16501.
[http://dx.doi.org/10.1073/pnas.1418087111] [PMID: 25369932]
[45]
Cai, R.; Wang, P.; Zhao, X.; Lu, X.; Deng, R.; Wang, X.; Su, Z.; Hong, C.; Lin, J. LTBP1 promotes esophageal squamous cell carcinoma progression through epithelial-mesenchymal transition and cancer-associated fibroblasts transformation. J. Transl. Med., 2020, 18(1), 139.
[http://dx.doi.org/10.1186/s12967-020-02310-2] [PMID: 32216815]
[46]
Kashima, R.; Hata, A. The role of TGF-β superfamily signaling in neurological disorders. Acta Biochim. Biophys. Sin., 2018, 50(1), 106-120.
[http://dx.doi.org/10.1093/abbs/gmx124] [PMID: 29190314]
[47]
Flanders, K.C.; Ren, R.F.; Lippa, C.F. Transforming growth factor-betas in neurodegenerative disease. Prog. Neurobiol., 1998, 54(1), 71-85.
[http://dx.doi.org/10.1016/S0301-0082(97)00066-X] [PMID: 9460794]
[48]
Zhang, X.; Huang, W.J.; Chen, W.W. TGF-β1 factor in the cerebrovascular diseases of Alzheimer’s disease. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(24), 5178-5185.
[PMID: 28051272]
[49]
Guan, J.; Miller, O.T.; Waugh, K.M.; McCarthy, D.C.; Gluckman, P.D.; Gunn, A.J. TGF beta-1 and neurological function after hypoxia-ischemia in adult rats. Neuroreport, 2004, 15(6), 961-964.
[http://dx.doi.org/10.1097/00001756-200404290-00006] [PMID: 15076715]
[50]
Higashi, T.; Kyo, S.; Inoue, M.; Tanii, H.; Saijoh, K. Novel functional single nucleotide polymorphisms in the latent transforming growth factor-beta binding protein-1L promoter: effect on latent transforming growth factor-beta binding protein-1L expression level and possible prognostic significance in ovarian cancer. J. Mol. Diagn., 2006, 8(3), 342-350.
[http://dx.doi.org/10.2353/jmoldx.2006.050133] [PMID: 16825507]
[51]
Tritschler, I.; Gramatzki, D.; Capper, D.; Mittelbronn, M.; Meyermann, R.; Saharinen, J.; Wick, W.; Keski-Oja, J.; Weller, M. Modulation of TGF-beta activity by latent TGF-beta-binding protein 1 in human malignant glioma cells. Int. J. Cancer, 2009, 125(3), 530-540.
[http://dx.doi.org/10.1002/ijc.24443] [PMID: 19431147]
[52]
Higashi, T.; Sasagawa, T.; Inoue, M.; Oka, R.; Shuangying, L.; Saijoh, K. Overexpression of latent Transforming Growth Factor-beta 1 (TGF-beta 1) binding protein 1 (LTBP-1) in association with TGF-beta 1 in ovarian carcinoma. Jpn. J. Cancer Res., 2001, 92(5), 506-515.
[http://dx.doi.org/10.1111/j.1349-7006.2001.tb01123.x] [PMID: 11376559]
[53]
Fu, X.; Zhang, P.; Song, H.; Wu, C.; Li, S.; Li, S.; Yan, C. LTBP1 plays a potential bridge between depressive disorder and glioblastoma. J. Transl. Med., 2020, 18(1), 391.
[http://dx.doi.org/10.1186/s12967-020-02509-3] [PMID: 33059753]
[54]
Chandramouli, A.; Simundza, J.; Pinderhughes, A.; Cowin, P. Choreographing metastasis to the tune of LTBP. J. Mammary Gland Biol. Neoplasia, 2011, 16(2), 67-80.
[http://dx.doi.org/10.1007/s10911-011-9215-3] [PMID: 21494784]
[55]
Troilo, H.; Steer, R.; Collins, R.F.; Kielty, C.M.; Baldock, C. Independent multimerization of Latent TGFβ Binding Protein-1 stabilized by cross-linking and enhanced by heparan sulfate. Sci. Rep., 2016, 6(1), 34347.
[http://dx.doi.org/10.1038/srep34347] [PMID: 27677855]
[56]
Oklü, R.; Hesketh, R. The latent transforming growth factor beta binding protein (LTBP) family. Biochem. J., 2000, 352(Pt 3), 601-610.
[http://dx.doi.org/10.1042/bj3520601] [PMID: 11104663]
[57]
Vehviläinen, P.; Koli, K.; Myllärniemi, M.; Lindholm, P.; Soini, Y.; Salmenkivi, K.; Kinnula, V.L.; Keski-Oja, J. Latent TGF-β Binding Proteins (LTBPs) 1 and 3 differentially regulate transforming growth factor-β activity in malignant mesothelioma. Hum. Pathol., 2011, 42(2), 269-278.
[http://dx.doi.org/10.1016/j.humpath.2010.07.005] [PMID: 21106222]
[58]
Zhao, Q.; Zheng, K.; Ma, C.; Li, J.; Zhuo, L.; Huang, W.; Chen, T.; Jiang, Y. PTPS facilitates compartmentalized LTBP1 S-Nitrosylation and promotes tumor growth under hypoxia. Mol. Cell, 2020, 77(1), 95-107.e5.
[http://dx.doi.org/10.1016/j.molcel.2019.09.018] [PMID: 31628042]
[59]
Buscemi, L.; Ramonet, D.; Klingberg, F.; Formey, A.; Smith-Clerc, J.; Meister, J.J.; Hinz, B. The single-molecule mechanics of the latent TGF-β1 complex. Curr. Biol., 2011, 21(24), 2046-2054.
[http://dx.doi.org/10.1016/j.cub.2011.11.037] [PMID: 22169532]
[60]
Sung, N.J.; Kim, N.H.; Surh, Y.J.; Park, S.A. Gremlin-1 Promotes Metastasis of Breast Cancer Cells by Activating STAT3-MMP13 Signaling Pathway. Int. J. Mol. Sci., 2020, 21(23), 2046-5054.
[http://dx.doi.org/10.3390/ijms21239227] [PMID: 33287358]
[61]
Zhu, B.L.; Long, Y.; Luo, W.; Yan, Z.; Lai, Y.J.; Zhao, L.G.; Zhou, W.H.; Wang, Y.J.; Shen, L.L.; Liu, L.; Deng, X.J.; Wang, X.F.; Sun, F.; Chen, G.J. MMP13 inhibition rescues cognitive decline in Alzheimer transgenic mice via BACE1 regulation. Brain, 2019, 142(1), 176-192.
[http://dx.doi.org/10.1093/brain/awy305] [PMID: 30596903]
[62]
Hoogmartens, J.; Hens, E.; Engelborghs, S.; De Deyn, P.P.; van der Zee, J.; Van Broeckhoven, C.; Cacace, R. Investigation of the role of matrix metalloproteinases in the genetic etiology of Alzheimer’s disease. Neurobiol. Aging, 2021, 104, 105.e1-105.e6.
[http://dx.doi.org/10.1016/j.neurobiolaging.2021.03.011] [PMID: 33892965]
[63]
Wang, X.; Dong, C.; Li, N.; Ma, Q.; Yun, Z.; Cai, C.; An, M.; Ma, B. Modulation of TGF β activity by latent TGF-β-binding protein 1 in human osteoarthritis fibroblast-like synoviocytes. Mol. Med. Rep., 2018, 17(1), 1893-1900.
[PMID: 29257223]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy