Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

General Research Article

A 96-Well Plates-based UV Spectrophotometric Assay for Determination of Total Glucosinolates in Isatis indigotica Roots

Author(s): Yanzhi Sun, Hongchao Zhang and Zhihong Cheng*

Volume 18, Issue 2, 2022

Published on: 09 August, 2021

Page: [244 - 251] Pages: 8

DOI: 10.2174/1573411017666210809094602

Price: $65

Abstract

Background: Glucosinolates (GLS) are important secondary metabolites in Cruciferae vegetables and herbs. Currently, the assays of total GLS determination are cumbersome (requiring acidic or enzymatic hydrolysis and addition of staining reagents), time-consuming, and indirect. High concentrations of inorganic salts are inevitably incorporated into the GLS products during separation. There is a need for a quantitative method for simple and rapid determination of total GLS after desalting process.

Methods: A 96-well plates-based UV spectrophotometric method for determination of total GLS of Isatis indigotica roots was developed in the present study. The detection wavelength is set at 230 nm using quartz plates. This assay was validated using gluconapin and sinigrin as reference standards, and applied to determine the total GLS of I. indigotica roots prepared from five different desalting methods.

Results: This assay is specific for total GLS prepared from I. indigotica roots, and it has acceptable accuracy (91.76–98.18% for quality control, and 95.59–102.52% for addition/recovery), precision (0.24–0.70% pooled RSD), reproducibility (0.31–1.84% RSD), and stability (0.24–1.45% RSD) over a 72-h period.

Conclusion: The 96-well plates-based UV spectrophotometric assay is simple and accurate for high-throughput determination of total GLS.

Keywords: Glucosinolates, total glucosinolates, Isatis indigotica, UV spectrophotometry, 96-well plates, desalting process.

« Previous
Graphical Abstract
[1]
Hanschen, F.S.; Lamy, E.; Schreiner, M.; Rohn, S. Reactivity and stability of glucosinolates and their breakdown products in foods. Angew. Chem. Int. Ed. Engl., 2014, 53(43), 11430-11450.
[http://dx.doi.org/10.1002/anie.201402639] [PMID: 25163974]
[2]
Cartea, M.E.; Velasco, P. Glucosinolates in Brassica foods: bioavailability in food and significance for human health. Phytochem. Rev., 2007, 7, 213-229.
[http://dx.doi.org/10.1007/s11101-007-9072-2]
[3]
Liou, C.S.; Sirk, S.J.; Diaz, C.A.C.; Klein, A.P.; Fischer, C.R.; Higginbottom, S.K.; Erez, A.; Donia, M.S.; Sonnenburg, J.L.; Sattely, E.S. A metabolic pathway for activation of dietary glucosinolates by a human gut symbiont. Cell, 2020, 180(4), 717-728.e19.
[http://dx.doi.org/10.1016/j.cell.2020.01.023] [PMID: 32084341]
[4]
Fernández-León, A.M.; Fernández-León, M.F.; González-Gómez, D.; Ayuso, M.C.; Bernalte, M.J. Quantification and bioaccessibility of intact glucosinolates in broccoli ‘Parthenon’ and Savoy cabbage ‘Dama’. J. Food Compos. Anal., 2017, 61, 40-46.
[http://dx.doi.org/10.1016/j.jfca.2016.11.010]
[5]
Shi, Y.; Zheng, C.; Li, J.; Yang, L.; Wang, Z.; Wang, R. Separation and quantification of four main chiral glucosinolates in Radix Isatidis and its granules using high-performance liquid chromatography/diode array detector coupled with circular dichroism detection. Molecules, 2018, 23(6), 1687-1691.
[http://dx.doi.org/10.3390/molecules23061305] [PMID: 29844266]
[6]
Clarke, D.B. Glucosinolates, structures and analysis in food. Anal. Methods, 2010, 2, 310-325.
[http://dx.doi.org/10.1039/b9ay00280d]
[7]
Bones, A.M.; Rossiter, J.T. The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry, 2006, 67(11), 1053-1067.
[http://dx.doi.org/10.1016/j.phytochem.2006.02.024] [PMID: 16624350]
[8]
Wetter, L.R.; Youngs, C.G. A thiourea-UV assay for total glucosinolate content in rapeseed meals. J. Am. Oil Chem. Soc., 1976, 53, 162-164.
[http://dx.doi.org/10.1007/BF02586357]
[9]
Declercq, D.R.; Daun, J.K. Determination of the total glucosinolate content in canola by reaction with thymol and sulfuric-acid. J. Am. Oil Chem. Soc., 1989, 66, 788-791.
[http://dx.doi.org/10.1007/BF02653669]
[10]
Qian, Y.; Zhao, B.T.; Huang, X.D. The determination of the total amount of the β-glucosinolate in Brassica oleracea L. Chin. Wild Plant Res., 2008, 27, 52-57.
[11]
Gallaher, C.M.; Gallaher, D.D.; Peterson, S. Development and validation of a spectrophotometric method for quantification of total glucosinolates in cruciferous vegetables. J. Agric. Food Chem., 2012, 60(6), 1358-1362.
[http://dx.doi.org/10.1021/jf2041142] [PMID: 22313055]
[12]
Mawlong, I.; Kumar, M.S.S.; Gurung, B.; Singh, K.H.; Singh, D. A simple spectrophotometric method for estimating total glucosinolates in mustard de-oiled cake. Int. J. Food Prop., 2017, 20, 3274-3281.
[http://dx.doi.org/10.1080/10942912.2017.1286353]
[13]
Schnug, E.; Haneklaus, S. Theoretical principles for the indirect determination of the total glucosinolate content in rapeseed and meal quantifying the sulphur concentration via X-ray fluorescence (X-RF method). J. Sci. Food Agric., 1988, 45, 243-254.
[http://dx.doi.org/10.1002/jsfa.2740450307]
[14]
Tholen, J.T.; Buzza, G.; Mcgregor, D.I.; Truscott, R.J.W. Measurement of the glucosinolate content in rapeseed using the TRUBLUGLU Meter. Plant Breed., 1993, 110, 137-143.
[http://dx.doi.org/10.1111/j.1439-0523.1993.tb01225.x]
[15]
Yang, H.S.; Jing, G.Y.; Wang, C.B.; Xue, C.M.; Li, C.F.; Han, C.W. Determination of glucosinolates of Capsella bursa-pastoris L. China Sci. Technol. Inf., 2017, 3-4, 93-94.
[16]
Xie, Z.; Wang, R.; Wu, Y.; Yang, L.; Wang, Z.; Li, Y. An efficient method for separation and purification of glucosinolate stereoisomers from Radix Isatidis. J. Liq. Chromatogr. Relat. Technol., 2012, 35, 153-161.
[http://dx.doi.org/10.1080/10826076.2011.597066]
[17]
Zhou, W.; Zhang, X.Y. Research progress of Chinese herbal medicine Radix isatidis (banlangen). Am. J. Chin. Med., 2013, 41(4), 743-764.
[http://dx.doi.org/10.1142/S0192415X1350050X] [PMID: 23895149]
[18]
Xu, L.H.; Huang, F.; Cheng, T.; Wu, J. Antivirus constituents of radix of Isatis indigotica. Chin. J. Nat. Med., 2005, 3, 3-4.
[19]
Guo, Q.; Sun, Y.; Tang, Q.; Zhang, H.; Cheng, Z. Isolation, identification, biological estimation, and profiling of glucosinolates in Isatis indigotica roots. J. Liq. Chromatogr. Relat. Technol., 2020, 43, 645-656.
[http://dx.doi.org/10.1080/10826076.2020.1780605]
[20]
Guo, Q.; Li, Z.; Shen, L.; Xiao, Y.; Cheng, Z. Quantitative 1 H nuclear magnetic resonance (qHNMR) methods for accurate purity determination of glucosinolates isolated from Isatis indigotica roots. Phytochem. Anal., 2021, 32(1), 104-111.
[http://dx.doi.org/10.1002/pca.3003] [PMID: 33128329]
[21]
Ciska, E.; Drabińska, N.; Narwojsz, A.; Honke, J. Stability of glucosinolates and glucosinolate degradation products during storage of boiled white cabbage. Food Chem., 2016, 203, 340-347.
[http://dx.doi.org/10.1016/j.foodchem.2016.02.079] [PMID: 26948623]
[22]
Hanschen, F.S.; Rohn, S.; Mewis, I.; Schreiner, M.; Kroh, L.W. Influence of the chemical structure on the thermal degradation of the glucosinolates in broccoli sprouts. Food Chem., 2012, 130, 1-8.
[http://dx.doi.org/10.1016/j.foodchem.2011.05.109]
[23]
Xie, Z.; Shi, Y.; Wang, Z.; Wang, R.; Li, Y. Biotransformation of glucosinolates epiprogoitrin and progoitrin to (R)- and (S)-Goitrin in Radix isatidis. J. Agric. Food Chem., 2011, 59(23), 12467-12472.
[http://dx.doi.org/10.1021/jf203321u] [PMID: 22023255]
[24]
Sun, J.; Charron, C.S.; Novotny, J.A.; Peng, B.; Yu, L.; Chen, P. Profiling glucosinolate metabolites in human urine and plasma after broccoli consumption using non-targeted and targeted metabolomic analyses. Food Chem., 2020.309125660
[http://dx.doi.org/10.1016/j.foodchem.2019.125660] [PMID: 31670121]
[25]
Lin, L.J.; Nie, L.X.; Li, Y.L.; Dai, Z.; Ma, S.C. Extraction, purification and isolation methods of glucosinolates: a literature review. Chin. Pharm. Aff, 2015, 29, 1079-1082.
[26]
Wang, T.X.; Liang, H.; Yuan, Q.P. Separation of sinigrin from Indian mustard (Brassica juncea L.) seed using macroporous ion-exchange resin. Korean J. Chem. Eng., 2012, 29, 396-403.
[http://dx.doi.org/10.1007/s11814-011-0175-5]
[27]
Barillari, J.; Gueyrard, D.; Rollin, P.; Iori, R. Barbarea verna as a source of 2-phenylethyl glucosinolate, precursor of cancer chemopreventive phenylethyl isothiocyanate. Fitoterapia, 2001, 72(7), 760-764.
[http://dx.doi.org/10.1016/S0367-326X(01)00320-3] [PMID: 11677014]
[28]
Barillari, J.; Cervellati, R.; Paolini, M.; Tatibouët, A.; Rollin, P.; Iori, R. Isolation of 4-methylthio-3-butenyl glucosinolate from Raphanus sativus sprouts (kaiware daikon) and its redox properties. J. Agric. Food Chem., 2005, 53(26), 9890-9896.
[http://dx.doi.org/10.1021/jf051465h] [PMID: 16366671]
[29]
Du, Q.Z.; Fang, J.; Gao, S.J.; Zeng, Q.Y.; Mo, C.H. A gram-scale separation of glucosinolates from an oil-pressed residue of rapeseeds using slow rotary countercurrent chromatography. Separ. Purif. Tech., 2008, 59, 294-298.
[http://dx.doi.org/10.1016/j.seppur.2007.06.021]
[30]
Visentin, M.; Tava, A.; Iori, R.; Palmieri, S. Isolation and identification for trans-4-(methylthio)-3-butenyl glucosinolate from radish roots (Raphanus sativus L.). J. Agric. Food Chem., 1992, 40, 1687-1691.
[http://dx.doi.org/10.1021/jf00021a041]
[31]
Kpeterka, S.; Fenwick, G.R. The use of flash chromatography for the isolation and purification of glucosinolates (mustard oil glycosides). Eur. J. Lipid Sci. Technol., 2010, 90, 61-64.
[32]
Agerbirk, N.; Olsen, C.E.; Poulsen, E.; Jacobsen, N.; Hansen, P.R. Complex metabolism of aromatic glucosinolates in Pieris rapae caterpillars involving nitrile formation, hydroxylation, demethylation, sulfation, and host plant dependent carboxylic acid formation. Insect Biochem. Mol. Biol., 2010, 40(2), 126-137.
[http://dx.doi.org/10.1016/j.ibmb.2010.01.003] [PMID: 20079434]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy