Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

GAG Multivalent Systems to Interact with Langerin

Author(s): Javier Rojo*, Pedro M. Nieto* and José L. de Paz*

Volume 29, Issue 7, 2022

Published on: 05 July, 2021

Page: [1173 - 1192] Pages: 20

DOI: 10.2174/0929867328666210705143102

Price: $65

Abstract

Langerin is a C-type Lectin expressed at the surface of Langerhans cells, which play a pivotal role protecting organisms against pathogen infections. To address this aim, Langerin presents at least two recognition sites, one Ca2+-dependent and another one independent, which are capable to recognize a variety of carbohydrate ligands. In contrast to other lectins, Langerin recognizes sulfated glycosaminoglycans (GAGs), a family of complex and heterogeneous polysaccharides present in the cell membrane and the extracellular matrix, at the interphase generated in the trimeric form of Langerin but absent in the monomeric form. The complexity of these oligosaccharides has impeded the development of welldefined monodisperse structures to study these interaction processes. However, in the last few decades, an improvement of synthetic developments to achieve the preparation of carbohydrate multivalent systems mimicking the GAGs has been described. Despite all these contributions, very few examples are reported where the GAG multivalent structures are used to evaluate the interaction with Langerin. These molecules should pave the way to explore these GAG-Langerin interactions.

Keywords: Carbohydrates, GAG, langerin, molecular recognition, multivalent systems, NMR.

[1]
Varki, A. Biological roles of glycans. Glycobiology, 2017, 27(1), 3-49.
[http://dx.doi.org/10.1093/glycob/cww086] [PMID: 27558841]
[2]
Varki, A.; Cummings, R.D.; Esko, J.D.; Stanley, P.; Hart, G.W.; Aebi, M.; Darvill, A.G.; Kinoshita, T.; Packer, N.H.; Prestegard, J.H.; Schnaar, R.L.; Seeberger, P.H. Essentials of glycobiology, 3rd ed; , 2017.
[3]
Sasisekharan, R.; Raman, R.; Prabhakar, V. Glycomics approach to structure-function relationships of glycosaminoglycans. Annu. Rev. Biomed. Eng., 2006, 8, 181-231.
[http://dx.doi.org/10.1146/annurev.bioeng.8.061505.095745] [PMID: 16834555]
[4]
Sasarman, F.; Maftei, C.; Campeau, P.M.; Brunel-Guitton, C.; Mitchell, G.A.; Allard, P. Biosynthesis of glycosaminoglycans: associated disorders and biochemical tests. J. Inherit. Metab. Dis., 2016, 39(2), 173-188.
[http://dx.doi.org/10.1007/s10545-015-9903-z] [PMID: 26689402]
[5]
Mulloy, B. Forster, M.J.; Jones, C.; Davies, D.B. N.m.r. and molecular-modelling studies of the solution conformation of heparin. Biochem. J., 1993, 293(Pt 3), 849-858.
[http://dx.doi.org/10.1042/bj2930849] [PMID: 8352752]
[6]
Turnbull, J.; Powell, A.; Guimond, S. Heparan sulfate: decoding a dynamic multifunctional cell regulator. Trends Cell Biol., 2001, 11(2), 75-82.
[http://dx.doi.org/10.1016/S0962-8924(00)01897-3] [PMID: 11166215]
[7]
Zhang, F.; Zheng, L.; Cheng, S.; Peng, Y.; Fu, L.; Zhang, X.; Linhardt, R.J. Comparison of the interactions of different growth factors and glycosaminoglycans. Molecules, 2019, 24(18), 3360.
[http://dx.doi.org/10.3390/molecules24183360] [PMID: 31527407]
[8]
Valladeau, J.; Duvert-Frances, V.; Pin, J.J.; Dezutter-Dambuyant, C.; Vincent, C.; Massacrier, C.; Vincent, J.; Yoneda, K.; Banchereau, J.; Caux, C.; Davoust, J.; Saeland, S. The monoclonal antibody DCGM4 recognizes Langerin, a protein specific of Langerhans cells, and is rapidly internalized from the cell surface. Eur. J. Immunol., 1999, 29(9), 2695-2704.
[http://dx.doi.org/10.1002/(SICI)1521-4141(199909)29:09<2695:AID-IMMU2695>3.0.CO;2-Q] [PMID: 10508244]
[9]
Drickamer, K. Engineering galactose-binding activity into a C-type mannose-binding protein. Nature, 1992, 360(6400), 183-186.
[http://dx.doi.org/10.1038/360183a0] [PMID: 1279438]
[10]
Valladeau, J.; Ravel, O.; Dezutter-Dambuyant, C.; Moore, K.; Kleijmeer, M.; Liu, Y.; Duvert-Frances, V.; Vincent, C.; Schmitt, D.; Davoust, J.; Caux, C.; Lebecque, S.; Saeland, S. Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Immunity, 2000, 12(1), 71-81.
[http://dx.doi.org/10.1016/S1074-7613(00)80160-0] [PMID: 10661407]
[11]
Feinberg, H.; Powlesland, A.S.; Taylor, M.E.; Weis, W.I. Trimeric structure of langerin. J. Biol. Chem., 2010, 285(17), 13285-13293.
[http://dx.doi.org/10.1074/jbc.M109.086058] [PMID: 20181944]
[12]
Valverde, P.; Martínez, J.D.; Cañada, F.J.; Ardá, A.; Jiménez-Barbero, J. Molecular Recognition in C-Type Lectins: The Cases of DC-SIGN, Langerin, MGL, and L-Sectin. ChemBioChem, 2020, 21(21), 2999-3025.
[http://dx.doi.org/10.1002/cbic.202000238] [PMID: 32426893]
[13]
Mc Dermott, R.; Ziylan, U.; Spehner, D.; Bausinger, H.; Lipsker, D.; Mommaas, M.; Cazenave, J.P.; Raposo, G.; Goud, B.; de la Salle, H.; Salamero, J.; Hanau, D. Birbeck granules are subdomains of endosomal recycling compartment in human epidermal Langerhans cells, which form where Langerin accumulates. Mol. Biol. Cell, 2002, 13(1), 317-335.
[http://dx.doi.org/10.1091/mbc.01-06-0300] [PMID: 11809842]
[14]
Thépaut, M.; Valladeau, J.; Nurisso, A.; Kahn, R.; Arnou, B.; Vivès, C.; Saeland, S.; Ebel, C.; Monnier, C.; Dezutter-Dambuyant, C.; Imberty, A.; Fieschi, F. Structural studies of langerin and Birbeck granule: a macromolecular organization model. Biochemistry, 2009, 48(12), 2684-2698.
[http://dx.doi.org/10.1021/bi802151w] [PMID: 19175323]
[15]
Valladeau, J.; Dezutter-Dambuyant, C.; Saeland, S. Langerin/CD207 sheds light on formation of birbeck granules and their possible function in Langerhans cells. Immunol. Res., 2003, 28(2), 93-107.
[http://dx.doi.org/10.1385/IR:28:2:93] [PMID: 14610287]
[16]
van der Vlist, M.; Geijtenbeek, T.B.H. Langerin functions as an antiviral receptor on Langerhans cells. Immunol. Cell Biol., 2010, 88(4), 410-415.
[http://dx.doi.org/10.1038/icb.2010.32] [PMID: 20309013]
[17]
de Witte, L.; Nabatov, A.; Pion, M.; Fluitsma, D.; de Jong, M.A.W.P.; de Gruijl, T.; Piguet, V.; van Kooyk, Y.; Geijtenbeek, T.B.H. Langerin is a natural barrier to HIV-1 transmission by Langerhans cells. Nat. Med., 2007, 13(3), 367-371.
[http://dx.doi.org/10.1038/nm1541] [PMID: 17334373]
[18]
Takahara, K.; Omatsu, Y.; Yashima, Y.; Maeda, Y.; Tanaka, S.; Iyoda, T.; Clausen, B.E.; Matsubara, K.; Letterio, J.; Steinman, R.M.; Matsuda, Y.; Inaba, K. Identification and expression of mouse Langerin (CD207) in dendritic cells. Int. Immunol., 2002, 14(5), 433-444.
[http://dx.doi.org/10.1093/intimm/14.5.433] [PMID: 11978773]
[19]
Stambach, N.S.; Taylor, M.E. Characterization of carbohydrate recognition by langerin, a C-type lectin of Langerhans cells. Glycobiology, 2003, 13(5), 401-410.
[http://dx.doi.org/10.1093/glycob/cwg045] [PMID: 12626394]
[20]
Galustian, C.; Park, C.G.; Chai, W.; Kiso, M.; Bruening, S.A.; Kang, Y.S.; Steinman, R.M.; Feizi, T. High and low affinity carbohydrate ligands revealed for murine SIGN-R1 by carbohydrate array and cell binding approaches, and differing specificities for SIGN-R3 and langerin. Int. Immunol., 2004, 16(6), 853-866.
[http://dx.doi.org/10.1093/intimm/dxh089] [PMID: 15136555]
[21]
Holla, A.; Skerra, A. Comparative analysis reveals selective recognition of glycans by the dendritic cell receptors DC-SIGN and Langerin. Protein Eng. Des. Sel., 2011, 24(9), 659-669.
[http://dx.doi.org/10.1093/protein/gzr016] [PMID: 21540232]
[22]
Tateno, H.; Ohnishi, K.; Yabe, R.; Hayatsu, N.; Sato, T.; Takeya, M.; Narimatsu, H.; Hirabayashi, J. Dual specificity of Langerin to sulfated and mannosylated glycans via a single C-type carbohydrate recognition domain. J. Biol. Chem., 2010, 285(9), 6390-6400.
[http://dx.doi.org/10.1074/jbc.M109.041863] [PMID: 20026605]
[23]
Weis, W.I.; Drickamer, K.; Hendrickson, W.A. Structure of a C-type mannose-binding protein complexed with an oligosaccharide. Nature, 1992, 360(6400), 127-134.
[http://dx.doi.org/10.1038/360127a0] [PMID: 1436090]
[24]
Chatwell, L.; Holla, A.; Kaufer, B.B.; Skerra, A. The carbohydrate recognition domain of Langerin reveals high structural similarity with the one of DC-SIGN but an additional, calcium-independent sugar-binding site. Mol. Immunol., 2008, 45(7), 1981-1994.
[http://dx.doi.org/10.1016/j.molimm.2007.10.030] [PMID: 18061677]
[25]
Chabrol, E.; Nurisso, A.; Daina, A.; Vassal-Stermann, E.; Thepaut, M.; Girard, E.; Vivès, R.R.; Fieschi, F. Glycosaminoglycans are interactants of Langerin: comparison with gp120 highlights an unexpected calcium-independent binding mode. PLoS One, 2012, 7(11), e50722.
[http://dx.doi.org/10.1371/journal.pone.0050722] [PMID: 23226363]
[26]
Muñoz-García, J.C.; Chabrol, E.; Vivès, R.R.; Thomas, A.; de Paz, J.L.; Rojo, J.; Imberty, A.; Fieschi, F.; Nieto, P.M.; Angulo, J. Langerin-heparin interaction: two binding sites for small and large ligands as revealed by a combination of NMR spectroscopy and cross-linking mapping experiments. J. Am. Chem. Soc., 2015, 137(12), 4100-4110.
[http://dx.doi.org/10.1021/ja511529x] [PMID: 25747117]
[27]
Hanske, J.; Wawrzinek, R.; Geissner, A.; Wamhoff, E.C.; Sellrie, K.; Schmidt, H.; Seeberger, P.H.; Rademacher, C. Calcium-Independent Activation of an Allosteric Network in Langerin by Heparin Oligosaccharides. ChemBioChem, 2017, 18(13), 1183-1187.
[http://dx.doi.org/10.1002/cbic.201700027] [PMID: 28198086]
[28]
Zhao, J.; Liu, X.; Kao, C.; Zhang, E.; Li, Q.; Zhang, F.; Linhardt, R.J. Kinetic and Structural Studies of Interactions between Glycosaminoglycans and Langerin. Biochemistry, 2016, 55(32), 4552-4559.
[http://dx.doi.org/10.1021/acs.biochem.6b00555] [PMID: 27447199]
[29]
Mende, M.; Bednarek, C.; Wawryszyn, M.; Sauter, P.; Biskup, M.B.; Schepers, U.; Bräse, S. Chemical Synthesis of Glycosaminoglycans. Chem. Rev., 2016, 116(14), 8193-8255.
[http://dx.doi.org/10.1021/acs.chemrev.6b00010] [PMID: 27410264]
[30]
García-Oliva, C.; Cabanillas, A.H.; Perona, A.; Hoyos, P.; Rumbero, Á.; Hernáiz, M.J. Efficient Synthesis of Muramic and Glucuronic Acid Glycodendrimers as Dengue Virus Antagonists. Chemistry, 2020, 26(7), 1588-1596.
[http://dx.doi.org/10.1002/chem.201903788] [PMID: 31644824]
[31]
Soria-Martinez, L.; Bauer, S.; Giesler, M.; Schelhaas, S.; Materlik, J.; Janus, K.; Pierzyna, P.; Becker, M.; Snyder, N.L.; Hartmann, L.; Schelhaas, M. Prophylactic antiviral activity of sulfated glycomimetic oligomers and polymers. J. Am. Chem. Soc., 2020, 142(11), 5252-5265.
[http://dx.doi.org/10.1021/jacs.9b13484] [PMID: 32105452]
[32]
Paluck, S.J.; Nguyen, T.H.; Maynard, H.D. Heparin-Mimicking Polymers: Synthesis and Biological Applications. Biomacromolecules, 2016, 17(11), 3417-3440.
[http://dx.doi.org/10.1021/acs.biomac.6b01147] [PMID: 27739666]
[33]
Zubkova, O.V.; Ahmed, Y.A.; Guimond, S.E.; Noble, S-L.; Miller, J.H.; Alfred Smith, R.A.; Nurcombe, V.; Tyler, P.C.; Weissmann, M.; Vlodavsky, I.; Turnbull, J.E. Dendrimer heparan sulfate glycomimetics: potent heparanase inhibitors for anticancer therapy. ACS Chem. Biol., 2018, 13(12), 3236-3242.
[http://dx.doi.org/10.1021/acschembio.8b00909] [PMID: 30480427]
[34]
Domínguez-Rodríguez, P.; Reina, J.J.; Gil-Caballero, S.; Nieto, P.M.; de Paz, J.L.; Rojo, J. Glycodendrimers as chondroitin sulfate mimetics: synthesis and binding to growth factor midkine. Chemistry, 2017, 23(47), 11338-11345.
[http://dx.doi.org/10.1002/chem.201701890] [PMID: 28621483]
[35]
Domínguez-Rodríguez, P.; Vivès, C.; Thepaut, M.; Fieschi, F.; Nieto, P.M.; de Paz, J.L.; Rojo, J. Second-generation dendrimers with chondroitin sulfate type-E disaccharides as multivalent ligands for langerin. Biomacromolecules, 2020, 21(7), 2726-2734.
[http://dx.doi.org/10.1021/acs.biomac.0c00476] [PMID: 32525659]
[36]
Liu, P.; Chen, L.; Toh, J.K.C.; Ang, Y.L.; Jee, J-E.; Lim, J.; Lee, S.S.; Lee, S-G. Tailored chondroitin sulfate glycomimetics via a tunable multivalent scaffold for potentiating NGF/TrkA-induced neurogenesis. Chem. Sci. (Camb.), 2015, 6(1), 450-456.
[http://dx.doi.org/10.1039/C4SC02553A] [PMID: 28694940]
[37]
Vibert, A.; Lopin-Bon, C.; Jacquinet, J.C. From polymer to size-defined oligomers: a step economy process for the efficient and stereocontrolled construction of chondroitin oligosaccharides and biotinylated conjugates thereof: part 1. Chemistry, 2009, 15(37), 9561-9578.
[http://dx.doi.org/10.1002/chem.200900740] [PMID: 19575349]
[38]
Yang, S.; Zhang, H.; Liu, Q.; Sun, S.; Lei, P.; Zhao, Z.; Wu, L.; Wang, Y. The synthesis and biological evaluation of chondroitin sulfate E glycodendrimers. Future Med. Chem., 2019, 11(12), 1403-1415.
[http://dx.doi.org/10.4155/fmc-2019-0011] [PMID: 31304829]
[39]
Yang, S.; Liu, Q.; Zhang, G.; Zhang, X.; Zhao, Z.; Lei, P. An approach to synthesize chondroitin sulfate-e (cs-e) oligosaccharide precursors. J. Org. Chem., 2018, 83(11), 5897-5908.
[http://dx.doi.org/10.1021/acs.joc.8b00157] [PMID: 29756448]
[40]
Zhang, X.; Yao, W.; Xu, X.; Sun, H.; Zhao, J.; Meng, X.; Wu, M.; Li, Z. Synthesis of fucosylated chondroitin sulfate glycoclusters: a robust route to new anticoagulant Agents. Chemistry, 2018, 24(7), 1694-1700.
[http://dx.doi.org/10.1002/chem.201705177] [PMID: 29131431]
[41]
Liu, H.; Zhang, X.; Wu, M.; Li, Z. Synthesis and anticoagulation studies of “short-armed” fucosylated chondroitin sulfate glycoclusters. Carbohydr. Res., 2018, 467, 45-51.
[http://dx.doi.org/10.1016/j.carres.2018.07.008] [PMID: 30114596]
[42]
de Paz, J.L.; Noti, C.; Böhm, F.; Werner, S.; Seeberger, P.H. Potentiation of fibroblast growth factor activity by synthetic heparin oligosaccharide glycodendrimers. Chem. Biol., 2007, 14(8), 879-887.
[http://dx.doi.org/10.1016/j.chembiol.2007.07.007] [PMID: 17719487]
[43]
Noti, C.; de Paz, J.L.; Polito, L.; Seeberger, P.H. Preparation and use of microarrays containing synthetic heparin oligosaccharides for the rapid analysis of heparin-protein interactions. Chemistry, 2006, 12(34), 8664-8686.
[http://dx.doi.org/10.1002/chem.200601103] [PMID: 17066397]
[44]
Tyler, P.C.; Guimond, S.E.; Turnbull, J.E.; Zubkova, O.V. Single-entity heparan sulfate glycomimetic clusters for therapeutic applications. Angew. Chem. Int. Ed. Engl., 2015, 54(9), 2718-2723.
[http://dx.doi.org/10.1002/anie.201410251] [PMID: 25640820]
[45]
Lee, S-G.; Brown, J.M.; Rogers, C.J.; Matson, J.B.; Krishnamurthy, C.; Rawat, M.; Hsieh-Wilson, L.C. End-functionalized glycopolymers as mimetics of chondroitin sulfate proteoglycans. Chem. Sci. (Camb.), 2010, 1(3), 322-325.
[http://dx.doi.org/10.1039/c0sc00271b] [PMID: 21274421]
[46]
Rawat, M.; Gama, C.I.; Matson, J.B.; Hsieh-Wilson, L.C. Neuroactive chondroitin sulfate glycomimetics. J. Am. Chem. Soc., 2008, 130(10), 2959-2961.
[http://dx.doi.org/10.1021/ja709993p] [PMID: 18275195]
[47]
Oh, Y.I.; Sheng, G.J.; Chang, S-K.; Hsieh-Wilson, L.C. Tailored glycopolymers as anticoagulant heparin mimetics. Angew. Chem. Int. Ed. Engl., 2013, 52(45), 11796-11799.
[http://dx.doi.org/10.1002/anie.201306968] [PMID: 24123787]
[48]
Sheng, G.J.; Oh, Y.I.; Chang, S-K.; Hsieh-Wilson, L.C. Tunable heparan sulfate mimetics for modulating chemokine activity. J. Am. Chem. Soc., 2013, 135(30), 10898-10901.
[http://dx.doi.org/10.1021/ja4027727] [PMID: 23879859]
[49]
Loka, R.S.; Yu, F.; Sletten, E.T.; Nguyen, H.M. Design, synthesis, and evaluation of heparan sulfate mimicking glycopolymers for inhibiting heparanase activity. Chem. Commun. (Camb.), 2017, 53(65), 9163-9166.
[http://dx.doi.org/10.1039/C7CC04156J] [PMID: 28766595]
[50]
Li, J.; Cai, C.; Wang, L.; Yang, C.; Jiang, H.; Li, M.; Xu, D.; Li, G.; Li, C.; Yu, G. Chemoenzymatic synthesis of heparan sulfate mimetic glycopolymers and their interactions with the receptor for advanced glycation end-product. ACS Macro Lett., 2019, 8(12), 1570-1574.
[http://dx.doi.org/10.1021/acsmacrolett.9b00780]
[51]
Ota, F.; Hirayama, T.; Kizuka, Y.; Yamaguchi, Y.; Fujinawa, R.; Nagata, M.; Ismanto, H.S.; Lepenies, B.; Aretz, J.; Rademacher, C.; Seeberger, P.H.; Angata, T.; Kitazume, S.; Yoshida, K.; Betsuyaku, T.; Kida, K.; Yamasaki, S.; Taniguchi, N. High affinity sugar ligands of C-type lectin receptor langerin. Biochim. Biophys. Acta, Gen. Subj., 2018, 1862(7), 1592-1601.
[http://dx.doi.org/10.1016/j.bbagen.2018.04.004] [PMID: 29631057]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy