Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

New Perspectives in Drug Delivery Systems for the Treatment of Tuberculosis

Author(s): Joandra Maísa da Silva Leite*, Yuri Basilio Gomes Patriota , Mônica Felts de La Roca and José Lamartine Soares-Sobrinho

Volume 29, Issue 11, 2022

Published on: 24 August, 2021

Page: [1936 - 1958] Pages: 23

DOI: 10.2174/0929867328666210629154908

Price: $65

Abstract

Background: Tuberculosis is a chronic respiratory disease caused by Mycobacterium tuberculosis. The common treatment regimens of tuberculosis are lengthy with adverse side effects, low patient compliance, and antimicrobial resistance. Drug delivery systems (DDSs) can overcome these limitations.

Objective: This review aims to summarize the latest DDSs for the treatment of tuberculosis. In the first section, the main pharmacokinetic and pharmacodynamic challenges posed by the innate properties of the drugs are put forth. The second section elaborates on the use of DDS to overcome the disadvantages of the current treatment of tuberculosis.

Conclusion: We reviewed research articles published in the last 10 years. DDSs can improve the physicochemical properties of anti-tuberculosis drugs, improving solubility, stability, and bioavailability, with better control of drug release and can target alveolar macrophages. However, more pre-clinical studies and robust bio-relevant analyses are needed for DDSs to become a feasible option to treat patients and attract investors.

Keywords: Mycobacterium tuberculosis, tuberculosis treatment, drug delivery systems, nanotechnology, controlled drug release, pharmacological activity.

[1]
Dohál, M.; Porvazník, I.; Pršo, K.; Rasmussen, E.M.; Solovič, I.; Mokrý, J. Whole-genome sequencing and Mycobacterium tuberculosis: Challenges in sample preparation and sequencing data analysis. Tuberculosis (Edinb.), 2020, 123, 101946.
[http://dx.doi.org/10.1016/j.tube.2020.101946] [PMID: 32741530]
[2]
Abdisamadov, A.; Tursunov, O. Ocular tuberculosis epidemiology, clinic features and diagnosis: A brief review. Tuberculosis (Edinb.), 2020, 124, 101963.
[http://dx.doi.org/10.1016/j.tube.2020.101963] [PMID: 32745954]
[3]
Yang, T.; Lee, C.; Lee, K.; Yen, T.; Lu, C.; Lee, P.; Chen, C.; Huang, L.; Chang, L. Clinical features of tuberculosis and bacillus rin (BCG) associated adverse effects in children: A 12-year study. J. Formos. Med. Assoc., 2021, 120(1 Pt 2), 443-451.
[http://dx.doi.org/10.1016/j.jfma.2020.06.012] [PMID: 32553527]
[4]
Tuberculosis-free Brazil - National Plan to End Tuberculosis as a Public Health Problem. Ministry of Health of Brazil 2017. Available at: http://www.aids.gov.br/pt-br/pub/2017/ brasil-livre-da-tuberculose-plano-nacional-pelo-fim-da-tuberculose-como-problema-de-saude
[5]
Sosnik, A.; Carcaboso, Á.M.; Glisoni, R.J.; Moretton, M.A.; Chiappetta, D.A. New old challenges in tuberculosis: potentially effective nanotechnologies in drug delivery. Adv. Drug Deliv. Rev., 2010, 62(4-5), 547-559.
[http://dx.doi.org/10.1016/j.addr.2009.11.023] [PMID: 19914315]
[6]
Rodrigues, B.; Shende, P. Monodispersed metal-based dendrimeric nanoclusters for potentiation of anti-tuberculosis action. J. Mol. Liq., 2020, 304, 112731.
[http://dx.doi.org/10.1016/j.molliq.2020.112731]
[7]
Upadhyay, S.; Khan, I.; Gothwal, A.; Pachouri, P.K.; Bhaskar, N.; Gupta, U.D.; Chauhan, D.S.; Gupta, U. Conjugated and entrapped HPMA-PLA nano-polymeric micelles based dual delivery of first line anti TB drugs: Improved and safe drug delivery against sensitive and resistant Mycobacterium tuberculosis. Pharm. Res., 2017, 34(9), 1944-1955.
[http://dx.doi.org/10.1007/s11095-017-2206-3] [PMID: 28685299]
[8]
Rajabnezhad, S.; Casettari, L.; Lam, J.K.W.; Nomani, A.; Torkamani, M.R.; Palmieri, G.F.; Rajabnejad, M.R.; Darbandi, M.A. Pulmonary delivery of rifampicin microspheres using lower generation polyamidoamine dendrimers as a carrier. Powder Technol., 2016, 291, 366-374.
[http://dx.doi.org/10.1016/j.powtec.2015.12.037]
[9]
Grotz, E.; Tateosian, N.L.; Salgueiro, J.; Bernabeu, E.; Gonzalez, L.; Manca, M.L.; Amiano, N.; Valenti, D.; Manconi, M.; García, V.; Moretton, M.A.; Chiappetta, D.A. Pulmonary delivery of rifampicin-loaded Soluplus micelles against Mycobacterium tuberculosis. J. Drug Deliv. Sci. Technol., 2019, 53, 101170.
[http://dx.doi.org/10.1016/j.jddst.2019.101170]
[10]
Abdelghany, S.; Parumasivam, T.; Pang, A.; Roediger, B.; Tang, P.; Jahn, K.; Britton, W.J.; Chan, H.K. Alginate modified-PLGA nanoparticles entrapping amikacin and moxifloxacin as a novel host-directed therapy for multidrug-resistant tuberculosis. J. Drug Deliv. Sci. Technol., 2019, 52, 642-651.
[http://dx.doi.org/10.1016/j.jddst.2019.05.025]
[11]
World Health Organization. Global Tuberculosis Report, 2019. Available at: https://www.who.int/publications/i/item/9789241565714
[12]
Sato, M.R.; Oshiro, Junior J.A.; Machado, R.T.A.; de Souza, P.C.; Campos, D.L.; Pavan, F.R.; da Silva, P.B.; Chorilli, M. Nanostructured lipid carriers for incorporation of copper(II) complexes to be used against Mycobacterium tuberculosis. Drug Des. Devel. Ther., 2017, 11, 909-921.
[http://dx.doi.org/10.2147/DDDT.S127048] [PMID: 28356717]
[13]
Rojo, J.; Sousa-Herves, A.; Mascaraque, A. Perspectives of carbohydrates in drug discovery. Comprehensive Medicinal Chemistry III, (3rd Ed.. ) 2017, 577-610.
[http://dx.doi.org/10.1016/B978-0-12-409547-2.12311-X]
[14]
Park, K. Nanotechnology: What it can do for drug delivery. J. Control. Release, 2007, 120(1-2), 1-3.
[http://dx.doi.org/10.1016/j.jconrel.2007.05.003] [PMID: 17532520]
[15]
Vieira, A.C.C.; Magalhães, J.; Rocha, S.; Cardoso, M.S.; Santos, S.G.; Borges, M.; Pinheiro, M.; Reis, S. Targeted macrophages delivery of rifampicin-loaded lipid nanoparticles to improve tuberculosis treatment. Nanomedicine (Lond.), 2017, 12(24), 2721-2736.
[http://dx.doi.org/10.2217/nnm-2017-0248] [PMID: 29119867]
[16]
Sheth, U.; Tiwari, S.; Bahadur, A. Preparation and characterization of anti-tubercular drugs encapsulated in polymer micelles. J. Drug Deliv. Sci. Technol., 2018, 48, 422-428.
[http://dx.doi.org/10.1016/j.jddst.2018.10.021]
[17]
Silvestre, A.L.P.; Oshiro-Júnior, J.A.; Garcia, C.; Turco, B.O.; da Silva Leite, J.M.; de Lima Damasceno, B.P.G.; Soares, J.C.M.; Chorilli, M. Monoclonal antibodies carried in drug delivery nanosystems as a strategy for cancer treatment. Curr. Med. Chem., 2020, 27, 1-16.
[http://dx.doi.org/10.2174/0929867327666200121121409] [PMID: 31965938]
[18]
De Matteis, L.; Jary, D.; Lucía, A.; García-Embid, S.; Serrano-Sevilla, I.; Pérez, D.; Ainsa, J.A.; Navarro, F.P.; de la Fuente, M.J. New Active Formulations against M. Tuberculosis: Bedaquiline encapsulation in lipid nanoparticles and chitosan nanocapsules. Chem. Eng. J., 2018, 340, 181-191.
[http://dx.doi.org/10.1016/j.cej.2017.12.110]
[19]
Hua, S.; de Matos, M.B.C.; Metselaar, J.M.; Storm, G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: Pathways for translational development and commercialization. Front. Pharmacol., 2018, 9, 790.
[http://dx.doi.org/10.3389/fphar.2018.00790] [PMID: 30065653]
[20]
Farjadian, F.; Ghasemi, A.; Gohari, O.; Roointan, A.; Karimi, M.; Hamblin, M.R. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine (Lond.), 2019, 14(1), 93-126.
[http://dx.doi.org/10.2217/nnm-2018-0120] [PMID: 30451076]
[21]
Carvalho, S.G.; Araujo, V.H.S.; Dos Santos, A.M.; Duarte, J.L.; Silvestre, A.L.P.; Fonseca-Santos, B.; Villanova, J.C.O.; Gremião, M.P.D.; Chorilli, M. Advances and challenges in nanocarriers and nanomedicines for veterinary application. Int. J. Pharm., 2020, 580, 119214.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119214] [PMID: 32165220]
[22]
Griffiths, G.; Nyström, B.; Sable, S.B.; Khuller, G.K. Nanobead-based interventions for the treatment and prevention of tuberculosis. Nat. Rev. Microbiol., 2010, 8(11), 827-834.
[http://dx.doi.org/10.1038/nrmicro2437] [PMID: 20938454]
[23]
Kaur, M.; Garg, T.; Rath, G.; Goyal, A.K. Current nanotechnological strategies for effective delivery of bioactive drug molecules in the treatment of tuberculosis. Crit. Rev. Ther. Drug Carrier Syst., 2014, 31(1), 49-88.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2014008285] [PMID: 24579767]
[24]
Banyal, S.; Malik, P.; Tuli, H.S.; Mukherjee, T.K. Advances in nanotechnology for diagnosis and treatment of tuberculosis. Curr. Opin. Pulm. Med., 2013, 19(3), 289-297.
[http://dx.doi.org/10.1097/MCP.0b013e32835eff08] [PMID: 23429097]
[25]
Amarnath Praphakar, R.; Munusamy, M.A.; Sadasivuni, K.K.; Rajan, M. Targeted delivery of rifampicin to tuberculosis-infected macrophages: design, in vitro, and in vivo performance of rifampicin-loaded poly(ester amide)s nanocarriers. Int. J. Pharm., 2016, 513(1-2), 628-635.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.080] [PMID: 27693734]
[26]
Batalha, I.L.; Bernut, A.; Schiebler, M.; Ouberai, M.M.; Passemar, C.; Klapholz, C.; Kinna, S.; Michel, S.; Sader, K.; Castro-Hartmann, P.; Renshaw, S.A.; Welland, M.E.; Floto, R.A. Polymeric nanobiotics as a novel treatment for mycobacterial infections. J. Control. Release, 2019, 314, 116-124.
[http://dx.doi.org/10.1016/j.jconrel.2019.10.009] [PMID: 31647980]
[27]
Trousil, J.; Pavliš, O.; Kubíčková, P.; Škorič, M.; Marešová, V.; Pavlova, E.; Knudsen, K.D.; Dai, Y.S.; Zimmerman, M.; Dartois, V.; Fang, J.Y.; Hrubý, M. Antitubercular nanocarrier monotherapy: Study of in vivo efficacy and pharmacokinetics for rifampicin. J. Control. Release, 2020, 321, 312-323.
[http://dx.doi.org/10.1016/j.jconrel.2020.02.026] [PMID: 32067995]
[28]
Tripodo, G.; Perteghella, S.; Grisoli, P.; Trapani, A.; Torre, M.L.; Mandracchia, D. Drug delivery of rifampicin by natural micelles based on inulin: Physicochemical properties, antibacterial activity and human macrophages uptake. Eur. J. Pharm. Biopharm., 2019, 136, 250-258.
[http://dx.doi.org/10.1016/j.ejpb.2019.01.022] [PMID: 30685506]
[29]
Damasceno, E. Junior; de Almeida, J.M.F.; Silva, I. do N.; Moreira de Assis, M.L.; Santos, L.M. dos; Dias, E.F.; Bezerra Aragão, V.E.; Veríssimo, L.M.; Fernandes, N.S.; da Silva, D.R. PH-responsive release system of isoniazid using palygorskite as a nanocarrier. J. Drug Deliv. Sci. Technol., 2020, 55, 101399.
[http://dx.doi.org/10.1016/j.jddst.2019.101399]
[30]
Li, K.; Gbabode, G.; Barrio, M.; Tamarit, J.L.; Vergé-Depré, M.; Robert, B.; Rietveld, I.B. The phase relationship between the pyrazinamide polymorphs α and γ. Int. J. Pharm., 2020, 580, 119230.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119230] [PMID: 32199962]
[31]
Shi, X.; Amarnath Praphakar, R.; Suganya, K.; Murugan, M.; Sasidharan, P.; Rajan, M. In vivo approach of simply constructed pyrazinamide conjugated chitosan-g-polycaprolactone micelles for methicillin resistance Staphylococcus aureus. Int. J. Biol. Macromol., 2020, 158, 636-647.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.214] [PMID: 32353501]
[32]
Nemati, E.; Mokhtarzadeh, A.; Panahi-Azar, V.; Mohammadi, A.; Hamishehkar, H.; Mesgari-Abbasi, M.; Ezzati Nazhad Dolatabadi, J.; de la Guardia, M. Ethambutol-loaded solid lipid nanoparticles as dry powder inhalable formulation for tuberculosis therapy. AAPS PharmSciTech, 2019, 20(3), 120.
[http://dx.doi.org/10.1208/s12249-019-1334-y] [PMID: 30796625]
[33]
Mlotha, R.; Waterhouse, D.; Dzinjalamala, F.; Ardrey, A.; Molyneux, E.; Davies, G.R.; Ward, S. Pharmacokinetics of anti-TB drugs in Malawian children: reconsidering the role of ethambutol. J. Antimicrob. Chemother., 2015, 70(6), 1798-1803.
[http://dx.doi.org/10.1093/jac/dkv039] [PMID: 25759035]
[34]
Levy, M.; Rigaudière, F.; de Lauzanne, A.; Koehl, B.; Melki, I.; Lorrot, M.; Faye, A. Ethambutol-related impaired visual function in childrens less than 5 years of age treated for a mycobacterial infection: diagnosis and evolution. Pediatr. Infect. Dis. J., 2015, 34(4), 346-350.
[http://dx.doi.org/10.1097/INF.0000000000000589] [PMID: 25764095]
[35]
Pawde, D.M.; Viswanadh, M.K.; Mehata, A.K.; Sonkar, R. Narendra; Poddar, S.; Burande, A.S.; Jha, A.; Vajanthri, K.Y.; Mahto, S.K.; Azger Dustakeer, V.N.; Muthu, M.S. Mannose receptor targeted bioadhesive chitosan nanoparticles of clofazimine for effective therapy of tuberculosis. Saudi Pharm. J., 2020, 28(12), 1616-1625.
[http://dx.doi.org/10.1016/j.jsps.2020.10.008] [PMID: 33424254]
[36]
Gaspar, D.P.; Faria, V.; Gonçalves, L.M.D.; Taboada, P.; Remuñán-López, C.; Almeida, A.J. Rifabutin-loaded solid lipid nanoparticles for inhaled antitubercular therapy: Physicochemical and in vitro studies. Int. J. Pharm., 2016, 497(1-2), 199-209.
[http://dx.doi.org/10.1016/j.ijpharm.2015.11.050] [PMID: 26656946]
[37]
Yuan, X.; Amarnath Praphakar, R.; Munusamy, M.A.; Alarfaj, A.A.; Suresh Kumar, S.; Rajan, M. Mucoadhesive guargum hydrogel inter-connected chitosan-g-polycaprolactone micelles for rifampicin delivery. Carbohydr. Polym., 2019, 206, 1-10.
[http://dx.doi.org/10.1016/j.carbpol.2018.10.098] [PMID: 30553301]
[38]
Shah, K.; Chan, L.W.; Wong, T.W. Critical physicochemical and biological attributes of nanoemulsions for pulmonary delivery of rifampicin by nebulization technique in tuberculosis treatment. Drug Deliv., 2017, 24(1), 1631-1647.
[http://dx.doi.org/10.1080/10717544.2017.1384298] [PMID: 29063794]
[39]
Vieira, A.C.C.; Chaves, L.L.; Pinheiro, S.; Pinto, S.; Pinheiro, M.; Lima, S.C.; Ferreira, D.; Sarmento, B.; Reis, S. Mucoadhesive chitosan-coated solid lipid nanoparticles for better management of tuberculosis. Int. J. Pharm., 2018, 536(1), 478-485.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.071] [PMID: 29203137]
[40]
Altamimi, M.; Hussain, A.; Imam, S.S.; Alshehri, S.; Singh, S.K.; Webster, T. Transdermal delivery of isoniazid loaded elastic liposomes to control cutaneous and systemic tuberculosis. J. Drug Deliv. Sci. Technol., 2020, 59, 101848.
[http://dx.doi.org/10.1016/j.jddst.2020.101848]
[41]
Me, M. Rifabutin. Tuberculosis (Edinb.), 2008, 88(2), 145-147.
[http://dx.doi.org/10.1016/S1472-9792(08)70022-2] [PMID: 18486056]
[42]
Kong, K.L.; Jenkin, G. Clofazimine. Kucers’ The Use of Antibiotics. A Clinical Review of Antibacterial, Antifungal, Antiparasitic, and Antiviral Drugs, Seventh Ed. 2017, 88, 2533-2541.
[http://dx.doi.org/10.1201/9781315152110]
[43]
Verma, D.; Sharma, S.K. Recent advances in guar gum based drug delivery systems and their administrative routes. Int. J. Biol. Macromol., 2021, 181, 653-671.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.03.087] [PMID: 33766594]
[44]
Chen, S.; Hanning, S.; Falconer, J.; Locke, M.; Wen, J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur. J. Pharm. Biopharm., 2019, 144, 18-39.
[http://dx.doi.org/10.1016/j.ejpb.2019.08.015] [PMID: 31446046]
[45]
Mosaiab, T.; Farr, D.C.; Kiefel, M.J.; Houston, T.A. Carbohydrate-based nanocarriers and their application to target macrophages and deliver antimicrobial agents. Adv. Drug Deliv. Rev., 2019, 151-152, 94-129.
[http://dx.doi.org/10.1016/j.addr.2019.09.002] [PMID: 31513827]
[46]
Rawal, T.; Parmar, R.; Tyagi, R.K.; Butani, S. Rifampicin loaded chitosan nanoparticle dry powder presents an improved therapeutic approach for alveolar tuberculosis. Colloids Surf. B Biointerfaces, 2017, 154, 321-330.
[http://dx.doi.org/10.1016/j.colsurfb.2017.03.044] [PMID: 28363192]
[47]
Garg, T.; Rath, G.; Goyal, A.K. Inhalable chitosan nanoparticles as antitubercular drug carriers for an effective treatment of tuberculosis. Artif. Cells Nanomed. Biotechnol., 2016, 44(3), 997-1001.
[http://dx.doi.org/10.3109/21691401.2015.1008508] [PMID: 25682840]
[48]
Carneiro, S.P.; Carvalho, K.V.; de Oliveira Aguiar Soares, R.D.; Carneiro, C.M.; de Andrade, M.H.G.; Duarte, R.S.; Dos Santos, O.D.H. Functionalized rifampicin-loaded nanostructured lipid carriers enhance macrophages uptake and antimycobacterial activity. Colloids Surf. B Biointerfaces, 2019, 175, 306-313.
[http://dx.doi.org/10.1016/j.colsurfb.2018.12.003] [PMID: 30553206]
[49]
Pinheiro, M.; Ribeiro, R.; Vieira, A.; Andrade, F.; Reis, S. Design of a nanostructured lipid carrier intended to improve the treatment of tuberculosis. Drug Des. Devel. Ther., 2016, 10, 2467-2475.
[http://dx.doi.org/10.2147/DDDT.S104395] [PMID: 27536067]
[50]
Song, X.; Lin, Q.; Guo, L.; Fu, Y.; Han, J.; Ke, H.; Sun, X.; Gong, T.; Zhang, Z. Rifampicin loaded mannosylated cationic nanostructured lipid carriers for alveolar macrophage-specific delivery. Pharm. Res., 2015, 32(5), 1741-1751.
[http://dx.doi.org/10.1007/s11095-014-1572-3] [PMID: 25407545]
[51]
Oliveira, P.M.; Matos, B.N.; Pereira, P.A.T.; Gratieri, T.; Faccioli, L.H.; Cunha-Filho, M.S.S.; Gelfuso, G.M. Microparticles prepared with 50-190kDa chitosan as promising non-toxic carriers for pulmonary delivery of isoniazid. Carbohydr. Polym., 2017, 174, 421-431.
[http://dx.doi.org/10.1016/j.carbpol.2017.06.090] [PMID: 28821088]
[52]
Bhardwaj, A.; Kumar, L.; Narang, R.K.; Murthy, R.S. Development and characterization of ligand-appended liposomes for multiple drug therapy for pulmonary tuberculosis. Artif. Cells Nanomed. Biotechnol., 2013, 41(1), 52-59.
[http://dx.doi.org/10.3109/10731199.2012.702316] [PMID: 22889361]
[53]
Kulkarni, P.; Rawtani, D.; Barot, T. Formulation and optimization of long acting dual niosomes using box-behnken experimental design method for combinative delivery of ethionamide and D-cycloserine in tuberculosis treatment. Colloids Surf. A Physicochem. Eng. Asp., 2019, 565, 131-142.
[http://dx.doi.org/10.1016/j.colsurfa.2019.01.004]
[54]
Hussain, A.; Altamimi, M.A.; Alshehri, S.; Imam, S.S.; Shakeel, F.; Singh, S.K. Novel approach for transdermal delivery of rifampicin to induce synergistic antimycobacterial effects against cutaneous and systemic tuberculosis using a cationic nanoemulsion gel. Int. J. Nanomedicine, 2020, 15, 1073-1094.
[http://dx.doi.org/10.2147/IJN.S236277] [PMID: 32103956]
[55]
Praphakar, R.A.; Munusamy, M.A.; Rajan, M. Development of extended-voyaging anti-oxidant linked amphiphilic polymeric nanomicelles for anti-tuberculosis drug delivery. Int. J. Pharm., 2017, 524(1-2), 168-177.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.089] [PMID: 28377319]
[56]
Amarnath Praphakar, R.; Sam Ebenezer, R.; Vignesh, S.; Shakila, H.; Rajan, M. Versatile pH-responsive chitosan-g-polycaprolactone/maleic anhydride-isoniazid polymeric micelle to improve the bioavailability of tuberculosis multidrugs. ACS Appl. Bio Mater., 2019, 2(5), 1931-1943.
[http://dx.doi.org/10.1021/acsabm.9b00003]
[57]
Sur, S.; Rathore, A.; Dave, V.; Reddy, K.R.; Chouhan, R.S.; Sadhu, V. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Structures and Nano-Objects, 2019, 20, 100397.
[http://dx.doi.org/10.1016/j.nanoso.2019.100397]
[58]
Rao, J.P.; Geckeler, K.E. Polymer nanoparticles: preparation techniques and size-control parameters. Prog. Polym. Sci., 2011, 36(7), 887-913.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.01.001]
[59]
Singh, R.; Lillard, J.W. Jr Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol., 2009, 86(3), 215-223.
[http://dx.doi.org/10.1016/j.yexmp.2008.12.004] [PMID: 19186176]
[60]
Trousil, J.; Filippov, S.K.; Hrubý, M.; Mazel, T.; Syrová, Z.; Cmarko, D.; Svidenská, S.; Matějková, J.; Kováčik, L.; Porsch, B.; Konefał, R.; Lund, R.; Nyström, B.; Raška, I.; Štěpánek, P. System with embedded drug release and nanoparticle degradation sensor showing efficient rifampicin delivery into macrophages. Nanomedicine (Lond.), 2017, 13(1), 307-315.
[http://dx.doi.org/10.1016/j.nano.2016.08.031] [PMID: 27613399]
[61]
Trousil, J.; Syrová, Z.; Dal, N.K.; Rak, D.; Konefał, R.; Pavlova, E.; Matějková, J.; Cmarko, D.; Kubíčková, P.; Pavliš, O.; Urbánek, T.; Sedlák, M.; Fenaroli, F.; Raška, I.; Štěpánek, P.; Hrubý, M. Rifampicin nanoformulation enhances treatment of tuberculosis in zebrafish. Biomacromolecules, 2019, 20(4), 1798-1815.
[http://dx.doi.org/10.1021/acs.biomac.9b00214] [PMID: 30785284]
[62]
Varma, J.N.; Kumar, T.S.; Prasanthi, B.; Ratna, J.V. Formulation and characterization of pyrazinamide polymeric nanoparticles for pulmonary tuberculosis: efficiency for alveolar macrophage targeting. Indian J. Pharm. Sci., 2015, 77(3), 258-266.
[http://dx.doi.org/10.4103/0250-474X.159602] [PMID: 26180270]
[63]
Booysen, L.L.I.J.; Kalombo, L.; Brooks, E.; Hansen, R.; Gilliland, J.; Gruppo, V.; Lungenhofer, P.; Semete-Makokotlela, B.; Swai, H.S.; Kotze, A.F.; Lenaerts, A.; du Plessis, L.H. In vivo/in vitro pharmacokinetic and pharmacodynamic study of spray-dried poly-(dl-lactic-co-glycolic) acid nanoparticles encapsulating rifampicin and isoniazid. Int. J. Pharm., 2013, 444(1-2), 10-17.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.038] [PMID: 23357255]
[64]
Jaiswal, P.; Gidwani, B.; Vyas, A. Nanostructured lipid carriers and their current application in targeted drug delivery. Artif. Cells Nanomed. Biotechnol., 2016, 44(1), 27-40.
[http://dx.doi.org/10.3109/21691401.2014.909822] [PMID: 24813223]
[65]
Gordillo-Galeano, A.; Mora-Huertas, C.E. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur. J. Pharm. Biopharm., 2018, 133, 285-308.
[http://dx.doi.org/10.1016/j.ejpb.2018.10.017] [PMID: 30463794]
[66]
Vieira, A.C.C.; Chaves, L.L.; Pinheiro, M.; Lima, S.C.; Neto, P.J.R.; Ferreira, D.; Sarmento, B.; Reis, S. Lipid nanoparticles coated with chitosan using a one-step association method to target rifampicin to alveolar macrophages. Carbohydr. Polym., 2021, 252, 116978.
[http://dx.doi.org/10.1016/j.carbpol.2020.116978] [PMID: 33183580]
[67]
Doktorovová, S.; Kovačević, A.B.; Garcia, M.L.; Souto, E.B. Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: Current evidence from in vitro and in vivo evaluation. Eur. J. Pharm. Biopharm., 2016, 108, 235-252.
[http://dx.doi.org/10.1016/j.ejpb.2016.08.001] [PMID: 27519829]
[68]
Jain, P.; Rahi, P.; Pandey, V.; Asati, S.; Soni, V. Nanostructure lipid carriers: A modish contrivance to overcome the ultraviolet effects. Egypt. J. Basic Appl. Sci., 2017, 4(2), 89-100.
[http://dx.doi.org/10.1016/j.ejbas.2017.02.001]
[69]
Phatak, A.A.; Chaudhari, P.D. Development and evaluation of nanostructured lipid carrier (NLC) based topical delivery of an anti-inflammatory Drug. J. Pharm. Res., 2013, 7(8), 677-685.
[http://dx.doi.org/10.1016/j.jopr.2013.08.020]
[70]
Mehta, P.; Bothiraja, C.; Kadam, S.; Pawar, A. Potential of dry powder inhalers for tuberculosis therapy: facts, fidelity and future. Artif. Cells Nanomed. Biotechnol. , 2018, 46(sup3), S791-S806.
[http://dx.doi.org/10.1080/21691401.2018.1513938] [PMID: 30307321]
[71]
Bale, S.; Khurana, A.; Reddy, A.S.S.; Singh, M.; Godugu, C. Overview on therapeutic applications of microparticulate drug delivery systems. Crit. Rev. Ther. Drug Carrier Syst., 2016, 33(4), 309-361.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2016015798] [PMID: 27910739]
[72]
Alves, A.D.; Cavaco, J.S.; Guerreiro, F.; Lourenço, J.P.; Rosa da Costa, A.M.; Grenha, A. Inhalable antitubercular therapy mediated by locust bean gum microparticles. Molecules, 2016, 21(6), 1-22.
[http://dx.doi.org/10.3390/molecules21060702] [PMID: 27240337]
[73]
Rodrigues, S.; Alves, A.D.; Cavaco, J.S.; Pontes, J.F.; Guerreiro, F.; Rosa da Costa, A.M.; Buttini, F.; Grenha, A. Dual antibiotherapy of tuberculosis mediated by inhalable locust bean gum microparticles. Int. J. Pharm., 2017, 529(1-2), 433-441.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.088] [PMID: 28669623]
[74]
Grenha, A.; Alves, A.D.; Guerreiro, F.; Pinho, J.; Simões, S.; Almeida, A.J.; Gaspar, M.M. Inhalable locust bean gum microparticles co-associating isoniazid and rifabutin: Therapeutic assessment in a murine model of tuberculosis infection. Eur. J. Pharm. Biopharm., 2020, 147, 38-44.
[http://dx.doi.org/10.1016/j.ejpb.2019.11.009] [PMID: 31790800]
[75]
Pinheiro, M.; Lúcio, M.; Lima, J.L.F.C.; Reis, S. Liposomes as drug delivery systems for the treatment of TB. Nanomedicine (Lond.), 2011, 6(8), 1413-1428.
[http://dx.doi.org/10.2217/nnm.11.122] [PMID: 22026379]
[76]
Nkanga, C.I.; Walker, R.B.; Krause, R.W. PH-Dependent release of isoniazid from isonicotinic acid (4-hydroxy-benzylidene)-hydrazide loaded liposomes. J. Drug Deliv. Sci. Technol., 2018, 45, 264-271.
[http://dx.doi.org/10.1016/j.jddst.2018.03.016]
[77]
Manca, M.L.; Sinico, C.; Maccioni, A.M.; Diez, O.; Fadda, A.M.; Manconi, M. Composition influence on pulmonary delivery of rifampicin liposomes. Pharmaceutics, 2012, 4(4), 590-606.
[http://dx.doi.org/10.3390/pharmaceutics4040590] [PMID: 24300372]
[78]
Mata-Espinosa, D.; Molina-Salinas, G.M.; Barrios-Payán, J.; Navarrete-Vázquez, G.; Marquina, B.; Ramos-Espinosa, O.; Bini, E.I.; Baeza, I.; Hernández-Pando, R. Therapeutic efficacy of liposomes containing 4-(5-pentadecyl-1,3,4-oxadiazol-2-yl)pyridine in a murine model of progressive pulmonary tuberculosis. Pulm. Pharmacol. Ther., 2015, 32, 7-14.
[http://dx.doi.org/10.1016/j.pupt.2015.03.004] [PMID: 25843004]
[79]
El-Ridy, M.S.; Abdelbary, A.; Nasr, E.A.; Khalil, R.M.; Mostafa, D.M.; El-Batal, A.I.; Abd El-Alim, S.H. Niosomal encapsulation of the antitubercular drug, pyrazinamide. Drug Dev. Ind. Pharm., 2011, 37(9), 1110-1118.
[http://dx.doi.org/10.3109/03639045.2011.560605] [PMID: 21417612]
[80]
Kumar, A.; Saw, R.K.; Mandal, A. RSM Optimization of oil-in-water microemulsion stabilized by synthesized zwitterionic surfactant and its properties evaluation for application in enhanced oil recovery. Chem. Eng. Res. Des., 2019, 147, 399-411.
[http://dx.doi.org/10.1016/j.cherd.2019.05.034]
[81]
Vladisavljević, G.T. Preparation of microemulsions and nanoemulsions by membrane emulsification. Colloids Surf. A Physicochem. Eng. Asp., 2019, 579, 123709.
[http://dx.doi.org/10.1016/j.colsurfa.2019.123709]
[82]
Callender, S.P.; Mathews, J.A.; Kobernyk, K.; Wettig, S.D. Microemulsion utility in pharmaceuticals: Implications for multi-drug delivery. Int. J. Pharm., 2017, 526(1-2), 425-442.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.005] [PMID: 28495500]
[83]
Kaur, G.; Mehta, S.K.; Kumar, S.; Bhanjana, G.; Dilbaghi, N. Coencapsulation of hydrophobic and hydrophilic antituberculosis drugs in synergistic Brij 96 microemulsions: a biophysical characterization. J. Pharm. Sci., 2015, 104(7), 2203-2212.
[http://dx.doi.org/10.1002/jps.24469] [PMID: 25951802]
[84]
Golfomitsou, I.; Mitsou, E.; Xenakis, A.; Papadimitriou, V. Development of food grade O/W nanoemulsions as carriers of vitamin D for the fortification of emulsion based food matrices: A structural and activity study. J. Mol. Liq., 2018, 268, 734-742.
[http://dx.doi.org/10.1016/j.molliq.2018.07.109]
[85]
Bazán Henostroza, M.A.; Curo Melo, K.J.; Nishitani Yukuyama, M.; Löbenberg, R.; Araci Bou-Chacra, N. Cationic rifampicin nanoemulsion for the treatment of ocular tuberculosis. Colloids Surf. A Physicochem. Eng. Asp., 2020, 597, 124755.
[http://dx.doi.org/10.1016/j.colsurfa.2020.124755]
[86]
Upadhyayula, S.S.N.; Sureshkumar, R.; Janani, S.K.; Karthika, C. Lipid-Based nano formulation approach to target brain for the management of tuberculosis through intranasal delivery: Formulation, development and evaluation. Indian J. Pharm. Educ. Res., 2020, 54(2), S189-S199.
[http://dx.doi.org/10.5530/ijper.54.2s.75]
[87]
Cagel, M.; Tesan, F.C.; Bernabeu, E.; Salgueiro, M.J.; Zubillaga, M.B.; Moretton, M.A.; Chiappetta, D.A. Polymeric mixed micelles as nanomedicines: Achievements and perspectives. Eur. J. Pharm. Biopharm., 2017, 113, 211-228.
[http://dx.doi.org/10.1016/j.ejpb.2016.12.019] [PMID: 28087380]
[88]
Kumar, R.; Sirvi, A.; Kaur, S.; Samal, S.K.; Roy, S.; Sangamwar, A.T. Polymeric micelles based on amphiphilic oleic acid modified carboxymethyl chitosan for oral drug delivery of bcs class iv compound: Intestinal permeability and pharmacokinetic evaluation. Eur. J. Pharm. Sci., 2020, 153, 105466.
[http://dx.doi.org/10.1016/j.ejps.2020.105466] [PMID: 32673792]
[89]
Kesharwani, S.S.; Kaur, S.; Tummala, H.; Sangamwar, A.T. Multifunctional approaches utilizing polymeric micelles to circumvent multidrug resistant tumors. Colloids Surf. B Biointerfaces, 2019, 173, 581-590.
[http://dx.doi.org/10.1016/j.colsurfb.2018.10.022] [PMID: 30352379]
[90]
Rani, S.; Gothwal, A.; Khan, I.; Pachouri, P.K.; Bhaskar, N.; Gupta, U.D.; Chauhan, D.S.; Gupta, U. Smartly engineered PEGylated di-block nanopolymeric micelles: Duo delivery of isoniazid and rifampicin against Mycobacterium tuberculosis. AAPS PharmSciTech, 2018, 19(7), 3237-3248.
[http://dx.doi.org/10.1208/s12249-018-1151-8] [PMID: 30191379]
[91]
Dias, A.P.; da Silva Santos, S.; da Silva, J.V.; Parise-Filho, R.; Igne Ferreira, E.; Seoud, O.E.; Giarolla, J. Dendrimers in the context of nanomedicine. Int. J. Pharm., 2020, 573, 118814.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118814] [PMID: 31759101]
[92]
Kharwade, R.; More, S.; Warokar, A.; Agrawal, P.; Mahajan, N. Starburst pamam dendrimers: Synthetic approaches, surface modifications, and biomedical applications. Arab. J. Chem., 2020, 13(7), 6009-6039.
[http://dx.doi.org/10.1016/j.arabjc.2020.05.002]
[93]
Bapat, R.A.; Dharmadhikari, S.; Chaubal, T.V.; Amin, M.C.I.M.; Bapat, P.; Gorain, B.; Choudhury, H.; Vincent, C.; Kesharwani, P. The potential of dendrimer in delivery of therapeutics for dentistry. Heliyon, 2019, 5(10), e02544.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02544] [PMID: 31687479]
[94]
Bellini, R.G.; Guimarães, A.P.; Pacheco, M.A.C.; Dias, D.M.; Furtado, V.R.; de Alencastro, R.B.; Horta, B.A.C. Association of the anti-tuberculosis drug rifampicin with a PAMAM dendrimer. J. Mol. Graph. Model., 2015, 60, 34-42.
[http://dx.doi.org/10.1016/j.jmgm.2015.05.012] [PMID: 26093506]
[95]
Sharma, P.; Garg, S. Pure drug and polymer based nanotechnologies for the improved solubility, stability, bioavailability and targeting of anti-HIV drugs. Adv. Drug Deliv. Rev., 2010, 62(4-5), 491-502.
[http://dx.doi.org/10.1016/j.addr.2009.11.019] [PMID: 19931328]
[96]
Alves, L.P.; da Silva Oliveira, K.; da Paixão Santos, J.A.; da Silva Leite, J.M.; Rocha, B.P.; de Lucena Nogueira, P.; de Araújo Rêgo, R.I.; Oshiro-Junior, J.A.; Damasceno, B.P.G. de L. A review on developments and prospects of anti-inflammatory in microemulsions. J. Drug Deliv. Sci. Technol., 2020, 60, 102008.
[http://dx.doi.org/10.1016/j.jddst.2020.102008]
[97]
Kesharwani, S.S.; Jain, V.; Dey, S.; Sharma, S.; Mallya, P.; Kumar, V.A. An Overview of advanced formulation and nanotechnology-based approaches for solubility and bioavailability enhancement of silymarin. J. Drug Deliv. Sci. Technol., 2020, 60, 102021.
[http://dx.doi.org/10.1016/j.jddst.2020.102021]
[98]
Kuzmov, A.; Minko, T. Nanotechnology approaches for inhalation treatment of lung diseases. J. Control. Release, 2015, 219, 500-518.
[http://dx.doi.org/10.1016/j.jconrel.2015.07.024] [PMID: 26297206]
[99]
Shah, S.; Cristopher, D.; Sharma, S.; Soniwala, M.; Chavda, J. Inhalable linezolid loaded PLGA nanoparticles for treatment of tuberculosis: Design, development and in vitro evaluation. J. Drug Deliv. Sci. Technol., 2020, 60, 102013.
[http://dx.doi.org/10.1016/j.jddst.2020.102013]
[100]
Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J. Control. Release, 2015, 200, 138-157.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.030] [PMID: 25545217]
[101]
Anselmo, A.C.; Mitragotri, S. An overview of clinical and commercial impact of drug delivery systems. J. Control. Release, 2014, 190, 15-28.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.053] [PMID: 24747160]
[102]
Liu, D.; Yang, F.; Xiong, F.; Gu, N. The smart drug delivery system and its clinical potential. Theranostics, 2016, 6(9), 1306-1323.
[http://dx.doi.org/10.7150/thno.14858] [PMID: 27375781]
[103]
Forecast, I. Global pharmaceutical drug delivery industry (2019 to 2026) - By route of administration and application. ResearchAndMarkets.com’s 2020. Available at: https:// www. globenewswire.com/news-release/2020/06/02/20423 05/0/en/Global-Pharmaceutical-Drug-Delivery-Industry2019-to-2026-by-Route-of-Administration-and-Application. html

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy