Generic placeholder image

Nanoscience & Nanotechnology-Asia

Editor-in-Chief

ISSN (Print): 2210-6812
ISSN (Online): 2210-6820

Review Article

Nanotherapeutics in Tumour Microenvironment for Cancer Therapy

Author(s): Dhwani Rana, Sagar Salave, Suraj Longare, Rishabh Agarwal, Kiran Kalia and Derajram Benival*

Volume 12, Issue 1, 2022

Published on: 08 September, 2021

Article ID: e080921196283 Pages: 16

DOI: 10.2174/2210681211666210908144839

Price: $65

Abstract

Background: Cancer continues to be the most annihilating illness and despite vast research in understanding cancer biology as well as rational drug designing progressing profoundly, cancer remains the second leading cause of death worldwide. The conventional chemotherapeutic agents being exploited for cancer therapy contain several limitations, including less selectivity, nonspecific targeting and high off-target effects, and the emergence of multidrug resistance. These drawbacks can be addressed by employing the use of nanotherapeutics.

Objectives: The main objective of this review is to summarize various mechanisms of cancer genesis. It focuses on several strategies employed for modifying nano formulations for localization and emerging stimuli-based nanotherapeutics with recent examples.

Methods: The method involved the collection of the articles from different search engines like Google, PubMed, and ScienceDirect for the literature to get appropriate information regarding the topics.

Results: Studies revealed that nanoscale-based therapy provides targeted delivery, minimizes the off-target effects, and improves the therapeutic efficacy of the treatment modalities. The characteristics of nanoparticles like larger surface area become favourable and provide a platform for surface modifications, thereby improving cell targeting, internalization, and opportunities for delivering multiple agents. Advances in rational designing like stimuli-responsive therapies employing the use of sensitive nanocarriers, further provide high specificity, controlled release, and more efficient delivery of chemotherapeutic agents.

Conclusion: Characteristics of the nanoscale delivery system like larger surface area provide us with ample options for desired modifications, hence providing multimodal delivery of chemotherapeutic agents in cancer treatment. Nano therapy serves well as a potential tool for improving cancer therapies.

Keywords: Cancer, nanotherapeutics, surface modifications, stimuli-responsive treatments, targeted delivery, cancer genesis.

Graphical Abstract
[1]
Montané, X.; Bajek, A.; Roszkowski, K.; Montornés, J.M.; Giamberini, M.; Roszkowski, S.; Kowalczyk, O.; Garcia-Valls, R.; Tylkowski, B. Encapsulation for cancer therapy. Molecules, 2020, 25(7), 1605.
[http://dx.doi.org/10.3390/molecules25071605] [PMID: 32244513]
[2]
Wiwanitkit, V. Cancer nanotherapy: Concept for design of new drug. J. Med Hypoth. Ideas., 2013, 7(1), 3-4.
[http://dx.doi.org/10.1016/j.jmhi.2012.10.002]
[3]
Vivarelli, S.; Salemi, R.; Candido, S.; Falzone, L.; Santagati, M.; Stefani, S.; Torino, F.; Banna, G.L.; Tonini, G.; Libra, M. Gut microbiota and cancer: From pathogenesis to therapy. Cancers (Basel), 2019, 11(1), 38.
[http://dx.doi.org/10.3390/cancers11010038] [PMID: 30609850]
[4]
Sampathkumar, K.; Arulkumar, S.; Ramalingam, M.; Sampathkumar, K.; Arulkumar, S.; Ramalingam, M. Advances in stimuli responsive nanobiomaterials for cancer therapy. J. Biomed. Nanotechnol., 2014, 10(3), 367-382.
[http://dx.doi.org/10.1166/jbn.2014.1778] [PMID: 24730233]
[5]
Goodarzi, E.; Beiranvand, R.; Naemi, H.; Momenabadi, V.; Khazaei, Z. Worldwide incidence and mortality of colorectal cancer and human development index (HDI): An ecological study. WCRJ, 2019, 6e1433
[6]
Anand, P.; Kunnumakkara, A.B.; Sundaram, C.; Harikumar, K.B.; Tharakan, S.T.; Lai, O.S.; Sung, B.; Aggarwal, B.B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res., 2008, 25(9), 2097-2116.
[http://dx.doi.org/10.1007/s11095-008-9661-9] [PMID: 18626751]
[7]
Nagai, H.; Kim, Y.H. Cancer prevention from the perspective of global cancer burden patterns. J. Thorac. Dis., 2017, 9(3), 448-451.
[http://dx.doi.org/10.21037/jtd.2017.02.75] [PMID: 28449441]
[8]
Yu, Z.; Gao, L.; Chen, K.; Zhang, W.; Zhang, Q.; Li, Q.; Hu, K. Nanoparticles: A new approach to upgrade cancer diagnosis and treatment. Nanoscale Res. Lett., 2021, 16(1), 88.
[http://dx.doi.org/10.1186/s11671-021-03489-z] [PMID: 34014432]
[10]
Moorthi, C.; Manavalan, R.; Kathiresan, K. Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J. Pharm. Pharma. Sci. Canadian. Soc. Pharm. Sci., 2011, 14(1), 67-77.
[11]
Mi, P. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics, 2020, 10(10), 4557-4588.
[http://dx.doi.org/10.7150/thno.38069] [PMID: 32292515]
[12]
Fulbright, L.E.; Ellermann, M.; Arthur, J.C. The microbiome and the hallmarks of cancer.PLOS Pathog; Leong, JM., Ed.;; , 2017, 13, p, . (9)e1006480
[http://dx.doi.org/10.1371/journal.ppat.1006480]
[13]
Garg, A.D.; Romano, E.; Rufo, N.; Agostinis, P. Immunogenic versus tolerogenic phagocytosis during anticancer therapy: mechanisms and clinical translation. Cell Death Differ., 2016, 23(6), 938-951.
[http://dx.doi.org/10.1038/cdd.2016.5] [PMID: 26891691]
[14]
Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, Inflammation, and Cancer. Cell, 2010, 140(6), 883-899.
[http://dx.doi.org/10.1016/j.cell.2010.01.025] [PMID: 20303878]
[15]
Bae, K.H.; Chung, H.J.; Park, T.G. Nanomaterials for cancer therapy and imaging. Mol. Cells, 2011, 31(4), 295-302.
[http://dx.doi.org/10.1016/j.cell.2014.03.011] [PMID: 24679531]
[16]
Zorov, D.B.; Juhaszova, M.; Sollott, S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev., 2014, 94(3), 909-950.
[http://dx.doi.org/10.1152/physrev.00026.2013] [PMID: 24987008]
[17]
Phaniendra, A.; Jestadi, D.B.; Periyasamy, L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian J. Clin. Biochem., 2015, 30(1), 11-26.
[http://dx.doi.org/10.1007/s12291-014-0446-0] [PMID: 25646037]
[18]
Chio, IIC; Tuveson, DA ROS in cancer: The burning question. Trends Mol. Med.; Elsevier Ltd, 2017, 23(5), 411-429.
[http://dx.doi.org/10.1016/j.molmed.2017.03.004]
[19]
Yang, H.; Villani, R.M.; Wang, H.; Simpson, M.J.; Roberts, M.S.; Tang, M.; Liang, X. The role of cellular reactive oxygen species in cancer chemotherapy. J. Exp. Clin. Cancer Res., 2018, 37(1), 266.
[20]
Chuang, J.C.; Jones, P.A. Epigenetics and microRNAs. Pediatr. Res., 2007, 61(5 Pt 2), 24R-29R.
[http://dx.doi.org/10.1203/pdr.0b013e3180457684] [PMID: 17413852]
[21]
Al Aboud, N.M.; Tupper, C.; Jialal, I. Genetics, Epigenetic Mechanism. In StatPearls; StatPearls Publishing: Treasure Island (FL), , 2021.
[22]
Maia, B.M.; Rocha, R.M.; Calin, G.A. Clinical significance of the interaction between non-coding RNAs and the epigenetics machinery: challenges and opportunities in oncology. Epigenetics, 2014, 9(1), 75-80.
[http://dx.doi.org/10.4161/epi.26488] [PMID: 24121593]
[23]
Shannon, A.M.; Bouchier-Hayes, D.J.; Condron, C.M.; Toomey, D. Tumour hypoxia, chemotherapeutic resistance and hypoxia-related therapies. Cancer Treat. Rev., 2003, 29(4), 297-307.
[http://dx.doi.org/10.1016/S0305-7372(03)00003-3] [PMID: 12927570]
[24]
Muz, B.; de la Puente, P.; Azab, F.; Azab, A.K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl.), 2015, 3, 83-92.
[http://dx.doi.org/10.2147/HP.S93413] [PMID: 27774485]
[25]
Baek, S.; Singh, R.K.; Khanal, D.; Patel, K.D.; Lee, E.J.; Leong, K.W.; Chrzanowski, W.; Kim, H.W. Smart multifunctional drug delivery towards anticancer therapy harmonized in mesoporous nanoparticles. Nanoscale, 2015, 7(34), 14191-14216.
[http://dx.doi.org/10.1039/C5NR02730F] [PMID: 26260245]
[26]
Nooter, K.; Stoter, G. Molecular mechanisms of multidrug resistance in cancer chemotherapy. Pathol. Res. Pract., 1996, 192(7), 768-780.
[http://dx.doi.org/10.1016/S0344-0338(96)80099-9] [PMID: 8880878]
[27]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnology, 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[28]
Sutradhar, K.B.; Amin, M.L. Nanotechnology in cancer drug delivery and selective targeting. ISRN Nanotechnol., 2014, 2014, 1-12.
[http://dx.doi.org/10.1155/2014/939378]
[29]
National Research Council Division on Engineering and Physical Sciences. National Materials Advisory Board; Committee to Review the National Nanotechnology Initiative. A matter of size: triennial review of the national nanotechnology initiative; National Academies Press: Washington, D.C., DC, 2006.
[30]
Pillai, G. Nanomedicines for cancer therapy: An update of FDA approved and those under various stages of development. SOJ Pharm. Pharm. Sci., 2014, 1(2), 13.
[http://dx.doi.org/10.15226/2374-6866/1/1/00109]
[31]
Boulaiz, H.; Alvarez, P.J.; Ramirez, A.; Marchal, J.A.; Prados, J.; Rodríguez-Serrano, F.; Perán, M.; Melguizo, C.; Aranega, A. Nanomedicine: Application areas and development prospects. Int. J. Mol. Sci., 2011, 12(5), 3303-3321.
[32]
Bae, K.H.; Chung, H.J.; Park, T.G. Nanomaterials for cancer therapy and imaging. Mol. Cell, 2011, 31(4), 295-302.
[http://dx.doi.org/10.1007/s10059-011-0051-5] [PMID: 21360197]
[33]
Gmeiner, W.H.; Ghosh, S. Nanotechnology for cancer treatment. Nanotechnol. Rev., 2015, 3(2), 111-122.
[PMID: 26082884]
[34]
Singh, R.; Lillard, J.W. Nanoparticle-based targeted drug delivery. Experimental and molecular pathology. NIH Public Access., 2009, 86(3), 215-223.
[35]
Bamburowicz-Klimkowska, M.; Poplawska, M.; Grudzinski, I.P. Nanocomposites as biomolecules delivery agents in nanomedicine. J. Nanobiotechnology, 2019, 17(1), 48.
[http://dx.doi.org/10.1186/s12951-019-0479-x] [PMID: 30943985]
[36]
Sapsford, K.E.; Algar, W.R.; Berti, L.; Gemmill, K.B.; Casey, B.J.; Oh, E.; Stewart, M.H.; Medintz, I.L. Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chem. Rev., 2013, 113(3), 1904-2074.
[http://dx.doi.org/10.1021/cr300143v] [PMID: 23432378]
[37]
Obaid, G.; Chambrier, I.; Cook, M.J.; Russell, D.A. Cancer targeting with biomolecules: a comparative study of photodynamic therapy efficacy using antibody or lectin conjugated phthalocyanine-PEG gold nanoparticles. Photochem. Photobiol. Sci., 2015, 14(4), 737-747.
[http://dx.doi.org/10.1039/C4PP00312H] [PMID: 25604735]
[38]
Nag, O.K.; Delehanty, J.B. Active cellular and subcellular targeting of nanoparticles for drug delivery. Pharmaceutics. MDPI AG, 2019, 11(10), 543.
[39]
Din, F.U.; Aman, W.; Ullah, I.; Qureshi, O.S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomedicine, 2017, 12, 7291-7309.
[http://dx.doi.org/10.2147/IJN.S146315] [PMID: 29042776]
[40]
Wang, X.; Yang, L.; Chen, Z.; Shin, D.M. Application of nanotechnology in cancer therapy and imaging. CA Cancer J. Clin., (2), 97-110.
[41]
Jin, C.; Wang, K.; Oppong-Gyebi, A.; Hu, J. Application of nanotechnology in cancer diagnosis and therapy - A mini-review. Int J Med Sci; Ivyspring International Publisher 2020, 17(18), 2964-2973.
[http://dx.doi.org/10.7150/ijms.49801] [PMID: 33173417]
[42]
Chen, H.; Zhang, W.; Zhu, G.; Xie, J.; Chen, X. Rethinking cancer nanotheranostics. Nature reviews materials. Nature Publishing Group, 2017, 2, 17024.
[43]
Farokhzad, O.C.; Langer, R. Impact of nanotechnology on drug delivery. ACS Nano, 2009, 3(1), 16-20.
[http://dx.doi.org/10.1021/nn900002m] [PMID: 19206243]
[44]
Blanco, E.; Shen, H.; Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol., 2015, 33(9), 941-951.
[http://dx.doi.org/10.1038/nbt.3330] [PMID: 26348965]
[45]
Desai, N. Challenges in development of nanoparticle-based therapeutics. AAPS J., 2012, 14(2), 282-295.
[http://dx.doi.org/10.1208/s12248-012-9339-4] [PMID: 22407288]
[46]
Wang, E.C.; Wang, A.Z. Nanoparticles and their applications in cell and molecular biology. Integrative Biology (United Kingdom). NIH Public Access, 2014, 6(1), 9-26.
[47]
Guerrini, L.; Alvarez-Puebla, R.A.; Pazos-Perez, N. Surface modifications of nanoparticles for stability in biological fluids. Materials. MDPI AG, 2018, 11(7), 1154.
[48]
Mahapatro, A.; Singh, D.K. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J. Nanobiotechnology, 2011, 9, 55.
[http://dx.doi.org/10.1186/1477-3155-9-55] [PMID: 22123084]
[49]
Song, R.; Murphy, M.; Li, C.; Ting, K.; Soo, C.; Zheng, Z. Current development of biodegradable polymeric materials for biomedical applications. Drug Des. Devel. Ther., 2018, 12, 3117-3145.
[http://dx.doi.org/10.2147/DDDT.S165440] [PMID: 30288019]
[50]
Nagamune, T. Biomolecular engineering for nanobio/bionanotechnology. Nano convergence; Korea Nano Technology Research Society, 2017, 4, pp. (1)1-56.
[51]
Yoo, H.; Jo, H.; Oh, S.S. Detection and beyond: challenges and advances in aptamer-based biosensors. Mater Adv., 2020, 1(8), 2663-2687.
[http://dx.doi.org/10.1039/D0MA00639D]
[52]
Auría-Soro, C.; Nesma, T.; Juanes-Velasco, P.; Landeira-Viñuela, A.; Fidalgo-Gomez, H.; Acebes-Fernandez, V. Interactions of nanoparticles and biosystems: Microenvironment of nanoparticles and biomolecules in nanomedicine. Nanomaterials. MDPI AG, 2019, 9(10), 1365.
[http://dx.doi.org/10.3390/nano9101365]
[53]
Wang, X.; Liu, L.H.; Ramström, O.; Yan, M. Engineering nanomaterial surfaces for biomedical applications. Experimental Biology and Medicine. NIH Public Access, 2009, 234(10), 1128-1139.
[54]
Morales-Cruz, M.; Delgado, Y.; Castillo, B.; Figueroa, C.M.; Molina, A.M.; Torres, A.; Milián, M.; Griebenow, K. Smart targeting to improve cancer therapeutics. Drug Des. Devel. Ther., 2019, 13, 3753-3772.
[http://dx.doi.org/10.2147/DDDT.S219489] [PMID: 31802849]
[55]
Deshpande, P.P.; Biswas, S.; Torchilin, V.P. Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond.), 2013, 8(9), 1509-1528.
[http://dx.doi.org/10.2217/nnm.13.118] [PMID: 23914966]
[56]
Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nature Reviews Drug Discovery. Nat. Resour., 2020, (Dec), 1-24.
[57]
Vhora, I.; Patil, S.; Bhatt, P.; Gandhi, R.; Baradia, D.; Misra, A. Receptor-targeted drug delivery: current perspective and challenges. Ther. Deliv., 2014, 5(9), 1007-1024.
[http://dx.doi.org/10.4155/tde.14.63] [PMID: 25375343]
[58]
Large, D.E.; Soucy, J.R.; Hebert, J.; Auguste, D.T. Advances in receptor-mediated, tumor-targeted drug delivery. Adv. Ther., 2019, 2(1)1800091
[http://dx.doi.org/10.1002/adtp.201800091]
[59]
Xie, M.; Zhang, F.; Liu, L.; Zhang, Y.; Li, Y.; Li, H. Surface modification of graphene oxide nanosheets by protamine sulfate/sodium alginate for anti-cancer drug delivery application. Appl. Surf. Sci., 2018, 440, 853-860.
[http://dx.doi.org/10.1016/j.apsusc.2018.01.175]
[60]
Ahmad, N.; Alam, M.A.; Ahmad, R.; Naqvi, A.A.; Ahmad, F.J. Preparation and characterization of surface-modified PLGA-polymeric nanoparticles used to target treatment of intestinal cancer. Artif. Cells Nanomed. Biotechnol., 2018, 46(2), 432-446.
[http://dx.doi.org/10.1080/21691401.2017.1324466] [PMID: 28503995]
[61]
Halevas, E.; Mavroidi, B.; Nday, C.M.; Tang, J.; Smith, G.C.; Boukos, N.; Litsardakis, G.; Pelecanou, M.; Salifoglou, A. Modified magnetic core-shell mesoporous silica nano-formulations with encapsulated quercetin exhibit anti-amyloid and antioxidant activity. J. Inorg. Biochem., 2020, 213111271
[http://dx.doi.org/10.1016/j.jinorgbio.2020.111271] [PMID: 33069945]
[62]
Ahmad, N.; Ahmad, R.; Alam, M.A.; Ahmad, F.J. Enhancement of oral bioavailability of doxorubicin through surface modified biodegradable polymeric nanoparticles. Chem. Cent. J., 2018, 12(1), 65.
[http://dx.doi.org/10.1186/s13065-018-0434-1] [PMID: 29796830]
[63]
Sahoo, R.K.; Gothwal, A.; Rani, S.; Nakhate, K.T. Ajazuddin; Gupta, U. PEGylated dendrimer mediated delivery of bortezomib: Drug conjugation versus encapsulation. Int. J. Pharm., 2020, 584119389
[http://dx.doi.org/10.1016/j.ijpharm.2020.119389] [PMID: 32380027]
[64]
Zhang, X.; Pan, J.; Yao, M.; Palmerston Mendes, L.; Sarisozen, C.; Mao, S.; Torchilin, V.P. Charge reversible hyaluronic acid-modified dendrimer-based nanoparticles for siMDR-1 and doxorubicin co-delivery. Eur. J. Pharm. Biopharm., 2020, 154, 43-49.
[http://dx.doi.org/10.1016/j.ejpb.2020.06.019] [PMID: 32645383]
[65]
Mahmoudi, A.; Jaafari, M.R.; Ramezanian, N.; Gholami, L.; Malaekeh-Nikouei, B. BR2 and CyLoP1 enhance in-vivo SN38 delivery using pegylated PAMAM dendrimers. Int. J. Pharm., 2019, 564, 77-89.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.037] [PMID: 30991135]
[66]
Singh, M.K.; Pindiprolu, S.K.S.S.; Sanapalli, B.K.R.; Yele, V.; Ganesh, G.N.K. HER2 targeted biological macromolecule modified liposomes for improved efficacy of capecitabine in breast cancer. Int. J. Biol. Macromol., 2020, 150, 631-636.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.02.131] [PMID: 32061845]
[67]
Waglewska, E.; Pucek-Kaczmarek, A.; Bazylińska, U. Novel surface-modified bilosomes as functional and biocompatible nanocarriers of hybrid compounds. Nanomaterials (Basel), 2020, 10(12), 1-14.
[http://dx.doi.org/10.3390/nano10122472] [PMID: 33321762]
[68]
Shchukina, E.M.; Graham, M.; Zheng, Z.; Shchukin, D.G. Nanoencapsulation of phase change materials for advanced thermal energy storage systems. Royal Society of Chemistry, 2018, 47(11), 4156-4175.
[http://dx.doi.org/10.1039/C8CS00099A] [PMID: 29658558]
[69]
Ali, H.; Al-Khalifa, A.R.; Aouf, A.; Boukhebti, H.; Farouk, A. Effect of nanoencapsulation on volatile constituents, and antioxidant and anticancer activities of algerian origanum glandulosum Desf. Essential oil. Sci. Rep., 2020, 10(1), 2812.
[http://dx.doi.org/10.1038/s41598-020-59686-w] [PMID: 32071359]
[70]
Li, J.; Mooney, D.J. Designing hydrogels for controlled drug delivery. Nat. Rev. Mater., 2016, 1(12), 16071.
[http://dx.doi.org/10.1038/natrevmats.2016.71] [PMID: 29657852]
[71]
Cano-Sarabia, M.; Maspoch, D. Nanoencapsulation.Encyclopedia of nanotechnology; Springer netherlands, 2015, pp. 1-16.
[http://dx.doi.org/10.1007/978-94-007-6178-0_50-2]
[72]
Cano-Sarabia, M.; Maspoch, D. Nanoencapsulation.Encyclopedia of nanotechnology; Springer netherlands, 2016, pp. 2356-2369.
[http://dx.doi.org/10.1007/978-94-017-9780-1_50]
[73]
Kumari, A.; Singla, R.; Guliani, A.; Yadav, S.K. Nanoencapsulation for drug delivery. EXCLI J., 2014, 13, 265-286.
[PMID: 26417260]
[74]
Drug approval package. U.S. Food and drug administration. 2005. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2005/21660_AbraxaneTOC.cfm
[75]
Abraxane. European medicines agency. Available from: https://www.ema.europa.eu/en/medicines/human/EPAR/abraxane
[76]
Aljabali, A.A.A.; Bakshi, H.A.; Hakkim, F.L.; Haggag, Y.A.; Al-Batanyeh, K.M.; Al Zoubi, M.S.; Al-Trad, B.; Nasef, M.M.; Satija, S.; Mehta, M.; Pabreja, K.; Mishra, V.; Khan, M.; Abobaker, S.; Azzouz, I.M.; Dureja, H.; Pabari, R.M.; Dardouri, A.A.K.; Kesharwani, P.; Gupta, G.; Dhar Shukla, S.; Prasher, P.; Charbe, N.B.; Negi, P.; Kapoor, D.N.; Chellappan, D.K.; Webba da Silva, M.; Thompson, P.; Dua, K.; McCarron, P.; Tambuwala, M.M. Albumin nano-encapsulation of piceatannol enhances its anticancer potential in colon cancer via downregulation of nuclear p65 and HIF-1α. Cancers (Basel), 2020, 12(1), 113.
[http://dx.doi.org/10.3390/cancers12010113] [PMID: 31906321]
[77]
Fandzloch, M.; Jaromin, A.; Zaremba-Czogalla, M.; Wojtczak, A.; Lewińska, A.; Sitkowski, J.; Wiśniewska, J.; Łakomska, I.; Gubernator, J. Nanoencapsulation of a ruthenium(ii) complex with triazolopyrimidine in liposomes as a tool for improving its anticancer activity against melanoma cell lines. Dalton Trans., 2020, 49(4), 1207-1219.
[http://dx.doi.org/10.1039/C9DT03464A] [PMID: 31903475]
[78]
El-Sisi, A.E.; Sokkar, S.S.; Ibrahim, H.A.; Hamed, M.F.; Abu-Risha, S.E. Targeting MDR-1 gene expression, BAX/BCL2, caspase-3, and Ki-67 by nanoencapsulated imatinib and hesperidin to enhance anticancer activity and ameliorate cardiotoxicity. Fundam. Clin. Pharmacol., 2020, 34(4), 458-475.
[http://dx.doi.org/10.1111/fcp.12549] [PMID: 32080901]
[79]
Jadid, M.F.S.; Shademan, B.; Chavoshi, R.; Seyyedsani, N.; Aghaei, E.; Taheri, E.; Goleij, P.; Hajazimian, S.; Karamad, V.; Behroozi, J.; Sabet, M.N.; Isazadeh, A.; Baradaran, B. Enhanced anticancer potency of hydroxytyrosol and curcumin by PLGA-PAA nano-encapsulation on PANC-1 pancreatic cancer cell line. Environ. Toxicol., 2021, 36(6), 1043-1051.
[http://dx.doi.org/10.1002/tox.23103] [PMID: 33496383]
[80]
Sukhanova, A.; Bozrova, S.; Sokolov, P.; Berestovoy, M.; Karaulov, A.; Nabiev, I. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res. Lett., 2018, 13(1), 44.
[http://dx.doi.org/10.1186/s11671-018-2457-x] [PMID: 29417375]
[81]
Pupe, J.M.; Silva, L.P.; Pupe, J.M.; Silva, L.P. Modulation of physico-chemical and biological properties of silver nanoparticles synthesized using aqueous extract of flamboyant (Delonix Regia Var. Flavida, Fabaceae) seeds. J. Cluster Sci. 2021, 32 (4), 1053-1060. J. Cluster Sci., 2020, (Aug), 1-8.
[82]
Agarwal, R.; Roy, K. Intracellular delivery of polymeric nanocarriers: a matter of size, shape, charge, elasticity and surface composition. Ther. Deliv., 2013, 4(6), 705-723.
[http://dx.doi.org/10.4155/tde.13.37] [PMID: 23738668]
[83]
Sen Gupta, A. Role of particle size, shape, and stiffness in design of intravascular drug delivery systems: insights from computations, experiments, and nature. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2016, 8(2), 255-270.
[http://dx.doi.org/10.1002/wnan.1362] [PMID: 26306941]
[84]
Hoshyar, N.; Gray, S.; Han, H.; Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond.), 2016, 11(6), 673-692.
[http://dx.doi.org/10.2217/nnm.16.5] [PMID: 27003448]
[85]
Kneidl, B.; Peller, M.; Winter, G.; Lindner, L.H.; Hossann, M. Thermosensitive liposomal drug delivery systems: state of the art review. Int. J. Nanomedicine, 2014, 9(1), 4387-4398.
[PMID: 25258529]
[86]
Garello, F.; Terreno, E. Sonosensitive MRI nanosystems as cancer theranostics: A recent update. Front Chem., 2018, 6, 157.
[http://dx.doi.org/10.3389/fchem.2018.00157] [PMID: 29868560]
[87]
Wang, B.; Shao, P.; Wang, Y.; Li, J.; Zhang, Y. The application of thermosensitive nanocarriers in controlled drug delivery. J. Nanomater., 2011, 2011, 1-12.
[http://dx.doi.org/10.1155/2011/814903]
[88]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[89]
Karimi, M.; Ghasemi, A.; Sahandi Zangabad, P.; Rahighi, R.; Moosavi Basri, S.M.; Mirshekari, H.; Amiri, M.; Shafaei Pishabad, Z.; Aslani, A.; Bozorgomid, M.; Ghosh, D.; Beyzavi, A.; Vaseghi, A.; Aref, A.R.; Haghani, L.; Bahrami, S.; Hamblin, M.R. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Royal Society of Chemistry, 2016, 45(5), 1457-1501.
[http://dx.doi.org/10.1039/C5CS00798D] [PMID: 26776487]
[90]
Zangabad, P.S.; Mirkiani, S.; Shahsavari, S.; Masoudi, B.; Masroor, M.; Hamed, H.; Jafari, Z.; Taghipour, Y.D.; Hashemi, H.; Karimi, M.; Hamblin, M.R. Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications. Nanotechnol. Rev., 2018, 7(1), 95-122.
[http://dx.doi.org/10.1515/ntrev-2017-0154] [PMID: 29404233]
[91]
Varma, V.N.; Shivakumar, H.G.; Balamuralidhara, V.; Navya, M.; Hani, U.; Hani, U. Development of pH sensitive nanoparticles for intestinal drug delivery using chemically modified guar gum co-polymer. Iran. J. Pharm. Res., 2016, 15(1), 83-94.
[PMID: 27610149]
[92]
Palanikumar, L.; Al-Hosani, S.; Kalmouni, M.; Nguyen, V.P.; Ali, L.; Pasricha, R.; Barrera, F.N.; Magzoub, M. pH-responsive high stability polymeric nanoparticles for targeted delivery of anticancer therapeutics. Commun. Biol., 2020, 3(1), 95.
[http://dx.doi.org/10.1038/s42003-020-0817-4] [PMID: 32127636]
[93]
Shen, Y.; Tang, H.; Radosz, M.; Van Kirk, E.; Murdoch, W.J. pH-responsive nanoparticles for cancer drug delivery. Methods Mol. Biol., 2008, 437, 183-216.
[http://dx.doi.org/10.1007/978-1-59745-210-6_10] [PMID: 18369970]
[94]
Gao, W.; Chan, J.M.; Farokhzad, O.C. pH-Responsive nanoparticles for drug delivery. Mol. Pharm., 2010, 7(6), 1913-1920.
[http://dx.doi.org/10.1021/mp100253e] [PMID: 20836539]
[95]
Kong, M.; Peng, X.; Cui, H.; Liu, P.; Pang, B.; Zhang, K. PH-responsive polymeric nanoparticles with tunable sizes for targeted drug delivery. RSC Advances, 2020, 10(9), 4860-4868.
[http://dx.doi.org/10.1039/C9RA10280A]
[96]
Cano-Cortes, M.V.; Laz-Ruiz, J.A.; Diaz-Mochon, J.J.; Sanchez-Martin, R.M. Characterization and therapeutic effect of a pH stimuli responsive polymeric nanoformulation for controlled drug release. Polymers (Basel), 2020, 12(6), 1265.
[http://dx.doi.org/10.3390/polym12061265] [PMID: 32492910]
[97]
Rahmani, A.; Zavvar Mousavi, H.; Salehi, R.; Bagheri, A. Novel pH-sensitive and biodegradable micelles for the combined delivery of doxorubicin and conferone to induce apoptosis in MDA-MB-231 breast cancer cell line. RSC Advances, 2020, 10(49), 29228-29246.
[http://dx.doi.org/10.1039/D0RA03467C]
[98]
Men, W.; Zhu, P.; Dong, S.; Liu, W.; Zhou, K.; Bai, Y.; Liu, X.; Gong, S.; Zhang, S. Layer-by-layer pH-sensitive nanoparticles for drug delivery and controlled release with improved therapeutic efficacy in vivo. Drug Deliv., 2020, 27(1), 180-190.
[http://dx.doi.org/10.1080/10717544.2019.1709922] [PMID: 31924103]
[99]
Dayyani, N.; Khoee, S.; Ramazani, A. Design and synthesis of pH-sensitive polyamino-ester magneto-dendrimers: Surface functional groups effect on viability of human prostate carcinoma cell lines DU145. Eur. J. Med. Chem., 2015, 98, 190-202.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.028] [PMID: 26021708]
[100]
Qiu, Z.; Huang, J.; Liu, L.; Li, C.; Cohen Stuart, M.A.; Wang, J. Effects of pH on the formation of PIC micelles from PAMAM dendrimers. Langmuir, 2020, 36(29), 8367-8374.
[http://dx.doi.org/10.1021/acs.langmuir.0c00598] [PMID: 32610910]
[101]
Khutale, G.V.; Casey, A. Synthesis and characterization of a multifunctional gold-doxorubicin nanoparticle system for pH triggered intracellular anticancer drug release. Eur. J. Pharm. Biopharm., 2017, 119, 372-380.
[http://dx.doi.org/10.1016/j.ejpb.2017.07.009] [PMID: 28736333]
[102]
Zhang, X.; Zhao, M.; Cao, N.; Qin, W.; Zhao, M.; Wu, J.; Lin, D. Construction of a tumor microenvironment pH-responsive cleavable PEGylated hyaluronic acid nano-drug delivery system for colorectal cancer treatment. Biomater. Sci., 2020, 8(7), 1885-1896.
[http://dx.doi.org/10.1039/C9BM01927H] [PMID: 32022813]
[103]
Seynhaeve, A.L.B.; Amin, M.; Haemmerich, D.; van Rhoon, G.C.; Ten Hagen, T.L.M. Hyperthermia and smart drug delivery systems for solid tumor therapy. Adv. Drug Deliv. Rev., 2020, 163-164, 125-144.
[http://dx.doi.org/10.1016/j.addr.2020.02.004] [PMID: 32092379]
[104]
Gomes, I.P.; Duarte, J.A.; Maia, A.L.C.; Rubello, D.; Townsend, D.M.; de Barros, A.L.B. Thermosensitive nanosystems associated with hyperthermia for cancer treatment. Vol. 12, Pharmaceuticals. MDPI AG, 2019, 12(4), 171.
[105]
Kozlovskaya, V.; Liu, F.; Xue, B.; Ahmad, F.; Alford, A.; Saeed, M.; Kharlampieva, E. Polyphenolic polymersomes of temperature-sensitive poly(N-vinylcaprolactam)-block-poly(N-vinylpyrrolidone) for anticancer therapy. Biomacromolecules, 2017, 18(8), 2552-2563.
[http://dx.doi.org/10.1021/acs.biomac.7b00687] [PMID: 28700211]
[106]
Pandey, N.; Menon, J.U.; Takahashi, M.; Hsieh, J.T.; Yang, J.; Nguyen, K.T.; Wadajkar, A.S. Thermo-responsive fluorescent nanoparticles for multimodal imaging and treatment of cancers. Nanotheranostics, 2020, 4(1), 1-13.
[http://dx.doi.org/10.7150/ntno.39810] [PMID: 31911890]
[107]
Pham, S.H.; Choi, Y.; Choi, J. Stimuli-responsive nanomaterials for application in antitumor therapy and drug delivery. Pharmaceutics. MDPI AG, 2020, 12(7), 1-19.
[108]
Montha, W.; Maneeprakorn, W.; Tang, I.M.; Pon-On, W. Hyperthermia evaluation and drug/protein-controlled release using alternating magnetic field stimuli-responsive Mn-Zn ferrite composite particles. RSC Advances, 2020, 10(66), 40206-40214.
[http://dx.doi.org/10.1039/D0RA08602A]
[109]
Feng, L.; Xie, R.; Wang, C.; Gai, S.; He, F.; Yang, D.; Yang, P.; Lin, J. Magnetic targeting, tumor microenvironment-responsive intelligent nanocatalysts for enhanced tumor ablation. ACS Nano, 2018, 12(11), 11000-11012.
[http://dx.doi.org/10.1021/acsnano.8b05042] [PMID: 30339353]
[110]
Zhang, Z.T.; Huang-Fu, M.Y.; Xu, W.H.; Han, M. Stimulus-responsive nanoscale delivery systems triggered by the enzymes in the tumor microenvironment. Eur. J. Pharm. Biopharm., 2019, 137, 122-130.
[http://dx.doi.org/10.1016/j.ejpb.2019.02.009] [PMID: 30776412]
[111]
Shahriari, M.; Zahiri, M.; Abnous, K.; Taghdisi, S.M.; Ramezani, M.; Alibolandi, M. Enzyme responsive drug delivery systems in cancer treatment. J. Control. Release, 2019, 308, 172-189.
[http://dx.doi.org/10.1016/j.jconrel.2019.07.004] [PMID: 31295542]
[112]
Barve, A.; Jain, A.; Liu, H.; Zhao, Z.; Cheng, K. Enzyme-responsive polymeric micelles of cabazitaxel for prostate cancer targeted therapy. Acta Biomater., 2020, 113, 501-511.
[http://dx.doi.org/10.1016/j.actbio.2020.06.019] [PMID: 32562805]
[113]
Li, N.; Cai, H.; Jiang, L.; Hu, J.; Bains, A.; Hu, J.; Gong, Q.; Luo, K.; Gu, Z. Enzyme-sensitive and amphiphilic PEGylated dendrimer-paclitaxel prodrug-based nanoparticles for enhanced stability and anticancer efficacy. ACS Appl. Mater. Interfaces, 2017, 9(8), 6865-6877.
[http://dx.doi.org/10.1021/acsami.6b15505] [PMID: 28112512]
[114]
Abrahamse, H.; Hamblin, M.R. New photosensitizers for photodynamic therapy. Biochem. J., 2016, 473(4), 347-364.
[http://dx.doi.org/10.1042/BJ20150942] [PMID: 26862179]
[115]
Sun, X.; Wang, C.; Gao, M.; Hu, A.; Liu, Z. Remotely controlled red blood cell carriers for cancer targeting and near-infrared light-triggered drug release in combined photothermal-chemotherapy. Adv. Funct. Mater., 2015, 25(16), 2386-2394.
[http://dx.doi.org/10.1002/adfm.201500061]
[116]
Wang, Y.; Deng, Y.; Luo, H.; Zhu, A.; Ke, H.; Yang, H.; Chen, H. Light-responsive nanoparticles for highly efficient cytoplasmic delivery of anticancer agents. ACS Nano, 2017, 11(12), 12134-12144.
[http://dx.doi.org/10.1021/acsnano.7b05214] [PMID: 29141151]
[117]
Zhou, X.; Liang, J.; Liu, Q.; Huang, D.; Xu, J.; Gu, H.; Xue, W. Codelivery of epigallocatechin-3-gallate and diallyl trisulfide by near-infrared light-responsive mesoporous polydopamine nanoparticles for enhanced antitumor efficacy. Int. J. Pharm., 2021, 592120020
[http://dx.doi.org/10.1016/j.ijpharm.2020.120020] [PMID: 33127486]
[118]
Phua, S.Z.F.; Xue, C.; Lim, W.Q.; Yang, G.; Chen, H.; Zhang, Y. Light-responsive prodrug-based supramolecular nanosystems for site-specific combination therapy of cancer. Chem. Mater., 2019, 31(9), 3349-3358.
[http://dx.doi.org/10.1021/acs.chemmater.9b00439]
[119]
Kumari, R.; Sunil, D.; Ningthoujam, R.S. Hypoxia-responsive nanoparticle based drug delivery systems in cancer therapy: An up-to-date review. J. Control. Release, 2020, 319, 135-156.
[http://dx.doi.org/10.1016/j.jconrel.2019.12.041] [PMID: 31881315]
[120]
Thambi, T.; Park, J.H.; Lee, D.S. Hypoxia-responsive nanocarriers for cancer imaging and therapy: recent approaches and future perspectives. Chem. Commun. (Camb.), 2016, 52(55), 8492-8500.
[http://dx.doi.org/10.1039/C6CC02972H] [PMID: 27225824]
[121]
Zhang, K.; Meng, X.; Yang, Z.; Dong, H.; Zhang, X. Enhanced cancer therapy by hypoxia-responsive copper metal-organic frameworks nanosystem. Biomaterials, 2020, 258120278
[http://dx.doi.org/10.1016/j.biomaterials.2020.120278] [PMID: 32781328]
[122]
Li, Y.; Ding, J.; Xu, X.; Shi, R.; Saw, P.E.; Wang, J.; Chung, S.; Li, W.; Aljaeid, B.M.; Lee, R.J.; Tao, W.; Teng, L.; Farokhzad, O.C.; Shi, J. Dual hypoxia-targeting RNAi nanomedicine for precision cancer therapy. Nano Lett., 2020, 20(7), 4857-4863.
[http://dx.doi.org/10.1021/acs.nanolett.0c00757] [PMID: 32479088]
[123]
Mamnoon, B.; Feng, L.; Froberg, J.; Choi, Y.; Sathish, V.; Mallik, S. Hypoxia-responsive, polymeric nanocarriers for targeted drug delivery to estrogen receptor-positive breast cancer cell spheroids. Mol. Pharm., 2020, 17(11), 4312-4322.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00754] [PMID: 32926627]
[124]
Yang, G.; Phua, S.Z.F.; Lim, W.Q.; Zhang, R.; Feng, L.; Liu, G.; Wu, H.; Bindra, A.K.; Jana, D.; Liu, Z.; Zhao, Y. A hypoxia-responsive albumin-based nanosystem for deep tumor penetration and excellent therapeutic efficacy. Adv. Mater., 2019, 31(25)e1901513
[http://dx.doi.org/10.1002/adma.201901513] [PMID: 31069885]
[125]
Fathi, M.; Barar, J.; Erfan-Niya, H.; Omidi, Y. Methotrexate-conjugated chitosan-grafted pH- and thermo-responsive magnetic nanoparticles for targeted therapy of ovarian cancer. Int. J. Biol. Macromol., 2020, 154, 1175-1184.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.272] [PMID: 31730949]
[126]
Salem, D.S.; Hegazy, S.F.; Obayya, S.S.A. Nanogold-loaded chitosan nanocomposites for pH/light-responsive drug release and synergistic chemo-photothermal cancer therapy. Colloid Interface Sci. Commun., 2021, 41100361
[http://dx.doi.org/10.1016/j.colcom.2021.100361]
[127]
Li, J.; Zhang, W.; Gao, Y.; Tong, H.; Chen, Z.; Shi, J.; Santos, H.A.; Xia, B. Near-infrared light and magnetic field dual-responsive porous silicon-based nanocarriers to overcome multidrug resistance in breast cancer cells with enhanced efficiency. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(3), 546-557.
[http://dx.doi.org/10.1039/C9TB02340B] [PMID: 31854435]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy