Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Mini-Review Article

Non-hepatic Hyperammonemia: A Potential Therapeutic Target for Sepsis-associated Encephalopathy

Author(s): Lina Zhao, Yun Li, Yunying Wang, Zengzheng Ge, Huadong Zhu, Xiuhua Zhou and Yi Li*

Volume 21, Issue 9, 2022

Published on: 18 April, 2022

Page: [738 - 751] Pages: 14

DOI: 10.2174/1871527321666211221161534

Price: $65

Abstract

Sepsis-Associated Encephalopathy (SAE) is a common complication in the acute phase of sepsis, and patients who develop SAE have a higher mortality rate, longer hospital stay, and worse quality of life than other sepsis patients. Although the incidence of SAE is as high as 70% in sepsis patients, no effective treatment is available for this condition. To develop an effective treatment for SAE, it is vital to explore its pathogenesis. It is known that hyperammonemia is a possible factor in the pathogenesis of hepatic encephalopathy as ammonia is a potent neurotoxin. Furthermore, our previous studies indicate that non-hepatic hyperammonemia seems to occur more often in sepsis patients; it was also found that >50% of sepsis patients with non-hepatic hyperammonemia exhibited encephalopathy and delirium. Substatistical analyses indicate that non-hepatic hyperammonemia is an independent risk factor for SAE. This study updates the definition, clinical manifestations, and diagnosis of SAE; it also investigates the possible treatment options available for non-hepatic hyperammonemia in patients with sepsis and the mechanisms by which non-hepatic hyperammonemia causes encephalopathy.

Keywords: Sepsis, sepsis-associated encephalopathy, non-hepatic hyperammonemia, pathogenesis, serum ammonia, delirium.

Graphical Abstract
[1]
Singer M, Deutschman CS, Seymour CW, et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016; 315(8): 801-10.
[http://dx.doi.org/10.1001/jama.2016.0287] [PMID: 26903338]
[2]
Rhee C, Dantes R, Epstein L, et al. Incidence and trends of sepsis in US hospitals using clinical vs claims data, 2009-2014. JAMA 2017; 318(13): 1241-9.
[http://dx.doi.org/10.1001/jama.2017.13836] [PMID: 28903154]
[3]
Andrews B, Semler MW, Muchemwa L, et al. Effect of an early resuscitation protocol on in-hospital mortality among adults with sepsis and hypotension: A randomized clinical trial. JAMA 2017; 318(13): 1233-40.
[http://dx.doi.org/10.1001/jama.2017.10913] [PMID: 28973227]
[4]
Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: Analysis for the Global Burden of Disease Study. Lancet 2020; 395(10219): 200-11.
[http://dx.doi.org/10.1016/S0140-6736(19)32989-7] [PMID: 31954465]
[5]
Fleischmann C, Scherag A, Adhikari NK, et al. International forum of acute care trialist. Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med 2016; 193(3): 259-72.
[http://dx.doi.org/10.1164/rccm.201504-0781OC] [PMID: 26414292]
[6]
Liang L, PD. National inpatient hospital costs: The most expensive conditions by payer. Statistical Brief 2017; 261.
[7]
Sygitowicz G, Sitkiewicz D. Molecular mechanisms of organ damage in sepsis: An overview. Braz J Infect Dis 2020; 24(6): 552-60.
[http://dx.doi.org/10.1016/j.bjid.2020.09.004] [PMID: 33169675]
[8]
Lorente-Sorolla C, Garcia-Gomez A, Català-Moll F, et al. Inflammatory cytokines and organ dysfunction associate with the aberrant DNA methylome of monocytes in sepsis. Genome Med 2019; 11(1): 66.
[http://dx.doi.org/10.1186/s13073-019-0674-2] [PMID: 31665078]
[9]
Mantzarlis K, Tsolaki V, Zakynthinos E. Role of oxidative stress and mitochondrial dysfunction in sepsis and potential therapies. Oxid Med Cell Longev 2017; 2017: 5985209.
[http://dx.doi.org/10.1155/2017/5985209] [PMID: 28904739]
[10]
Erikson K, Tuominen H, Vakkala M, et al. Brain tight junction protein expression in sepsis in an autopsy series. Crit Care 2020; 24(1): 385.
[http://dx.doi.org/10.1186/s13054-020-03101-3] [PMID: 32600371]
[11]
Sonneville R, de Montmollin E, Poujade J, et al. Potentially modifiable factors contributing to sepsis-associated encephalopathy. Intensive Care Med 2017; 43(8): 1075-84.
[http://dx.doi.org/10.1007/s00134-017-4807-z] [PMID: 28466149]
[12]
Annane D, Sharshar T. Cognitive decline after sepsis. Lancet Respir Med 2015; 3(1): 61-9.
[http://dx.doi.org/10.1016/S2213-2600(14)70246-2] [PMID: 25434614]
[13]
Ely EW, Shintani A, Truman B, et al. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA 2004; 291(14): 1753-62.
[http://dx.doi.org/10.1001/jama.291.14.1753] [PMID: 15082703]
[14]
Zhao L, Gao Y, Guo S, et al. Prognosis of patients with sepsis and non-hepatic hyperammonemia: A cohort study. Med Sci Monit 2020; 26: e928573.
[http://dx.doi.org/10.12659/MSM.928573] [PMID: 33373333]
[15]
Wilson JX, Young GB. Progress in clinical neurosciences: Sepsis-associated encephalopathy: Evolving concepts. Can J Neurol Sci 2003; 30(2): 98-105.
[http://dx.doi.org/10.1017/S031716710005335X] [PMID: 12774948]
[16]
Gofton TE, Young GB. Sepsis-associated encephalopathy. Nat Rev Neurol 2012; 8(10): 557-66.
[http://dx.doi.org/10.1038/nrneurol.2012.183] [PMID: 22986430]
[17]
Iwashyna TJ, Ely EW, Smith DM, Langa KM. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA 2010; 304(16): 1787-94.
[http://dx.doi.org/10.1001/jama.2010.1553] [PMID: 20978258]
[18]
Wintermann GB, Brunkhorst FM, Petrowski K, et al. Stress disorders following prolonged critical illness in survivors of severe sepsis. Crit Care Med 2015; 43(6): 1213-22.
[http://dx.doi.org/10.1097/CCM.0000000000000936] [PMID: 25760659]
[19]
Lund-Sørensen H, Benros ME, Madsen T, et al. A nationwide cohort study of the association between hospitalization with infection and risk of death by suicide. JAMA Psychiatry 2016; 73(9): 912-9.
[http://dx.doi.org/10.1001/jamapsychiatry.2016.1594] [PMID: 27532502]
[20]
Yang Y, Liang S, Geng J, et al. Development of a nomogram to predict 30-day mortality of patients with sepsis-associated encephalopathy: A retrospective cohort study. J Intensive Care 2020; 8(1): 45.
[http://dx.doi.org/10.1186/s40560-020-00459-y] [PMID: 32637121]
[21]
Yao B, Zhang LN, Ai YH, Liu ZY, Huang L. Serum S100β is a better biomarker than neuron-specific enolase for sepsis-associated encephalopathy and determining its prognosis: A prospective and observational study. Neurochem Res 2014; 39(7): 1263-9.
[http://dx.doi.org/10.1007/s11064-014-1308-0] [PMID: 24760429]
[22]
Zhao T, Xia Y, Wang D, Pang L. Association between elevated serum tau protein level and sepsis-associated encephalopathy in patients with severe sepsis. Can J Infect Dis Med Microbiol 2019; 2019(14): 1876174.
[http://dx.doi.org/10.1155/2019/1876174] [PMID: 31396296]
[23]
Ehler J, Petzold A, Wittstock M, et al. The prognostic value of neurofilament levels in patients with sepsis-associated encephalopathy - A prospective, pilot observational study. PLoS One 2019; 14(1): e0211184.
[http://dx.doi.org/10.1371/journal.pone.0211184] [PMID: 30677080]
[24]
Haileselassie B, Joshi AU, Minhas PS, Mukherjee R, Andreasson KI, Mochly-Rosen D. Mitochondrial dysfunction mediated through dynamin-related protein 1 (Drp1) propagates impairment in blood brain barrier in septic encephalopathy. J Neuroinflammation 2020; 17(1): 36.
[http://dx.doi.org/10.1186/s12974-019-1689-8] [PMID: 31987040]
[25]
Kikuchi DS, Campos ACP, Qu H, et al. Poldip2 mediates blood-brain barrier disruption in a model of sepsis-associated encephalopathy. J Neuroinflammation 2019; 16(1): 241.
[http://dx.doi.org/10.1186/s12974-019-1575-4] [PMID: 31779628]
[26]
Fu Q, Wu J, Zhou XY, et al. NLRP3/Caspase-1 pathway-induced pyroptosis mediated cognitive deficits in a mouse model of sepsis-associated encephalopathy. Inflammation 2019; 42(1): 306-18.
[http://dx.doi.org/10.1007/s10753-018-0894-4] [PMID: 30276509]
[27]
Chen S, Tang C, Ding H, et al. Maf1 ameliorates sepsis-associated encephalopathy by suppressing the NF-kB/NLRP3 inflammasome signaling pathway. Front Immunol 2020; 11(11): 594071.
[http://dx.doi.org/10.3389/fimmu.2020.594071] [PMID: 33424842]
[28]
Orhun G, Esen F, Yilmaz V, et al. Elevated sTREM2 and NFL levels in patients with sepsis associated encephalopathy. Int J Neurosci 2021; 1-7.
[http://dx.doi.org/10.1080/00207454.2021.1916489] [PMID: 33851572]
[29]
Zhao L, Gao Y, Guo S, et al. Sepsis-associated encephalopathy: Insight into injury and pathogenesis. CNS Neurol Disord Drug Targets 2021; 20(2): 112-24.
[http://dx.doi.org/10.2174/1871527319999201117122158] [PMID: 33208082]
[30]
Jackson AC, Gilbert JJ, Young GB, Bolton CF. The encephalopathy of sepsis. Can J Neurol Sci 1985; 12(4): 303-7.
[http://dx.doi.org/10.1017/S0317167100035381] [PMID: 4084865]
[31]
Morandi A, Gunther ML, Vasilevskis EE, et al. Neuroimaging in delirious intensive care unit patients: A preliminary case series report. Psychiatry (Edgmont) 2010; 7(9): 28-33.
[PMID: 20941349]
[32]
Gunther ML, Morandi A, Krauskopf E, et al. The association between brain volumes, delirium duration, and cognitive outcomes in intensive care unit survivors: The VISIONS cohort magnetic resonance imaging study. Crit Care Med 2012; 40(7): 2022-32.
[http://dx.doi.org/10.1097/CCM.0b013e318250acc0] [PMID: 22710202]
[33]
Sutter R, Chalela JA, Leigh R, et al. Significance of parenchymal brain damage in patients with critical illness. Neurocrit Care 2015; 23(2): 243-52.
[http://dx.doi.org/10.1007/s12028-015-0110-4] [PMID: 25650012]
[34]
Ehler J, Barrett LK, Taylor V, et al. Translational evidence for two distinct patterns of neuroaxonal injury in sepsis: A longitudinal, prospective translational study. Crit Care Med 2017; 21(1): 262.
[http://dx.doi.org/10.1186/s13054-017-1850-7] [PMID: 29058589]
[35]
Orhun G, Tüzün E, Bilgiç B, et al. Brain volume changes in patients with acute brain dysfunction due to sepsis. Neurocrit Care 2020; 32(2): 459-68.
[http://dx.doi.org/10.1007/s12028-019-00759-8] [PMID: 31187433]
[36]
Oddo M, Carrera E, Claassen J, Mayer SA, Hirsch LJ. Continuous electroencephalography in the medical intensive care unit. Crit Care Med 2009; 37(6): 2051-6.
[http://dx.doi.org/10.1097/CCM.0b013e3181a00604] [PMID: 19384197]
[37]
Gilmore EJ, Gaspard N, Choi HA, et al. Acute brain failure in severe sepsis: A prospective study in the medical intensive care unit utilizing continuous EEG monitoring. Intensive Care Med 2015; 41(4): 686-94.
[http://dx.doi.org/10.1007/s00134-015-3709-1] [PMID: 25763756]
[38]
Barr J, Fraser GL, Puntillo K, et al. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit: Executive summary. Am J Health Syst Pharm 2013; 70(1): 53-8.
[http://dx.doi.org/10.1093/ajhp/70.1.53] [PMID: 23261901]
[39]
Chen TJ, Chung YW, Chang HR, et al. Diagnostic accuracy of the CAM-ICU and ICDSC in detecting intensive care unit delirium: A bivariate meta-analysis. Int J Nurs Stud 2021; 113: 103782.
[http://dx.doi.org/10.1016/j.ijnurstu.2020.103782] [PMID: 33120134]
[40]
Koga Y, Tsuruta R, Murata H, et al. Reliability and validity assessment of the Japanese version of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU). Intensive Crit Care Nurs 2015; 31(3): 165-70.
[http://dx.doi.org/10.1016/j.iccn.2014.10.002] [PMID: 25468294]
[41]
Middleton PM. Practical use of the Glasgow Coma Scale; a comprehensive narrative review of GCS methodology. AENJ 2012; 15(3): 170-83.
[http://dx.doi.org/10.1016/j.aenj.2012.06.002] [PMID: 22947690]
[42]
Ely EW, Truman B, Shintani A, et al. Monitoring sedation status over time in ICU patients: Reliability and validity of the Richmond Agitation-Sedation Scale (RASS). JAMA 2003; 289(22): 2983-91.
[http://dx.doi.org/10.1001/jama.289.22.2983] [PMID: 12799407]
[43]
Shehabi Y, Bellomo R, Reade MC, et al. Early intensive care sedation predicts long-term mortality in ventilated critically ill patients. Am J Respir Crit Care Med 2012; 186(8): 724-31.
[http://dx.doi.org/10.1164/rccm.201203-0522OC] [PMID: 22859526]
[44]
Yamamoto T, Mizobata Y, Kawazoe Y, et al. Incidence, risk factors, and outcomes for sepsis-associated delirium in patients with mechanical ventilation: A sub-analysis of a multicenter randomized controlled trial. J Crit Care 2020; 56: 140-4.
[http://dx.doi.org/10.1016/j.jcrc.2019.12.018] [PMID: 31901649]
[45]
Feng Q, Ai YH, Gong H, et al. Characterization of sepsis and sepsis-associated encephalopathy. J Intensive Care Med 2019; 34(11-12): 938-45.
[http://dx.doi.org/10.1177/0885066617719750] [PMID: 28718340]
[46]
Chen J, Shi X, Diao M, et al. A retrospective study of sepsis-associated encephalopathy: Epidemiology, clinical features and adverse outcomes. BMC Emerg Med 2020; 20(1): 77.
[http://dx.doi.org/10.1186/s12873-020-00374-3] [PMID: 33023479]
[47]
Cohn RM, Roth KS. Hyperammonemia, bane of the brain. Clin Pediatr (Phila) 2004; 43(8): 683-9.
[http://dx.doi.org/10.1177/000992280404300801] [PMID: 15494874]
[48]
Fiati SS. Kenston, Xin, Song, Zhou, Jinshun, Zhao. Mechanistic insight, diagnosis and treatment of ammonia induced hepatic encephalopathy. J Gastroenterol 2018; 34(1): 31-9.
[49]
Acharya G, Mehra S, Patel R, Frunza-Stefan S, Kaur H. Fatal nonhepatic hyperammonemia in ICU setting: A rare but serious complication following bariatric surgery. Case Rep Crit Care 2016; 2016: 8531591.
[http://dx.doi.org/10.1155/2016/8531591] [PMID: 27144037]
[50]
Yao ZP, Li Y, Liu Y, Wang HL. Relationship between the incidence of non-hepatic hyperammonemia and the prognosis of patients in the intensive care unit. World J Gastroenterol 2020; 26(45): 7222-31.
[http://dx.doi.org/10.3748/wjg.v26.i45.7222] [PMID: 33362378]
[51]
Amra S, Moldovan S, Mccambridge AJ, et al. Features of adult hyperammonemia not due to liver failure in the ICU. Crit Care Med 2018; 46(9): e897-903.
[52]
Zhao L, Walline JH, Gao Y, et al. Prognostic role of ammonia in critical care patients without known hepatic disease. Front Med (Lausanne) 2020; 7(589825): 589825.
[http://dx.doi.org/10.3389/fmed.2020.589825] [PMID: 33195354]
[53]
Larangeira AS, Tanita MT, Dias MA, et al. Analysis of cerebral blood flow and intracranial hypertension in critical patients with non-hepatic hyperammonemia. Metab Brain Dis 2018; 33(4): 1335-42.
[http://dx.doi.org/10.1007/s11011-018-0245-z] [PMID: 29725955]
[54]
Hawkes ND, Thomas GA, Jurewicz A, et al. Non-hepatic hyperammonaemia: An important, potentially reversible cause of encephalopathy. Postgrad Med J 2001; 77(913): 717-22.
[http://dx.doi.org/10.1136/pmj.77.913.717] [PMID: 11677282]
[55]
Druml W, Heinzel G, Kleinberger G. Amino acid kinetics in patients with sepsis. Am J Clin Nutr 2001; 73(5): 908-13.
[http://dx.doi.org/10.1093/ajcn/73.5.908] [PMID: 11333844]
[56]
van Hall G, van der Vusse GJ, Söderlund K, Wagenmakers AJ. Deamination of amino acids as a source for ammonia production in human skeletal muscle during prolonged exercise. J Physiol 1995; 489(Pt 1): 251-61.
[http://dx.doi.org/10.1113/jphysiol.1995.sp021047] [PMID: 8583409]
[57]
Ardawi MS. Glutamine and alanine metabolism in lungs of septic rats. Clin Sci (Lond) 1991; 81(5): 603-9.
[http://dx.doi.org/10.1042/cs0810603] [PMID: 1684536]
[58]
Good DW, Burg MB. Ammonia production by individual segments of the rat nephron. J Clin Invest 1984; 73(3): 602-10.
[http://dx.doi.org/10.1172/JCI111250] [PMID: 6323523]
[59]
Good DW, Knepper MA. Ammonia transport in the mammalian kidney. Am J Physiol 1985; 248(4 Pt 2): F459-71.
[PMID: 3885755]
[60]
Perrone EE, Jung E, Breed E, et al. Mechanisms of methicillin-resistant Staphylococcus aureus pneumonia-induced intestinal epithelial apoptosis. Shock 2012; 38(1): 68-75.
[http://dx.doi.org/10.1097/SHK.0b013e318259abdb] [PMID: 22592747]
[61]
Sender R, Fuchs S, Milo R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 2016; 164(3): 337-40.
[http://dx.doi.org/10.1016/j.cell.2016.01.013] [PMID: 26824647]
[62]
Fay KT, Ford ML, Coopersmith CM. The intestinal microenvironment in sepsis. Biochim Biophys Acta Mol Basis Dis 2017; 1863(10 Pt B): 2574-83.
[http://dx.doi.org/10.1016/j.bbadis.2017.03.005] [PMID: 28286161]
[63]
Morita RY. Ammonia production from various substrates by previously pressurized cells of Escherichia coli. J Bacteriol 1957; 74(2): 231-3.
[http://dx.doi.org/10.1128/jb.74.2.231-233.1957] [PMID: 13475226]
[64]
Vince AJ, Burridge SM. Ammonia production by intestinal bacteria: The effects of lactose, lactulose and glucose. J Med Microbiol 1980; 13(2): 177-91.
[http://dx.doi.org/10.1099/00222615-13-2-177] [PMID: 7381915]
[65]
Laish I, Ben Ari Z. Noncirrhotic hyperammonaemic encephalopathy. Liver Int 2011; 31(9): 1259-70.
[http://dx.doi.org/10.1111/j.1478-3231.2011.02550.x] [PMID: 21745294]
[66]
Upadhyay R, Bleck TP, Busl KMJ. Hyperammonemia: What urea-lly need to know: Case report of severe noncirrhotic hyperammonemic encephalopathy and review of the literature. Case Rep Med 2016; 2016: 8512721.
[http://dx.doi.org/10.1155/2016/8512721] [PMID: 27738433]
[67]
Lheureux PE, Hantson P. Carnitine in the treatment of valproic acid-induced toxicity. Clin Toxicol (Phila) 2009; 47(2): 101-11.
[http://dx.doi.org/10.1080/15563650902752376] [PMID: 19280426]
[68]
Clericetti CM, Milani GP, Lava SAG, Bianchetti MG, Simonetti GD, Giannini O. Hyperammonemia associated with distal renal tubular acidosis or urinary tract infection: A systematic review. Pediatr Nephrol 2018; 33(3): 485-91.
[http://dx.doi.org/10.1007/s00467-017-3829-7] [PMID: 29134448]
[69]
Emura M, Tsuchihashi K, Shimizu Y, Kanamaru S, Matoba S, Ito N. A case of hyperammonemia caused by urinary tract infection due to urease-producing bacteria. Hinyokika Kiyo 2016; 62(8): 421-5.
[PMID: 27624109]
[70]
Kenzaka T, Kato K, Kitao A, et al. Hyperammonemia in urinary tract infections. PLoS One 2015; 10(8): e0136220.
[http://dx.doi.org/10.1371/journal.pone.0136220] [PMID: 26292215]
[71]
Landar A, Darley-Usmar VM. Nitric oxide signaling gone awry: Nitration of glutamine synthetase and hyperammonemia in sepsis. Hepatology 2005; 41(5): 980-2.
[http://dx.doi.org/10.1002/hep.20699] [PMID: 15841446]
[72]
Tabuchi S, Gotoh T, Miyanaka K, Tomita K, Mori M. Regulation of genes for inducible nitric oxide synthase and urea cycle enzymes in rat liver in endotoxin shock. Biochem Biophys Res Commun 2000; 268(1): 221-4.
[http://dx.doi.org/10.1006/bbrc.2000.2105] [PMID: 10652239]
[73]
Wijnands KA, Castermans TM, Hommen MP, Meesters DM, Poeze M. Arginine and citrulline and the immune response in sepsis. Nutrients 2015; 7(3): 1426-63.
[http://dx.doi.org/10.3390/nu7031426] [PMID: 25699985]
[74]
Chiarla C, Giovannini I, Siegel JH. Plasma arginine correlations in trauma and sepsis. Amino Acids 2006; 30(1): 81-6.
[http://dx.doi.org/10.1007/s00726-005-0211-z] [PMID: 15924211]
[75]
Davis JS, Anstey NM. Is plasma arginine concentration decreased in patients with sepsis? A systematic review and meta-analysis. Crit Care Med 2011; 39(2): 380-5.
[http://dx.doi.org/10.1097/CCM.0b013e3181ffd9f7] [PMID: 21150584]
[76]
Piton G, Manzon C, Monnet E, et al. Plasma citrulline kinetics and prognostic value in critically ill patients. Intensive Care Med 2010; 36(4): 702-6.
[http://dx.doi.org/10.1007/s00134-010-1751-6] [PMID: 20084502]
[77]
Bellomo R, Kellum JA, Ronco C, et al. Acute kidney injury in sepsis. Intensive Care Med 2017; 43(6): 816-28.
[http://dx.doi.org/10.1007/s00134-017-4755-7] [PMID: 28364303]
[78]
Sekas G, Paul HS. Hyperammonemia and carnitine deficiency in a patient receiving sulfadiazine and pyrimethamine. Am J Med 1993; 95(1): 112-3.
[http://dx.doi.org/10.1016/0002-9343(93)90240-P] [PMID: 8328486]
[79]
Singh H, Nanjundappa GB, Reddi SK, Chandra PS. Carbamazepine induced asterixis with hyperammonemia: A case report with review of literature. Indian J Psychol Med 2015; 37(1): 99-101.
[http://dx.doi.org/10.4103/0253-7176.150853] [PMID: 25722523]
[80]
Andreasen AS, Krabbe KS, Krogh-Madsen R, Taudorf S, Pedersen BK, Møller K. Human endotoxemia as a model of systemic inflammation. Curr Med Chem 2008; 15(17): 1697-705.
[http://dx.doi.org/10.2174/092986708784872393] [PMID: 18673219]
[81]
Shao R, Yang Y, Zhang Y, Zhao S, Zheng Z, Chen G. The expression of thioredoxin-1 and inflammatory cytokines in patients with sepsis. Immunopharmacol Immunotoxicol 2020; 42(3): 280-5.
[http://dx.doi.org/10.1080/08923973.2020.1755309] [PMID: 32326777]
[82]
Goldblum SE, Ding X, Campbell-Washington J. TNF-alpha induces endothelial cell F-actin depolymerization, new actin synthesis, and barrier dysfunction. Am J Physiol 1993; 264(4 Pt 1): C894-905.
[http://dx.doi.org/10.1152/ajpcell.1993.264.4.C894] [PMID: 8476021]
[83]
O’Carroll SJ, Kho DT, Wiltshire R, et al. Pro-inflammatory TNFα and IL-1β differentially regulate the inflammatory phenotype of brain microvascular endothelial cells. J Neuroinflammation 2015; 12: 131.
[http://dx.doi.org/10.1186/s12974-015-0346-0] [PMID: 26152369]
[84]
Cooper AJ, Mora SN, Cruz NF, Gelbard AS. Cerebral ammonia metabolism in hyperammonemic rats. J Neurochem 1985; 44(6): 1716-23.
[http://dx.doi.org/10.1111/j.1471-4159.1985.tb07159.x] [PMID: 2859353]
[85]
Papadopoulos MC, Verkman AS. Aquaporin water channels in the nervous system. Nat Rev Neurosci 2013; 14(4): 265-77.
[http://dx.doi.org/10.1038/nrn3468] [PMID: 23481483]
[86]
Bobermin LD, Roppa RHA, Gonçalves CA, Quincozes-Santos A. Ammonia-induced glial-inflammaging. Mol Neurobiol 2020; 57(8): 3552-67.
[http://dx.doi.org/10.1007/s12035-020-01985-4] [PMID: 32542591]
[87]
Hakvoort TB, He Y, Kulik W, et al. Pivotal role of glutamine synthetase in ammonia detoxification. Hepatology 2017; 65(1): 281-93.
[http://dx.doi.org/10.1002/hep.28852] [PMID: 27641632]
[88]
Brusilow SW, Koehler RC, Traystman RJ, Cooper AJ. Astrocyte glutamine synthetase: Importance in hyperammonemic syndromes and potential target for therapy. Neurotherapeutics 2010; 7(4): 452-70.
[http://dx.doi.org/10.1016/j.nurt.2010.05.015] [PMID: 20880508]
[89]
Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol 2010; 119(1): 7-35.
[http://dx.doi.org/10.1007/s00401-009-0619-8] [PMID: 20012068]
[90]
Wang T, Suzuki K, Kakisaka K, Onodera M, Sawara K, Takikawa Y. L-carnitine prevents ammonia-induced cytotoxicity and disturbances in intracellular amino acid levels in human astrocytes. J Gastroenterol Hepatol 2019; 34(7): 1249-55.
[http://dx.doi.org/10.1111/jgh.14497] [PMID: 30278111]
[91]
Jayakumar AR, Rama Rao KV, Tong XY, Norenberg MD. Calcium in the mechanism of ammonia-induced astrocyte swelling. J Neurochem 2009; 109 Suppl 1(6): 252-7.
[92]
Warren KS, Schenker S. Effect of an inhibitor of glutamine synthesis (Methionine Sulfoximine) on ammonia toxicity and metabolism. J Lab Clin Med 1964; 64(3): 442-9.
[PMID: 14215460]
[93]
Willard-Mack CL, Koehler RC, Hirata T, et al. Inhibition of glutamine synthetase reduces ammonia-induced astrocyte swelling in rat. Neuroscience 1996; 71(2): 589-99.
[http://dx.doi.org/10.1016/0306-4522(95)00462-9] [PMID: 9053810]
[94]
Master S, Gottstein J, Blei AT. Cerebral blood flow and the development of ammonia-induced brain edema in rats after portacaval anastomosis. Hepatology 1999; 30(4): 876-80.
[http://dx.doi.org/10.1002/hep.510300428] [PMID: 10498637]
[95]
Rama Rao KV, Reddy PV, Tong X, Norenberg MD. Brain edema in acute liver failure: Inhibition by L-histidine. Am J Pathol 2010; 176(3): 1400-8.
[http://dx.doi.org/10.2353/ajpath.2010.090756] [PMID: 20075201]
[96]
Haghighat N, McCandless DW. Effect of ammonium chloride on energy metabolism of astrocytes and C6-glioma cells in vitro. Metab Brain Dis 1997; 12(4): 287-98.
[http://dx.doi.org/10.1007/BF02674673] [PMID: 9475502]
[97]
Tofteng F, Jorgensen L, Hansen BA, Ott P, Kondrup J, Larsen FS. Cerebral microdialysis in patients with fulminant hepatic failure. Hepatology 2002; 36(6): 1333-40.
[http://dx.doi.org/10.1002/hep.1840360607] [PMID: 12447856]
[98]
Bone RC, Sibbald WJ, Sprung CL. The ACCP-SCCM consensus conference on sepsis and organ failure. Chest 1992; 101(6): 1481-3.
[http://dx.doi.org/10.1378/chest.101.6.1481] [PMID: 1600757]
[99]
Rao KV, Norenberg MD. Cerebral energy metabolism in hepatic encephalopathy and hyperammonemia. Metab Brain Dis 2001; 16(1-2): 67-78.
[http://dx.doi.org/10.1023/A:1011666612822] [PMID: 11726090]
[100]
Kintner DB, Su G, Lenart B, et al. Increased tolerance to oxygen and glucose deprivation in astrocytes from Na(+)/H(+) exchanger isoform 1 null mice. Am J Physiol Cell Physiol 2004; 287(1): C12-21.
[http://dx.doi.org/10.1152/ajpcell.00560.2003] [PMID: 15013953]
[101]
Morishima T, Aoyama M, Iida Y, et al. Lactic acid increases aquaporin 4 expression on the cell membrane of cultured rat astrocytes. Neurosci Res 2008; 61(1): 18-26.
[http://dx.doi.org/10.1016/j.neures.2008.01.005] [PMID: 18406487]
[102]
Görg B, Karababa A, Schütz E, et al. O-GlcNAcylation-dependent upregulation of HO1 triggers ammonia-induced oxidative stress and senescence in hepatic encephalopathy. J Hepatol 2019; 71(5): 930-41.
[http://dx.doi.org/10.1016/j.jhep.2019.06.020] [PMID: 31279900]
[103]
Murthy RkC, Rama KV, Rao GeB, Michael D. Ammonia-induced production of free radicals in primary cultures of rat astrocytes. J Neurosci Res 2010; 66(2): 282-8.
[104]
Cooper AJ, McDonald JM, Gelbard AS, Gledhill RF, Duffy TE. The metabolic fate of 13N-labeled ammonia in rat brain. J Biol Chem 1979; 254(12): 4982-92.
[http://dx.doi.org/10.1016/S0021-9258(18)50550-0] [PMID: 36379]
[105]
Zemtsova I, Görg B, Keitel V, Bidmon HJ, Schrör K, Häussinger D. Microglia activation in hepatic encephalopathy in rats and humans. Hepatology 2011; 54(1): 204-15.
[http://dx.doi.org/10.1002/hep.24326] [PMID: 21452284]
[106]
Karababa A, Groos-Sahr K, Albrecht U, et al. Ammonia attenuates LPS-induced upregulation of pro-inflammatory cytokine mRNA in co-cultured astrocytes and microglia. Neurochem Res 2017; 42(3): 737-49.
[http://dx.doi.org/10.1007/s11064-016-2060-4] [PMID: 27655254]
[107]
Ye B, Tao T, Zhao A, et al. Blockade of IL-17A/IL-17R pathway protected mice from sepsis-associated encephalopathy by inhibition of microglia activation. Mediators Inflamm 2019; 2019: 8461725.
[http://dx.doi.org/10.1155/2019/8461725] [PMID: 31686986]
[108]
Deng YY, Fang M, Zhu GF, Zhou Y, Zeng HK. Role of microglia in the pathogenesis of sepsis-associated encephalopathy. CNS Neurol Disord Drug Targets 2013; 12(6): 720-5.
[http://dx.doi.org/10.2174/18715273113126660178] [PMID: 24047519]
[109]
Michels M, Vieira AS, Vuolo F, et al. The role of microglia activation in the development of sepsis-induced long-term cognitive impairment. Brain Behav Immun 2015; 43: 54-9.
[http://dx.doi.org/10.1016/j.bbi.2014.07.002] [PMID: 25019583]
[110]
Field RH, Gossen A, Cunningham C. Prior pathology in the basal forebrain cholinergic system predisposes to inflammation-induced working memory deficits: reconciling inflammatory and cholinergic hypotheses of delirium. J Neurosci 2012; 32(18): 6288-94.
[http://dx.doi.org/10.1523/JNEUROSCI.4673-11.2012] [PMID: 22553034]
[111]
Kawaguchi T, Brusilow SW, Traystman RJ, Koehler RC. Glutamine-dependent inhibition of pial arteriolar dilation to acetylcholine with and without hyperammonemia in the rat. Am J Physiol Regul Integr Comp Physiol 2005; 288(6): R1612-9.
[http://dx.doi.org/10.1152/ajpregu.00783.2004] [PMID: 15705802]
[112]
Takahashi R, Nasu T, Tamura T, Kariya T. Relationship of ammonia and acetylcholine levels to brain excitability. J Neurochem 1961; 7(2): 103-12.
[http://dx.doi.org/10.1111/j.1471-4159.1961.tb13603.x] [PMID: 13774885]
[113]
Gottfries CG. Neurotransmitters in the brain. Arzneimittelforschung 1989; 39(8A): 1025-9.
[PMID: 2573362]
[114]
Cabrera-Pastor A, Arenas YM, Taoro-Gonzalez L, Montoliu C, Felipo V. Chronic hyperammonemia alters extracellular glutamate, glutamine and GABA and membrane expression of their transporters in rat cerebellum. Modulation by extracellular cGMP. Neuropharmacology 2019; 15(161): 107496.
[115]
Gandhi S, Abramov AY. Mechanism of oxidative stress in neurodegeneration. Oxid Med Cell Longev 2012; 2012: 428010.
[http://dx.doi.org/10.1155/2012/428010] [PMID: 22685618]
[116]
Hu Y, Bi Y, Yao D, Wang P, Li Y. Omi/HtrA2 protease associated cell apoptosis participates in blood-brain barrier dysfunction. Front Mol Neurosci 2019; 12: 48.
[http://dx.doi.org/10.3389/fnmol.2019.00048] [PMID: 30853894]
[117]
Zhao YZ, Gao ZY, Ma LQ, Zhuang YY, Guan FL. Research on biogenesis of mitochondria in astrocytes in sepsis-associated encephalopathy models. Eur Rev Med Pharmacol Sci 2017; 21(17): 3924-34.
[PMID: 28975969]
[118]
Wu J, Zhang M, Hao S, et al. Mitochondria-targeted peptide reverses mitochondrial dysfunction and cognitive deficits in sepsis-associated encephalopathy. Mol Neurobiol 2015; 52(1): 783-91.
[http://dx.doi.org/10.1007/s12035-014-8918-z] [PMID: 25288156]
[119]
Albrecht J. Dolińska M, Hilgier W, Lipkowski AW, Nowacki J. Modulation of glutamine uptake and phosphate-activated glutaminase activity in rat brain mitochondria by amino acids and their synthetic analogues. Neurochem Int 2000; 36(4-5): 341-7.
[http://dx.doi.org/10.1016/S0197-0186(99)00142-4] [PMID: 10733001]
[120]
Laake JH, Takumi Y, Eidet J, et al. Postembedding immunogold labelling reveals subcellular localization and pathway-specific enrichment of phosphate activated glutaminase in rat cerebellum. Neuroscience 1999; 88(4): 1137-51.
[http://dx.doi.org/10.1016/S0306-4522(98)00298-X] [PMID: 10336125]
[121]
Rama R KV, Norenberg MD. Brain energy metabolism and mitochondrial dysfunction in acute and chronic hepatic encephalopathy. Neurochem Int 2012; 60(7): 697-706.
[http://dx.doi.org/10.1016/j.neuint.2011.09.007] [PMID: 21989389]
[122]
Katunuma N, Okada M, Nishii Y. Regulation of the urea cycle and TCA cycle by ammonia. Adv Enzyme Regul 1966; 4: 317-35.
[http://dx.doi.org/10.1016/0065-2571(66)90025-2]
[123]
Wang Q, Wang Y, Yu Z, et al. Ammonia-induced energy disorders interfere with bilirubin metabolism in hepatocytes. Arch Biochem Biophys 2014; 555-556(556): 16-22.
[http://dx.doi.org/10.1016/j.abb.2014.05.019] [PMID: 24878366]
[124]
Qureshi K, Rao KV, Qureshi IA. Differential inhibition by hyperammonemia of the electron transport chain enzymes in synaptosomes and non-synaptic mitochondria in ornithine transcarbamylase-deficient SPF-mice: Restoration by acetyl-L-carnitine. Neurochem Res 1998; 23(6): 855-61.
[http://dx.doi.org/10.1023/A:1022406911604] [PMID: 9572674]
[125]
Hadjihambi A, Khetan V, Jalan R. Pharmacotherapy for hyperammonemia. Expert Opin Pharmacother 2014; 15(12): 1685-95.
[http://dx.doi.org/10.1517/14656566.2014.931372] [PMID: 25032885]
[126]
Naorungroj T, Yanase F, Eastwood GM, Baldwin I, Bellomo R. Extracorporeal ammonia clearance for hyperammonemia in critically ill patients: A scoping review. Blood Purif 2020; 12(4): 1-9.
[PMID: 33279903]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy