Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

Discovery of a “Cocktail” of Potential SARS-COV-2 Main Protease Inhibitors through Virtual Screening of Known Chemical Components of Vitex negundo L. (“Lagundi”)

Author(s): Ruel Cayona* and Evelyn Creencia

Volume 18, Issue 3, 2022

Published on: 02 August, 2021

Page: [364 - 381] Pages: 18

DOI: 10.2174/1573406417666210618132003

Price: $65

Abstract

Aim: The prevailing crisis caused by COVID-19 pandemic demands the development of effective therapeutic agents that can be implemented with minimal to zero adverse effects.

Background: Vitex negundo L. (VNL) is a medicinal plant with reported efficacy against respiratory diseases and some of the COVID-19 symptoms. Funded by the Department of Science and Technology (DOST), the University of the Philippines – Philippine General Hospital (UP-PGH) is currently conducting clinical trials of VNL and other medicinal plants as adjuvant therapeutic agents against mild cases of COVID-19. The basis for the clinical trials is primarily the pharmacological efficacy of the medicinal plants against respiratory disorders and associated COVID-19 symptoms.

Objective: This study assessed the in silico potential of VNL components against SARS-CoV-2 main protease (Mpro), an enzyme that plays an important role in COVID-19, the disease caused by the SARS-CoV-2.

Method: Phytochemical mining of VNL components from the literature was conducted. A database consisting of 250 known compounds from different parts of VNL was created and screened against SARS-CoV-2 Mpro using PyRx virtual screening tool. The most promising components were further subjected to in silico absorption, distribution, metabolism, excretion, and toxicity (ADMET) analyses using the SwissADME web server and Toxtree software.

Results: Virtual screening revealed that 102 VNL components in the database had comparable to or better binding affinities toward SARS-COV-2 Mpro than known chemical inhibitors (e.g. N3 and carmofur). It was determined that the active site of SARS-CoV-2 Mpro receptor consists of multiple H-donor and acceptor sites; hence, the most stable receptor-ligand complexes are generally formed by VNL ligands that establish effective H-bonding with the SARS-CoV-2 Mpro. The promising components, representing a “cocktail” of potential inhibitors also revealed interesting ADMET properties.

Conclusion: This in silico study identified VNL as a potential single source of a cocktail of SARSCoV- 2 Mpro inhibitors and a promising adjuvant therapeutic agent against COVID-19 or its symptoms. Furthermore, the study offers a rationale on phytochemical mining from medicinal plants as a means that can be implemented in the early stage of a drug discovery and development program.

Keywords: COVID-19, SARS-CoV-2 Mpro, V. negundo L., virtual screening, molecular docking, in silico ADMET, phytochemical mining, medicinal plants.

Graphical Abstract
[1]
Hui, D.S.; Azhar, I. E.; Madani, T.A.; Ntoumi, F.; Kock, R.; Dar, O.; Ippolito, G.; Mchugh, T.D.; Memish, Z.A.; Drosten, C.; Zumla, A.; Petersen, E. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health -the latest 2019 novel coronavirus outbreak in Wuhan, China. Int. J. Infect. Dis., 2020, 91, 264-266.
[http://dx.doi.org/10.1016/j.ijid.2020.01.009] [PMID: 31953166]
[2]
WHO. WHO Director-General’s opening remarks at the media briefing on COVID-19 - 11 March 2020 2020. Available from: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020 [Accessed Dec. 07, 2020]
[3]
WHO. WHO coronavirus disease (COVID-19) dashboard 2020. Avaialble from: https://covid19.who.int/?gclid=CjwKCAiAn7L-BRBbEiwAl9UtkOmSRtgYZfvfSSv9SqFRKBi1LrL4mEV8Jsgo5_Fe5jOvWU_-_EjgsxoCweEQAvD_BwE [Accessed Dec. 07, 2020]
[4]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[5]
Rabaan, A.A.; Al-Ahmed, S.H.; Haque, S.; Sah, R.; Tiwari, R.; Malik, Y.S.; Dhama, K.; Yatoo, M.I.; Bonilla-Aldana, D.K.; Rodriguez-Morales, A.J. SARS-CoV-2, SARS-CoV, and MERS-COV: A comparative overview. Infez. Med., 2020, 28(2), 174-184.
[PMID: 32275259]
[6]
Hegyi, A.; Ziebuhr, J. Conservation of substrate specificities among coronavirus main proteases. J. Gen. Virol., 2002, 83(3), 595-599.
[http://dx.doi.org/10.1099/0022-1317-83-3-595]
[7]
Hilgenfeld, R. From SARS to MERS: crystallographic studies on coronaviral proteases enable antiviral drug design. FEBS J., 2014, 281(18), 4085-4096.
[http://dx.doi.org/10.1111/febs.12936] [PMID: 25039866]
[8]
Anand, K.; Palm, G.J.; Mesters, J.R.; Siddell, S.G.; Ziebuhr, J.; Hilgenfeld, R. Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain. EMBO J., 2002, 21(13), 3213-3224.
[http://dx.doi.org/10.1093/emboj/cdf327] [PMID: 12093723]
[9]
Yang, H.; Yang, M.; Ding, Y.; Liu, Y.; Lou, Z.; Zhou, Z.; Sun, L.; Mo, L.; Ye, S.; Pang, H.; Gao, G.F.; Anand, K.; Bartlam, M.; Hilgenfeld, R.; Rao, Z. The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc. Natl. Acad. Sci. USA, 2003, 100(23), 13190-13195.
[http://dx.doi.org/10.1073/pnas.1835675100] [PMID: 14585926]
[10]
Enmozhi, S.K.; Raja, K.; Sebastine, I.; Joseph, J. Andrographolide as a potential inhibitor of SARS-CoV-2 main protease: An in silico approach. J. Biomol. Struct. Dyn., 2020, (May), 1-7.
[http://dx.doi.org/10.1080/07391102.2020.1760136] [PMID: 32329419]
[11]
Kumar, D.; Chandel, V.; Raj, S.; Rathi, B. In silico identification of potent FDA approved drugs against Coronavirus COVID-19 main protease: A drug repurposing approach. Chem. Biol. Lett. 2020, 7(3)
[12]
Hatada, R.; Okuwaki, K.; Mochizuki, Y.; Handa, Y.; Fukuzawa, K.; Komeiji, Y.; Okiyama, Y.; Tanaka, S. Fragment molecular orbital based interaction analyses on COVID-19 main protease -Inhibitor N3 complex (PDB ID: 6LU7). J. Chem. Inf. Model., 2020, 60(7), 3593-3602.
[http://dx.doi.org/10.1021/acs.jcim.0c00283] [PMID: 32539372]
[13]
Joshi, R.S.; Jagdale, S.S.; Bansode, S.B.; Shankar, S.S.; Tellis, M.B.; Pandya, V.K.; Chugh, A.; Giri, A.P.; Kulkarni, M.J. Discovery of potential multi-target-directed ligands by targeting host-specific SARS-CoV-2 structurally conserved main protease. J. Biomol. Struct. Dyn., 2020, (May), 1-16.
[http://dx.doi.org/10.1080/07391102.2020.1760137] [PMID: 32329408]
[14]
Fabricant, D.S.; Farnsworth, N.R. The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect., 2001, 109(Suppl. 1), 69-75.
[15]
Arayata, M.C. DOST okays study on lagundi for Covid-19, 2020. Available from: https://www.pna.gov.ph/articles/1109360[Accessed Dec. 07, 2020]
[16]
Arayata, M.C. Lagundi clinical trials get FDA nod: DOST chief (Philippine News Agency) 2020. Available from: https://www.pna.gov.ph/articles/1113804[Accessed Dec. 07, 2020]
[17]
Khan, A.M.; Qureshi, R.A.; Gilani, S.A.; Ullah, F. Antimicrobial activity of selected medicinal plants of Margalla Hills, Islamabad, Pakistan. JMPR, 2011, 5(18), 4665-4670.
[http://dx.doi.org/10.5897/JMPR.9000166]
[18]
Prashith, K.T.R. Antibacterial, cytotoxic and antioxidant potential of vitex negundo var. negundo and vitex negundo var. purpurascens – A comparative study. Sci. Technol. Arts Res. J., 2013, 2(3), 3.
[http://dx.doi.org/10.4314/star.v2i3.98737]
[19]
Khan, M.; Shah, A.J.; Gilani, A.H. Insight into the bronchodilator activity of Vitex negundo. Pharm. Biol., 2015, 53(3), 340-344.
[http://dx.doi.org/10.3109/13880209.2014.919327] [PMID: 25622948]
[20]
Saikia, A.P.; Ryakala, V.K.; Sharma, P.; Goswami, P.; Bora, U. Ethnobotany of medicinal plants used by Assamese people for various skin ailments and cosmetics. J. Ethnopharmacol., 2006, 106(2), 149-157.
[http://dx.doi.org/10.1016/j.jep.2005.11.033] [PMID: 16473486]
[21]
Nguyen-Pouplin, J.; Tran, H.; Tran, H.; Phan, T.A.; Dolecek, C.; Farrar, J.; Tran, T.H.; Caron, P.; Bodo, B.; Grellier, P. Antimalarial and cytotoxic activities of ethnopharmacologically selected medicinal plants from South Vietnam. J. Ethnopharmacol., 2007, 109(3), 417-427.
[http://dx.doi.org/10.1016/j.jep.2006.08.011] [PMID: 17010546]
[22]
Prasad, E.M.; Mopuri, R.; Islam, M.S.; Kodidhela, L.D. Cardioprotective effect of vitex negundo on isoproterenol-induced myocardial necrosis in wistar rats: A dual approach study. Biomed. Pharmacother., 2017, 85, 601-610.
[http://dx.doi.org/10.1016/j.biopha.2016.11.069] [PMID: 27889228]
[23]
Ladda, P.L.; Magdum, C.S. Antitubercular activity and isolation of chemical constituents from plant vitex negundo linn. Iran. J. Pharm. Res., 2018, 17(4), 1353-1360.
[PMID: 30568694]
[24]
Chintharlapalli, S.; Papineni, S.; Ramaiah, S.K.; Safe, S. Betulinic acid inhibits prostate cancer growth through inhibition of specificity protein transcription factors. Cancer Res., 2007, 67(6), 2816-2823.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3735] [PMID: 17363604]
[25]
Cichewicz, R.H.; Kouzi, S.A. Chemistry, biological activity, and chemotherapeutic potential of betulinic acid for the prevention and treatment of cancer and HIV infection. Med. Res. Rev., 2004, 24(1), 90-114.
[http://dx.doi.org/10.1002/med.10053] [PMID: 14595673]
[26]
Fulda, S. Betulinic acid for cancer treatment and prevention. Int. J. Mol. Sci., 2008, 9(6), 1096-1107.
[http://dx.doi.org/10.3390/ijms9061096] [PMID: 19325847]
[27]
Kessler, J.H.; Mullauer, F.B.; de Roo, G.M.; Medema, J.P. Broad in vitro efficacy of plant-derived betulinic acid against cell lines derived from the most prevalent human cancer types. Cancer Lett., 2007, 251(1), 132-145.
[http://dx.doi.org/10.1016/j.canlet.2006.11.003] [PMID: 17169485]
[28]
Mak, P.; Leung, Y-K.; Tang, W-Y.; Harwood, C.; Ho, S-M. Apigenin suppresses cancer cell growth through ERbeta. Neoplasia, 2006, 8(11), 896-904.
[http://dx.doi.org/10.1593/neo.06538] [PMID: 17132221]
[29]
Patel, D.; Shukla, S.; Gupta, S. Apigenin and cancer chemoprevention: Progress, potential and promise. (review) Int. J. Oncol., 2007, 30(1), 233-245.
[http://dx.doi.org/10.3892/ijo.30.1.233] [PMID: 17143534]
[30]
Jin, L.; Xue, H-Y.; Jin, L-J.; Li, S-Y.; Xu, Y-P. Antioxidant and pancreas-protective effect of aucubin on rats with streptozotocin-induced diabetes. Eur. J. Pharmacol., 2008, 582(1-3), 162-167.
[http://dx.doi.org/10.1016/j.ejphar.2007.12.011] [PMID: 18230397]
[31]
Wu, L.L.; Yang, X.B.; Huang, Z.M.; Liu, H.Z.; Wu, G.X. In vivo and in vitro antiviral activity of hyperoside extracted from Abelmoschus manihot (L) medik. Acta Pharmacol. Sin., 2007, 28(3), 404-409.
[http://dx.doi.org/10.1111/j.1745-7254.2007.00510.x] [PMID: 17303004]
[32]
Kim, S-J.; Um, J-Y.; Lee, J.Y.; Lee, J-Y. Anti-inflammatory activity of hyperoside through the suppression of nuclear factor-κB activation in mouse peritoneal macrophages. Am. J. Chin. Med., 2011, 39(1), 171-181.
[http://dx.doi.org/10.1142/S0192415X11008737] [PMID: 21213407]
[33]
Piao, M.J.; Kang, K.A.; Zhang, R.; Ko, D.O.; Wang, Z.H.; You, H.J.; Kim, H.S.; Kim, J.S.; Kang, S.S.; Hyun, J.W. Hyperoside prevents oxidative damage induced by hydrogen peroxide in lung fibroblast cells via an antioxidant effect. Biochim. Biophys. Acta, 2008, 1780(12), 1448-1457.
[http://dx.doi.org/10.1016/j.bbagen.2008.07.012] [PMID: 18761393]
[34]
Park, K.S.; Chang, I-M. Anti-inflammatory activity of aucubin by inhibition of tumor necrosis factor-α production in RAW 264.7 cells. Planta Med., 2004, 70(8), 778-779.
[http://dx.doi.org/10.1055/s-2004-827211] [PMID: 15326552]
[35]
Choi, J-H.; Kim, D.W.; Yun, N.; Choi, J.S.; Islam, M.N.; Kim, Y.S.; Lee, S.M. Protective effects of hyperoside against carbon tetrachloride-induced liver damage in mice. J. Nat. Prod., 2011, 74(5), 1055-1060.
[http://dx.doi.org/10.1021/np200001x] [PMID: 21428416]
[36]
Chang, I.M. Liver-protective activities of aucubin derived from traditional oriental medicine. Res. Commun. Mol. Pathol. Pharmacol., 1998, 102(2), 189-204.
[PMID: 10100510]
[37]
WIPO From herbal folklore to modern medicine, 2015. Available from: https://www.wipo.int/ipadvantage/en/details.jsp?id=3661[Accessed Dec. 07, 2020]
[38]
Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx.Chemical biology: Methods and protocols; Hempel, J.E.; Williams, C.H; Hong, C.C., Ed.; Springer: New York, NY, 2015, pp. 243-250.
[39]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[40]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[41]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[42]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717.
[http://dx.doi.org/10.1038/srep42717]
[43]
Patlewicz, G.; Jeliazkova, N.; Safford, R.J.; Worth, A.P.; Aleksiev, B. An evaluation of the implementation of the Cramer classification scheme in the Toxtree software. SAR QSAR Environ. Res., 2008, 19(5-6), 495-524.
[http://dx.doi.org/10.1080/10629360802083871] [PMID: 18853299]
[44]
Cramer, G.M.; Ford, R.A.; Hall, R.L. Estimation of toxic hazard-a decision tree approach. Food Cosmet. Toxicol., 1978, 16(3), 255-276.
[http://dx.doi.org/10.1016/S0015-6264(76)80522-6] [PMID: 357272]
[45]
Khare, C.P. Indian medicinal plants: An illustrated dictionary; Springer-Verlag: New York, 2007.
[http://dx.doi.org/10.1007/978-0-387-70638-2]
[46]
Huang, M.; Zhang, Y.; Xu, S.; Xu, W.; Chu, K.; Xu, W.; Zhao, H.; Lu, J. Identification and quantification of phenolic compounds in Vitex negundo L. var. cannabifolia (Siebold et Zucc.) Hand.-Mazz. using liquid chromatography combined with quadrupole time-of-flight and triple quadrupole mass spectrometers. J. Pharm. Biomed. Anal., 2015, 108, 11-20.
[http://dx.doi.org/10.1016/j.jpba.2015.01.049] [PMID: 25703235]
[47]
Chowdhury, N.Y.; Islam, W.; Khalequzzaman, M. Biological activities of isolated compounds from Vitex negundo leaf. J. Biosci. (Rajshahi), 2010, 18, 53-59.
[http://dx.doi.org/10.3329/jbs.v18i0.8776]
[48]
Kumar, P.P.; Kumaravel, S.; Lalitha, C. Screening of antioxidant activity, total phenolics and GC-MS study of Vitex negundo. AJBR, 2010, 4(7), 191-195.
[http://dx.doi.org/10.5897/AJBR.9000213]
[49]
Chawla, A.S.; Sharma, A.K.; Handa, S.S.; Dhar, K.L. Chemical investigation and anti-inflammatory activity of Vitex negundo seeds. J. Nat. Prod., 1992, 55(2), 163-167.
[http://dx.doi.org/10.1021/np50080a002] [PMID: 1624939]
[50]
Phytochemical studies on the leaves of Vitex negundo, L. (‘Lagundi’), 1: Investigations of the bronchial relaxing constituents [Philippines] Philippine J. Sci. (Philippines), 2020. Available from: https://agris.fao.org/agris-search/search.do?recordID=PH8811995[Accessed: Dec. 09, 2020]
[51]
Song, Y. Chemical constituents of vitex negundo var. cannabifolia fruits. Chinese Journal of Experimental Traditional Medical Formulae, 2020, 19(34) Available from: http://en.cnki.com.cn/Article_en/CJFDTotal-ZSFX201419034.htm [Accessed: Dec. 09, 2020
[52]
Rana, V.; Blázquez, M. Variability of the chemical constituents of the essential oil of Vitex species/variety from western India. Indian Perfumer, 2015, 59, 19-26.
[53]
Zheng, C-J.; Huang, B.K.; Han, T.; Zhang, Q.Y.; Zhang, H.; Rahman, K.; Qin, L.P. Nitric oxide scavenging lignans from Vitex negundo seeds. J. Nat. Prod., 2009, 72(9), 1627-1630.
[http://dx.doi.org/10.1021/np900320e] [PMID: 19715321]
[54]
Malik, A. Enzymes inhibiting lignans from vitex negundo, 2004, 52(11) 4
[55]
Zhao, X.X.; Zheng, C-J.; Qin, L-P. Chemical constituents from fruits of vitex negundo. Chin. Tradit. Herbal Drugs, 2012, 43, 2346-2350.
[56]
Singh, V.; Dayal, R.; Bartley, J.P. Chemical constituents of volatile oil from Vitex negundo L. flowering twigs. Indian Perfumer, 2000, 44(2), 41-48.
[57]
Singh, V.; Dayal, R.; Bartley, J.P. Volatile constituents of Vitex negundo leaves. Planta Med., 1999, 65(6), 580-582.
[http://dx.doi.org/10.1055/s-2006-960832] [PMID: 17260284]
[58]
Zheng, C-J.; Huang, B.K.; Wang, Y.; Ye, Q.; Han, T.; Zhang, Q.Y.; Zhang, H.; Qin, L.P. Anti-inflammatory diterpenes from the seeds of Vitex negundo. Bioorg. Med. Chem., 2010, 18(1), 175-181.
[http://dx.doi.org/10.1016/j.bmc.2009.11.004] [PMID: 19931461]
[59]
Khokra, S.L.; Prakash, O.; Jain, S.; Aneja, K.R.; Dhingra, Y. essential oil composition and antibacterial studies of vitex negundo linn. extracts. Indian J. Pharm. Sci., 2008, 70(4), 522-526.
[http://dx.doi.org/10.4103/0250-474X.44610] [PMID: 20046787]
[60]
Kaul, P.N.; Rao, B.R.R.; Bhattacharya, A.K.; Singh, K.; Syamasundar, K.V. Essential oil composition of vitex negundo l. flowers. J. Essent. Oil Res., 2005, 17(5), 483-484.
[http://dx.doi.org/10.1080/10412905.2005.9698971]
[61]
Mallavarapu, G.R.; Ramesh, S.; Kaul, P.N.; Bhattacharya, A.K.; Rao, B.R.R. Composition of the essential oil of the leaves of Vitex negundo. Planta Med., 1994, 60(6), 583-584.
[http://dx.doi.org/10.1055/s-2006-959580] [PMID: 17236087]
[62]
Lal, S.; Prakash, O.; Jain, S.; Ali, M. Volatile constituents of the fruits of vitex negundo linn. J. Essent. Oil-Bear Plants, 2007, 10(3), 247-250.
[http://dx.doi.org/10.1080/0972060X.2007.10643549]
[63]
Zheng, C-J. Furanofuran lignans from vitex negundo seeds. Phytochem. Lett., 2011, 4(3), 298-300.
[http://dx.doi.org/10.1016/j.phytol.2011.05.004]
[64]
Ono, M.; Nishida, Y.; Masuoka, C.; Li, J.C.; Okawa, M.; Ikeda, T.; Nohara, T. Lignan derivatives and a norditerpene from the seeds of Vitex negundo. J. Nat. Prod., 2004, 67(12), 2073-2075.
[http://dx.doi.org/10.1021/np040102t] [PMID: 15620254]
[65]
Zhou, Y.; Liu, Y.E.; Cao, J.; Zeng, G.; Shen, C.; Li, Y.; Zhou, M.; Chen, Y.; Pu, W.; Potters, L.; Shi, Y.E. Vitexins, nature-derived lignan compounds, induce apoptosis and suppress tumor growth. Clin. Cancer Res., 2009, 15(16), 5161-5169.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0661] [PMID: 19671865]
[66]
Singh, P.; Mishra, G.; Jha, K.K.; Garg, V.K.; Khosa, R.L. Chemical composition and antimicrobial activity of essential oil of leaves of Vitex negundo Linn. (Verbanaceae). Int. J. Chemtech Res., 2010, 2(3), 1686-1690.
[67]
Chandramu, C.; Manohar, R.D.; Krupadanam, D.G.L.; Dashavantha, R.V. Isolation, characterization and biological activity of betulinic acid and ursolic acid from Vitex negundo L. Phytother. Res., 2003, 17(2), 129-134.
[http://dx.doi.org/10.1002/ptr.1088] [PMID: 12601674]
[68]
Sehgal, C.K.; Taneja, S.C.; Dhar, K.L.; Atal, C.K. 6′-p-hydroxybenzoylmussaenosidic acid-an iridoid glucoside from Vitex negundo. Phytochemistry, 1983, 22(4), 1036-1038.
[http://dx.doi.org/10.1016/0031-9422(83)85054-7]
[69]
Gautam, L.; Shrestha, S.; Wagle, P.; Tamrakar, B. Chemical Constituents from Vitex negundo (Linn.) of Nepalese origin. Sci. World, 1970, 6(6), 27-32.
[http://dx.doi.org/10.3126/sw.v6i6.2630]
[70]
Dayrit, F.; Lagurin, L. Identification of four iridoids in the pharmacologically- active fraction of Vitex negundo, L. Chemistry faculty publications 1994. Available from: https://archium.ateneo.edu/chemistry-faculty-pubs/116
[71]
Dancel, M.C.; Lagurin, L.; Johnson, J.; Dayrit, F. Structural elucidation of iridoids from the leaves of Vitex negundo linn. by liquid chromatography-tandem. Mass Spectrom. (Tokyo), 2013, 11(1), 15.
[http://dx.doi.org/10.13140/2.1.5034.0645]
[72]
Noel, M.G.; Dayrit, F.M. Triterpenes in the Callus Culture of Vitex negundo L. Philipp. J. Sci., 2005, 134(1), 15.
[73]
Zheng, C-J.; Pu, J.; Zhang, H.; Han, T.; Rahman, K.; Qin, L-P. Sesquiterpenoids and norterpenoids from Vitex negundo. Fitoterapia, 2012, 83(1), 49-54.
[http://dx.doi.org/10.1016/j.fitote.2011.09.012] [PMID: 21968063]
[74]
Chen, J.; Fan, C-L.; Wang, Y.; Ye, W-C. A new triterpenoid glycoside from Vitex negundo. Chin. J. Nat. Med., 2014, 12(3), 218-221.
[http://dx.doi.org/10.1016/S1875-5364(14)60036-4] [PMID: 24702809]
[75]
Yadav, H.; Mungara, P.; Jivrajani, M.; Nivsarkar, M.; Anandjiwala, S. TLC-Densitometric quantification of negundoside, ursolic acid, eugenol, lupeol, and β-sitosterol using HPTLC from Vitex negundo leaves. J. Liq. Chromatogr. Relat. Technol., 2012, 35(11), 1565-1584.
[http://dx.doi.org/10.1080/10826076.2011.619044]
[76]
Vishnoi, S.P.; Shoeb, A.; Kapil, R.S.; Popli, S.P. A furanoeremophilane from Vitex negundo. Phytochemistry, 1983, 22(2), 597-598.
[http://dx.doi.org/10.1016/0031-9422(83)83058-1]
[77]
Ragasa, C.Y.; Morales, E.; Rideout, J.A. Antimicrobial compounds from vitex negundo. Philipp. J. Sci., 1999, 128(1), 21-29.
[78]
Ling, T-J.; Ling, W.W.; Chen, Y.J.; Wan, X.C.; Xia, T.; Du, X.F.; Zhang, Z.Z. Antiseptic activity and phenolic constituents of the aerial parts of Vitex negundo var. cannabifolia. Molecules, 2010, 15(11), 8469-8477.
[http://dx.doi.org/10.3390/molecules15118469] [PMID: 21088661]
[79]
Pan, J.G.; Xu, Z.L.; Fan, J.F. GC-MS analysis of essential oils from four Vitex species. Zhongguo Zhongyao Zazhi, 1989, 14(6), 357-359.
[PMID: 2511861]
[80]
Manalo, J.B. A Study of lagundi oil: The essential oil from vitex negundo linn. growing in the Philippines. Philipp. J. Sci. (Philippines), 1982, 3(3-4), 79-98.
[81]
Vinuchakkaravarthy, T.; Kumaravel, K.P.; Ravichandran, S.; Velmurugan, D. Active compound from the leaves of Vitex negundo L. shows anti-inflammatory activity with evidence of inhibition for secretory Phospholipase A(2) through molecular docking. Bioinformation, 2011, 7(4), 199-206.
[http://dx.doi.org/10.6026/97320630007199] [PMID: 22102777]
[82]
Luo, P.; Yu, Q.; Liu, S.N.; Xia, W.J.; Fang, Y.Y.; An, L.K.; Gu, Q.; Xu, J. Diterpenoids with diverse scaffolds from Vitex trifolia as potential topoisomerase I inhibitor. Fitoterapia, 2017, 120, 108-116.
[http://dx.doi.org/10.1016/j.fitote.2017.06.006] [PMID: 28602939]
[83]
Nadeem, M.; Mumtaz, M.W.; Danish, M.; Rashid, U.; Mukhtar, H.; Irfan, A. Antidiabetic functionality of Vitex negundo L. leaves based on UHPLC-QTOF-MS/MS based bioactives profiling and molecular docking insights. Ind. Crops Prod., 2020, 152112445
[http://dx.doi.org/10.1016/j.indcrop.2020.112445]
[84]
Sharma, R.L.; Prabhakar, A.; Dhar, K.L.; Sachar, A. A new iridoid glycoside from Vitex negundo Linn (Verbenacea). Nat. Prod. Res., 2009, 23(13), 1201-1209.
[http://dx.doi.org/10.1080/14786410802696494] [PMID: 19731139]
[85]
Srinivas, S.; Rao, S.S.; Rao, M.E.B.; Raju, M.B.V. Chemical constituents of the roots of Vitex negundio. Indian J. Pharm. Sci., 2001, 63(5), 422.
[86]
Ferdous, A.J.; Jabbar, A.; Hassan, C.M. Flavonoids from Vitex negundo. Bangladesh Acad. Sci., 1984, 8(2), 23-27.
[87]
Bhargava, S.K. Estrogenic and pregnancy interceptory effects of the flavonoids (VI-II) of Vitex negundo L. seeds in mice. Plantes medicinales et phytotherapie 2020. Available from: https://agris.fao.org/agris-search/search.do?recordID=US201301472624[Accessed: Dec. 09,2020]
[88]
Achari, B.; Chowdhury, U.S.; Dutta, P.K.; Pakrashi, S.C. Two isomeric flavanones from Vitex negundo. Phytochemistry, 1984, 23(3), 703-704.
[http://dx.doi.org/10.1016/S0031-9422(00)80420-3]
[89]
Awale, S.; Linn, T.Z.; Li, F.; Tezuka, Y.; Myint, A.; Tomida, A.; Yamori, T.; Esumi, H.; Kadota, S. Identification of chrysoplenetin from Vitex negundo as a potential cytotoxic agent against PANC-1 and a panel of 39 human cancer cell lines (JFCR-39). Phytother. Res., 2011, 25(12), 1770-1775.
[http://dx.doi.org/10.1002/ptr.3441] [PMID: 21469236]
[90]
Banerji, J.; Das, B.; Chakrabarty, R. Isolation of 4 4′ dimethoxy trans stilbene and flavonoids from leaves and twigs of Vitex negundo Linn. Ind. J. Chem. Sect. B-Organ. Chem. Inc. Med. Chem., 1988, 27(6), 597-599.
[91]
Djoumbou Feunang, Y.; Eisner, R.; Knox, C.; Chepelev, L.; Hastings, J.; Owen, G.; Fahy, E.; Steinbeck, C.; Subramanian, S.; Bolton, E.; Greiner, R.; Wishart, D.S. ClassyFire: Automated chemical classification with a comprehensive, computable taxonomy. J. Cheminform., 2016, 8(1), 61.
[http://dx.doi.org/10.1186/s13321-016-0174-y] [PMID: 27867422]
[92]
Ghahremanpour, M.M.; Tirado-Rives, J.; Deshmukh, M.; Ippolito, J.A.; Zhang, C.H.; Cabeza de Vaca, I.; Liosi, M.E.; Anderson, K.S.; Jorgensen, W.L. Identification of 14 known drugs as inhibitors of the main protease of SARS-CoV-2. ACS Med. Chem. Lett., 2020, 11(12), 2526-2533.
[http://dx.doi.org/10.1021/acsmedchemlett.0c00521] [PMID: 33324471]
[93]
Jin, Z.; Zhao, Y.; Sun, Y.; Zhang, B.; Wang, H.; Wu, Y.; Zhu, Y.; Zhu, C.; Hu, T.; Du, X.; Duan, Y.; Yu, J.; Yang, X.; Yang, X.; Yang, K.; Liu, X.; Guddat, L.W.; Xiao, G.; Zhang, L.; Yang, H.; Rao, Z. Structural basis for the inhibition of SARS-CoV-2 main protease by antineoplastic drug carmofur. Nat. Struct. Mol. Biol., 2020, 27(6), 529-532.
[http://dx.doi.org/10.1038/s41594-020-0440-6] [PMID: 32382072]
[94]
Chang, G-G. Quaternary structure of the SARS coronavirus main Protease. Mol. Biol. SARS-Coronavirus, 2009, 115-128.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy