Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

General Research Article

Anticancer Effects of Tacrolimus on Induced Hepatocellular Carcinoma in Mice

Author(s): Shireen S. Mahmoud, Samia Hussein*, Hayam Rashed, Eman M. A. Abdelghany and Alaa I. Ali

Volume 15, Issue 2, 2022

Published on: 29 July, 2021

Article ID: e310521193732 Pages: 12

DOI: 10.2174/1874467214666210531164546

Abstract

Background: Tacrolimus is a calcineurin inhibitor widely used for immunological disorders. However, there is significant controversy regarding its effect on the liver. The present study was conducted to evaluate the anticancer effects of tacrolimus on an induced murine hepatocellular carcinoma (HCC) model and its possible hepatotoxicity at standard therapeutic doses.

Methods: Fifty-four male mice were divided into five groups: a control healthy group, control HCC group, tacrolimus-treated group, doxorubicin (DOXO)-treated group, and combined tacrolimus- and DOXO-treated group. The activity of liver enzymes, including alkaline phosphatase, gamma- glutamyl transferase, lactate dehydrogenase, alanine transaminase, and aspartate transaminase, was determined. Serum vascular endothelial growth factor (VEGF) was measured using an enzyme- linked immunosorbent assay. A quantitative real time- polymerase chain reaction (qRTPCR) was conducted to measure the expression of proliferating cell nuclear antigen (PCNA), Bax, and p53 mRNA. Immunohistochemical staining for cyclin D1 and VEGF was performed.

Results: Mice that received combined treatment with tacrolimus and DOXO exhibited the best improvement in all parameters when compared with the groups that received DOXO or tacrolimus alone (p < 0.001).

Conclusion: The combination of DOXO and tacrolimus was more effective in the management of HCC compared with either agent alone. This improvement was detected by the reduction of liver enzymes and the improvement of the histopathological profile. The involved mechanisms included significant apoptosis induction demonstrated by upregulation of bax along with a reduction in angiogenesis demonstrated by downregulation of VEGF. This was accompanied by inhibition of cell cycle progression mediated by upregulated p53 and downregulated PCNA and cyclin D1.

Keywords: Hepatocellular carcinoma, doxorubicin, tacrolimus, mice, anticancer effects, ELISA.

Graphical Abstract
[1]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[2]
Chong, C.R.; Sullivan, D.J.Jr. New uses for old drugs. Nature, 2007, 448(7154), 645-646.
[http://dx.doi.org/10.1038/448645a] [PMID: 17687303]
[3]
Fan, Y.P.; Liao, J.Z.; Lu, Y.Q.; Tian, D.A.; Ye, F.; Zhao, P.X.; Xiang, G.Y.; Tang, W.X.; He, X.X. MiR-375 and doxorubicin co-delivered by liposomes for combination therapy of hepatocellular carcinoma. Mol. Ther. Nucleic Acids, 2017, 7, 181-189.
[http://dx.doi.org/10.1016/j.omtn.2017.03.010] [PMID: 28624193]
[4]
Jin, C.; Li, H.; He, Y.; He, M.; Bai, L.; Cao, Y.; Song, W.; Dou, K. Combination chemotherapy of doxorubicin and paclitaxel for hepatocellular carcinoma in vitro and in vivo. J. Cancer Res. Clin. Oncol., 2010, 136(2), 267-274.
[http://dx.doi.org/10.1007/s00432-009-0658-5] [PMID: 19693537]
[5]
Choi, S.J.; You, H.S.; Chung, S.Y. Tacrolimus-induced apoptotic signal transduction pathway. Transplant Proc, 2008, 40(8), 2734-2736.
[http://dx.doi.org/10.1016/j.transproceed.2008.08.028] [PMID: 18929848]
[6]
Gaston, R.S. Current and evolving immunosuppressive regimens in kidney transplantation. Am. J. Kidney Dis., 2006, 47(4)(Suppl. 2), S3-S21.
[http://dx.doi.org/10.1053/j.ajkd.2005.12.047] [PMID: 16567239]
[7]
Siamakpour-Reihani, S.; Caster, J.; Bandhu Nepal, D.; Courtwright, A.; Hilliard, E.; Usary, J.; Ketelsen, D.; Darr, D.; Shen, X.J.; Patterson, C.; Klauber-Demore, N. The role of calcineurin/NFAT in SFRP2 induced angiogenesis-a rationale for breast cancer treatment with the calcineurin inhibitor tacrolimus. PLoS One, 2011, 6(6), e20412.
[http://dx.doi.org/10.1371/journal.pone.0020412] [PMID: 21673995]
[8]
Kawahara, T.; Kashiwagi, E.; Ide, H.; Li, Y.; Zheng, Y.; Ishiguro, H.; Miyamoto, H. The role of NFATc1 in prostate cancer progression: Cyclosporine A and tacrolimus inhibit cell proliferation, migration, and invasion. Prostate, 2015, 75(6), 573-584.
[http://dx.doi.org/10.1002/pros.22937] [PMID: 25631176]
[9]
Ko, M.S.; Choi, Y.H.; Jung, S.H.; Lee, J.S.; Kim, H.S.; Lee, C.H.; Kim, S.G. Tacrolimus therapy causes hepatotoxicity in patients with a history of liver disease. Int. J. Clin. Pharmacol. Ther., 2015, 53(5), 363-371.
[http://dx.doi.org/10.5414/CP202226] [PMID: 25740263]
[10]
Taniai, N.; Akimaru, K.; Ishikawa, Y.; Kanada, T.; Kakinuma, D.; Mizuguchi, Y.; Mamada, Y.; Yoshida, H.; Tajiri, T. Hepatotoxicity caused by both tacrolimus and cyclosporine after living donor liver transplantation. J. Nippon Med. Sch., 2008, 75(3), 187-191.
[http://dx.doi.org/10.1272/jnms.75.187] [PMID: 18648179]
[11]
Vousden, K.H.; Lu, X. Live or let die: The cell’s response to p53. Nat. Rev. Cancer, 2002, 2(8), 594-604.
[http://dx.doi.org/10.1038/nrc864] [PMID: 12154352]
[12]
Poole, A.J.; Heap, D.; Carroll, R.E.; Tyner, A.L. Tumor suppressor functions for the Cdk inhibitor p21 in the mouse colon. Oncogene, 2004, 23(49), 8128-8134.
[http://dx.doi.org/10.1038/sj.onc.1207994] [PMID: 15377995]
[13]
Shankar, S.; Srivastava, R.K. Bax and Bak genes are essential for maximum apoptotic response by curcumin, a polyphenolic compound and cancer chemopreventive agent derived from turmeric, Curcuma longa. Carcinogenesis, 2007, 28(6), 1277-1286.
[http://dx.doi.org/10.1093/carcin/bgm024] [PMID: 17277231]
[14]
Somade, O. T.; Ajayi, B. O.; Adeyi, O. E.; Adeshina, A. A.; Adekoya, M. O.; Abdulhameed, R. O. Oxidative stress-mediated induction of pulmonary oncogenes, inflammatory, and apoptotic markers following time-course exposure to ethylene glycol monomethyl ether in rats. Metabolism open, 2020, 9, 100075.
[http://dx.doi.org/10.1016/j.metop.2020.100075]
[15]
Qie, S.; Diehl, J.A. Cyclin D1, cancer progression, and opportunities in cancer treatment. J. Mol. Med. (Berl.), 2016, 94(12), 1313-1326.
[http://dx.doi.org/10.1007/s00109-016-1475-3] [PMID: 27695879]
[16]
Liu, L.; Qin, S.; Zheng, Y.; Han, L.; Zhang, M.; Luo, N.; Liu, Z.; Gu, N.; Gu, X.; Yin, X. Molecular targeting of VEGF/VEGFR signaling by the anti-VEGF monoclonal antibody BD0801 inhibits the growth and induces apoptosis of human hepatocellular carcinoma cells in vitro and in vivo. Cancer Biol. Ther., 2017, 18(3), 166-176.
[http://dx.doi.org/10.1080/15384047.2017.1282019] [PMID: 28368741]
[17]
Che, Y.; Ye, F.; Xu, R.; Qing, H.; Wang, X.; Yin, F.; Cui, M.; Burstein, D.; Jiang, B.; Zhang, D.Y. Co-expression of XIAP and cyclin D1 complex correlates with a poor prognosis in patients with hepatocellular carcinoma. Am. J. Pathol., 2012, 180(5), 1798-1807.
[http://dx.doi.org/10.1016/j.ajpath.2012.01.016] [PMID: 22429965]
[18]
Woo, H.G.; Park, E.S.; Thorgeirsson, S.S.; Kim, Y.J. Exploring genomic profiles of hepatocellular carcinoma. Mol. Carcinog., 2011, 50(4), 235-243.
[http://dx.doi.org/10.1002/mc.20691] [PMID: 21465573]
[19]
Kannouche, P.L.; Wing, J.; Lehmann, A.R. Interaction of human DNA polymerase eta with monoubiquitinated PCNA: A possible mechanism for the polymerase switch in response to DNA damage. Mol. Cell, 2004, 14(4), 491-500.
[http://dx.doi.org/10.1016/S1097-2765(04)00259-X] [PMID: 15149598]
[20]
de Medina-Redondo, M.; Meraldi, P. The spindle assembly checkpoint: Clock or domino? Results Probl. Cell Differ., 2011, 53, 75-91.
[http://dx.doi.org/10.1007/978-3-642-19065-0_4] [PMID: 21630141]
[21]
Chen, Z.; Zhang, W.; Yun, Z.; Zhang, X.; Gong, F.; Wang, Y.; Ji, S.; Leng, L. Ubiquitin‑like protein FAT10 regulates DNA damage repair via modification of proliferating cell nuclear antigen. Mol. Med. Rep., 2018, 17(6), 7487-7496.
[http://dx.doi.org/10.3892/mmr.2018.8843] [PMID: 29620277]
[22]
Qin, L.X.; Tang, Z.Y. The prognostic molecular markers in hepatocellular carcinoma. World J. Gastroenterol., 2002, 8(3), 385-392.
[http://dx.doi.org/10.3748/wjg.v8.i3.385] [PMID: 12046056]
[23]
Bruix, J.; Sherman, M.; Llovet, J.M.; Beaugrand, M.; Lencioni, R.; Burroughs, A.K.; Christensen, E.; Pagliaro, L.; Colombo, M.; Rodés, J. EASL Panel of Experts on HCC. Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. J. Hepatol., 2001, 35(3), 421-430.
[http://dx.doi.org/10.1016/S0168-8278(01)00130-1] [PMID: 11592607]
[24]
Kaumaya, P.T.; Foy, K.C. Peptide vaccines and targeting HER and VEGF proteins may offer a potentially new paradigm in cancer immunotherapy. Future Oncol., 2012, 8(8), 961-987.
[http://dx.doi.org/10.2217/fon.12.95] [PMID: 22894670]
[25]
Jain, L.; Vargo, C.A.; Danesi, R.; Sissung, T.M.; Price, D.K.; Venzon, D.; Venitz, J.; Figg, W.D. The role of vascular endothelial growth factor SNPs as predictive and prognostic markers for major solid tumors. Mol. Cancer Ther., 2009, 8(9), 2496-2508.
[http://dx.doi.org/10.1158/1535-7163.MCT-09-0302] [PMID: 19755511]
[26]
Amini, A.; Masoumi Moghaddam, S.; Morris, D.L.; Pourgholami, M.H. The critical role of vascular endothelial growth factor in tumor angiogenesis. Curr. Cancer Drug Targets, 2012, 12(1), 23-43.
[http://dx.doi.org/10.2174/156800912798888956] [PMID: 22111836]
[27]
Zhu, A.X.; Park, J.O.; Ryoo, B.Y.; Yen, C.J.; Poon, R.; Pastorelli, D.; Blanc, J.F.; Chung, H.C.; Baron, A.D.; Pfiffer, T.E.; Okusaka, T.; Kubackova, K.; Trojan, J.; Sastre, J.; Chau, I.; Chang, S.C.; Abada, P.B.; Yang, L.; Schwartz, J.D.; Kudo, M. REACH, Trial, Investigators, Ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib (REACH): A randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol., 2015, 16(7), 859-870.
[http://dx.doi.org/10.1016/S1470-2045(15)00050-9] [PMID: 26095784]
[28]
Li, D.; Li, N.; Zhang, Y.F.; Fu, H.; Feng, M.; Schneider, D.; Su, L.; Wu, X.; Zhou, J.; Mackay, S.; Kramer, J.; Duan, Z.; Yang, H.; Kolluri, A.; Hummer, A.M.; Torres, M.B.; Zhu, H.; Hall, M.D.; Luo, X.; Chen, J.; Wang, Q.; Abate-Daga, D.; Dropublic, B.; Hewitt, S.M.; Orentas, R.J.; Greten, T.F.; Ho, M. Persistent polyfunctional chimeric antigen receptor t cells that target glypican 3 eliminate orthotopic hepatocellular carcinomas in mice. Gastroenterology, 2020, 158(8), 2250-2265.e20.
[http://dx.doi.org/10.1053/j.gastro.2020.02.011] [PMID: 32060001]
[29]
Deng, S.; Kruger, A.; Schmidt, A.; Metzger, A.; Yan, T.; Gödtel-Armbrust, U.; Hasenfuss, G.; Brunner, F.; Wojnowski, L. Differential roles of nitric oxide synthase isozymes in cardiotoxicity and mortality following chronic doxorubicin treatment in mice. Naunyn Schmiedebergs Arch. Pharmacol., 2009, 380(1), 25-34.
[http://dx.doi.org/10.1007/s00210-009-0407-y] [PMID: 19308358]
[30]
Singh, A.; Naidu, P.S.; Patil, C.S.; Kulkarni, S.K. Effect of FK506 (tacrolimus) in animal models of inflammation. Inflammopharmacology, 2003, 11(3), 249-257.
[http://dx.doi.org/10.1163/156856003322315596] [PMID: 15035807]
[31]
Hughes-Fulford, M.; Rodenacker, K.; Jütting, U. Reduction of anabolic signals and alteration of osteoblast nuclear morphology in microgravity. J. Cell. Biochem., 2006, 99(2), 435-449.
[http://dx.doi.org/10.1002/jcb.20883] [PMID: 16619267]
[32]
Abd-Allah, S.H.; Shalaby, S.M.; El-Shal, A.S.; Elkader, E.A.; Hussein, S.; Emam, E.; Mazen, N.F.; El Kateb, M.; Atfy, M. Effect of bone marrow-derived mesenchymal stromal cells on hepatoma. Cytotherapy, 2014, 16(9), 1197-1206.
[http://dx.doi.org/10.1016/j.jcyt.2014.05.006] [PMID: 24985939]
[33]
Rácz, G.A.; Nagy, N.; Gál, Z.; Pintér, T.; Hiripi, L.; Vértessy, B.G. Evaluation of critical design parameters for RT-qPCR-based analysis of multiple dUTPase isoform genes in mice. FEBS Open Bio, 2019, 9(6), 1153-1170.
[http://dx.doi.org/10.1002/2211-5463.12654] [PMID: 31077566]
[34]
Paik, S.Y.; Park, Y.N.; Kim, H.; Park, C. Expression of transforming growth factor-beta1 and transforming growth factor-beta receptors in hepatocellular carcinoma and dysplastic nodules. Mod. Pathol., 2003, 16(1), 86-96.
[http://dx.doi.org/10.1097/01.MP.0000047308.03300.9C] [PMID: 12527718]
[35]
Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma. Lancet, 2018, 391(10127), 1301-1314.
[http://dx.doi.org/10.1016/S0140-6736(18)30010-2] [PMID: 29307467]
[36]
Yu, M.C.; Chan, K.M.; Lee, C.F.; Lee, Y.S.; Eldeen, F.Z.; Chou, H.S.; Lee, W.C.; Chen, M.F. Alkaline phosphatase: Does it have a role in predicting hepatocellular carcinoma recurrence? J. Gastrointest. Surg., 2011, 15(8), 1440-1449.
[http://dx.doi.org/10.1007/s11605-011-1537-3] [PMID: 21541770]
[37]
Dar, K.K.; Ali, S.; Ejaz, M.; Nasreen, S.; Ashraf, N.; Gillani, S.F.; Shafi, N.; Safeer, S.; Khan, M.A.; Andleeb, S.; Mughal, T.A. In vivo induction of hepatocellular carcinoma by diethylnitrosoamine and pharmacological intervention in Balb C mice using Bergenia ciliata extracts. Braz. J. Biol., 2019, 79(4), 629-638.
[http://dx.doi.org/10.1590/1519-6984.186565] [PMID: 31017181]
[38]
Mao, Z.; Han, X.; Chen, D.; Xu, Y.; Xu, L.; Yin, L.; Sun, H.; Qi, Y.; Fang, L.; Liu, K.; Peng, J. Potent effects of dioscin against hepatocellular carcinoma through regulating TP53-induced glycolysis and apoptosis regulator (TIGAR)-mediated apoptosis, autophagy, and DNA damage. Br. J. Pharmacol., 2019, 176(7), 919-937.
[http://dx.doi.org/10.1111/bph.14594] [PMID: 30710454]
[39]
Wang, Y.K.; Han, J.; Xiong, W.J.; Yuan, Q.Y.; Gu, Y.P.; Li, J.; Zhu, Z.; Zhang, H.; Wang, C.J. Evaluation of in vivo antioxidant and immunity enhancing activities of sodium aescinate injection liquid. Molecules, 2012, 17(9), 10267-10275.
[http://dx.doi.org/10.3390/molecules170910267] [PMID: 22926307]
[40]
Ohnishi, H.; Muto, Y.; Maeda, T.; Hayashi, T.; Nagaki, M.; Yamada, T.; Shimazaki, M.; Yamada, Y.; Sugihara, J.; Moriwaki, H. Natural killer cell may impair liver regeneration in fulminant hepatic failure. Gastroenterol. Jpn., 1993, 28(Suppl. 4), 40-44.
[http://dx.doi.org/10.1007/BF02782888] [PMID: 7683619]
[41]
Nagler, A.; Menachem, Y.; Ilan, Y. Amelioration of steroid-resistant chronic graft-versus-host-mediated liver disease via tacrolimus treatment. J. Hematother. Stem Cell Res., 2001, 10(3), 411-417.
[http://dx.doi.org/10.1089/152581601750289019] [PMID: 11454316]
[42]
Zhao, X.; Chen, Q.; Li, Y.; Tang, H.; Liu, W.; Yang, X. Doxorubicin and curcumin co-delivery by lipid nanoparticles for enhanced treatment of diethylnitrosamine-induced hepatocellular carcinoma in mice. Eur. J. Pharm. Biopharm., 2015, 93, 27-36.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.003] [PMID: 25770771]
[43]
Gani, S.A.; Muhammad, S.A.; Kura, A.U.; Barahuie, F.; Hussein, M.Z.; Fakurazi, S. Effect of protocatechuic acid-layered double hydroxide nanoparticles on diethylnitrosamine/phenobarbital-induced hepatocellular carcinoma in mice. PLoS One, 2019, 14(5), e0217009.
[http://dx.doi.org/10.1371/journal.pone.0217009] [PMID: 31141523]
[44]
Ahmed, H.H.; Shousha, W.G.; Shalby, A.B.; El-Mezayen, H.A.; Ismaiel, N.N.; Mahmoud, N.S. Curcumin: A unique antioxidant offers a multimechanistic approach for management of hepatocellular carcinoma in rat model. Tumour Biol., 2015, 36(3), 1667-1678.
[http://dx.doi.org/10.1007/s13277-014-2767-2] [PMID: 25371072]
[45]
Wu, S.J.; Lin, Y.X.; Ye, H.; Xiong, X.Z.; Li, F.Y.; Cheng, N.S. Prognostic value of alkaline phosphatase, gamma-glutamyl transpeptidase and lactate dehydrogenase in hepatocellular carcinoma patients treated with liver resection. Int. J. Surg., 2016, 36(Pt A), 143-151.
[http://dx.doi.org/10.1016/j.ijsu.2016.10.033] [PMID: 27793641]
[46]
Li, Y.; Liu, F. Y.; Liu, Z. H.; Huang, Y. F.; Li, L. S.; Zhang, X.; Peng, Y. M. Effect of tacrolimus and cyclosporine A on suppression of albumin secretion induced by inflammatory cytokines in cultured human hepatocytes. Inflammation research : Official journal of the European Histamine Research Society ... [et al.], 2006, 55(5), 216-220.
[http://dx.doi.org/10.1007/s00011-006-0074-0]
[47]
Hann, H-W.; Wan, S.; Myers, R.E.; Hann, R.S.; Xing, J.; Chen, B.; Yang, H. Comprehensive analysis of common serum liver enzymes as prospective predictors of hepatocellular carcinoma in HBV patients. PLoS One, 2012, 7(10), e47687.
[http://dx.doi.org/10.1371/journal.pone.0047687] [PMID: 23112834]
[48]
Xu, X.S.; Wan, Y.; Song, S.D.; Chen, W.; Miao, R.C.; Zhou, Y.Y.; Zhang, L.Q.; Qu, K.; Liu, S.N.; Zhang, Y.L.; Dong, Y.F.; Liu, C. Model based on γ-glutamyltransferase and alkaline phosphatase for hepatocellular carcinoma prognosis. World J. Gastroenterol., 2014, 20(31), 10944-10952.
[http://dx.doi.org/10.3748/wjg.v20.i31.10944] [PMID: 25152598]
[49]
Ma, H.; Zhang, L.; Tang, B.; Wang, Y.; Chen, R.; Zhang, B.; Chen, Y.; Ge, N.; Wang, Y.; Gan, Y.; Ye, S.; Ren, Z. γ-Glutamyltranspeptidase is a prognostic marker of survival and recurrence in radiofrequency-ablation treatment of hepatocellular carcinoma. Ann. Surg. Oncol., 2014, 21(9), 3084-3089.
[http://dx.doi.org/10.1245/s10434-014-3724-4] [PMID: 24748164]
[50]
Fu, S.; Guo, Z.; Li, S.; Kuang, M.; Hu, W.; Hua, Y.; He, X.; Peng, B. Prognostic value of preoperative serum gamma-glutamyltranspeptidase in patients with hepatocellular carcinoma after hepatectomy. Tumour Biol., 2016, 37(3), 3433-3440.
[http://dx.doi.org/10.1007/s13277-015-4136-1] [PMID: 26449826]
[51]
Zhang, J.P.; Wang, H.B.; Lin, Y.H.; Xu, J.; Wang, J.; Wang, K.; Liu, W.L. Lactate dehydrogenase is an important prognostic indicator for hepatocellular carcinoma after partial hepatectomy. Transl. Oncol., 2015, 8(6), 497-503.
[http://dx.doi.org/10.1016/j.tranon.2015.11.006] [PMID: 26692531]
[52]
Faloppi, L.; Scartozzi, M.; Bianconi, M.; Svegliati Baroni, G.; Toniutto, P.; Giampieri, R.; Del Prete, M.; De Minicis, S.; Bitetto, D.; Loretelli, C.; D’Anzeo, M.; Benedetti, A.; Cascinu, S. The role of LDH serum levels in predicting global outcome in HCC patients treated with sorafenib: Implications for clinical management. BMC Cancer, 2014, 14, 110.
[http://dx.doi.org/10.1186/1471-2407-14-110] [PMID: 24552144]
[53]
Morse, M.A.; Sun, W.; Kim, R.; He, A.R.; Abada, P.B.; Mynderse, M.; Finn, R.S. The role of angiogenesis in hepatocellular carcinoma. Clin. Cancer Res., 2019, 25(3), 912-920.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-1254] [PMID: 30274981]
[54]
Ferrara, N. Vascular endothelial growth factor: Basic science and clinical progress. Endocr. Rev., 2004, 25(4), 581-611.
[http://dx.doi.org/10.1210/er.2003-0027] [PMID: 15294883]
[55]
Finn, R.S.; Bentley, G.; Britten, C.D.; Amado, R.; Busuttil, R.W. Targeting vascular endothelial growth factor with the monoclonal antibody bevacizumab inhibits human hepatocellular carcinoma cells growing in an orthotopic mouse model. Liver Int., 2009, 29(2), 284-290.
[http://dx.doi.org/10.1111/j.1478-3231.2008.01762.x] [PMID: 18482274]
[56]
Golla, K.; Cherukuvada, B.; Ahmed, F.; Kondapi, A.K. Efficacy, safety and anticancer activity of protein nanoparticle-based delivery of doxorubicin through intravenous administration in rats. PLoS One, 2012, 7(12), e51960.
[http://dx.doi.org/10.1371/journal.pone.0051960] [PMID: 23284832]
[57]
Kawahara, T.; Kashiwagi, E.; Li, Y.; Zheng, Y.; Miyamoto, Y.; Netto, G.J.; Ishiguro, H.; Miyamoto, H. Cyclosporine A and tacrolimus inhibit urothelial tumorigenesis. Mol. Carcinog., 2016, 55(2), 161-169.
[http://dx.doi.org/10.1002/mc.22265] [PMID: 25594762]
[58]
Lim, S-O.; Gu, J-M.; Kim, M.S.; Kim, H.S.; Park, Y.N.; Park, C.K.; Cho, J.W.; Park, Y.M.; Jung, G. Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: Methylation of the E-cadherin promoter. Gastroenterology, 2008, 135(6), 2128-2140, 2140.e1-2140.e8.
[http://dx.doi.org/10.1053/j.gastro.2008.07.027] [PMID: 18801366]
[59]
Helt, C.E.; Staversky, R.J.; Lee, Y-J.; Bambara, R.A.; Keng, P.C.; O’Reilly, M.A. The Cdk and PCNA domains on p21Cip1 both function to inhibit G1/S progression during hyperoxia. Am. J. Physiol. Lung Cell. Mol. Physiol., 2004, 286(3), L506-L513.
[http://dx.doi.org/10.1152/ajplung.00243.2003] [PMID: 12936910]
[60]
Constantinescu, A.A.; Abbas, M.; Kassem, M.; Gleizes, C.; Kreutter, G.; Schini-Kerth, V.; Mitrea, I.L.; Toti, F.; Kessler, L. Differential influence of tacrolimus and sirolimus on mitochondrial-dependent signaling for apoptosis in pancreatic cells. Mol. Cell. Biochem., 2016, 418(1-2), 91-102.
[http://dx.doi.org/10.1007/s11010-016-2736-8] [PMID: 27344165]
[61]
White, M.; Montezano, A.C.; Touyz, R.M. Angiotensin II signalling and calcineurin in cardiac fibroblasts: Differential effects of calcineurin inhibitors FK506 and cyclosporine A. Ther. Adv. Cardiovasc. Dis., 2012, 6(1), 5-14.
[http://dx.doi.org/10.1177/1753944711432901] [PMID: 22184128]
[62]
Oyouni, A.A.A.; Saggu, S.; Tousson, E.; Rehman, H. Immunosuppressant drug tacrolimus induced mitochondrial nephrotoxicity, modified PCNA and Bcl-2 expression attenuated by Ocimum basilicum L. in CD1 mice. Toxicol. Rep., 2018, 5, 687-694.
[http://dx.doi.org/10.1016/j.toxrep.2018.06.003] [PMID: 30003047]
[63]
Zhang, J.; Li, H.; Wang, G. S.; Jiang, N.; Yang, Y.; Chen, G. H. Effects of sirolimus on the growth of transplanted hepatocellular carcinoma. Chinese J. Hepatol., 2009, 17(6), 413-416.
[64]
Wang, S.C. PCNA: A silent housekeeper or a potential therapeutic target? Trends Pharmacol. Sci., 2014, 35(4), 178-186.
[http://dx.doi.org/10.1016/j.tips.2014.02.004] [PMID: 24655521]
[65]
Naryzhny, S.N.; Lee, H. Proliferating cell nuclear antigen in the cytoplasm interacts with components of glycolysis and cancer. FEBS Lett., 2010, 584(20), 4292-4298.
[http://dx.doi.org/10.1016/j.febslet.2010.09.021] [PMID: 20849852]
[66]
Rosental, B.; Brusilovsky, M.; Hadad, U.; Oz, D.; Appel, M.Y.; Afergan, F.; Yossef, R.; Rosenberg, L.A.; Aharoni, A.; Cerwenka, A.; Campbell, K.S.; Braiman, A.; Porgador, A. Proliferating cell nuclear antigen is a novel inhibitory ligand for the natural cytotoxicity receptor NKp44. J. Immunol., 2011, 187(11), 5693-5702.
[http://dx.doi.org/10.4049/jimmunol.1102267] [PMID: 22021614]
[67]
Venturi, A.; Piaz, F.D.; Giovannini, C.; Gramantieri, L.; Chieco, P.; Bolondi, L. Human hepatocellular carcinoma expresses specific PCNA isoforms: An in vivo and in vitro evaluation. Lab. Invest., 2008, 88(9), 995-1007.
[http://dx.doi.org/10.1038/labinvest.2008.50] [PMID: 18521065]
[68]
Wang, S-C.; Nakajima, Y.; Yu, Y.L.; Xia, W.; Chen, C.T.; Yang, C.C.; McIntush, E.W.; Li, L.Y.; Hawke, D.H.; Kobayashi, R.; Hung, M.C. Tyrosine phosphorylation controls PCNA function through protein stability. Nat. Cell Biol., 2006, 8(12), 1359-1368.
[http://dx.doi.org/10.1038/ncb1501] [PMID: 17115032]
[69]
Liu, H.H.; Fang, Y.; Wang, J.W.; Yuan, X.D.; Fan, Y.C.; Gao, S.; Han, L.Y.; Wang, K. Hypomethylation of the cyclin D1 promoter in hepatitis B virus-associated hepatocellular carcinoma. Medicine (Baltimore), 2020, 99(20), e20326.
[http://dx.doi.org/10.1097/MD.0000000000020326] [PMID: 32443384]
[70]
Zheng, S.Z.; Sun, P.; Wang, J.P.; Liu, Y.; Gong, W.; Liu, J. MiR-34a overexpression enhances the inhibitory effect of doxorubicin on HepG2 cells. World J. Gastroenterol., 2019, 25(22), 2752-2762.
[http://dx.doi.org/10.3748/wjg.v25.i22.2752] [PMID: 31235998]
[71]
Wiestner, A.; Tehrani, M.; Chiorazzi, M.; Wright, G.; Gibellini, F.; Nakayama, K.; Liu, H.; Rosenwald, A.; Muller-Hermelink, H.K.; Ott, G.; Chan, W.C.; Greiner, T.C.; Weisenburger, D.D.; Vose, J.; Armitage, J.O.; Gascoyne, R.D.; Connors, J.M.; Campo, E.; Montserrat, E.; Bosch, F.; Smeland, E.B.; Kvaloy, S.; Holte, H.; Delabie, J.; Fisher, R.I.; Grogan, T.M.; Miller, T.P.; Wilson, W.H.; Jaffe, E.S.; Staudt, L.M. Point mutations and genomic deletions in CCND1 create stable truncated cyclin D1 mRNAs that are associated with increased proliferation rate and shorter survival. Blood, 2007, 109(11), 4599-4606.
[http://dx.doi.org/10.1182/blood-2006-08-039859] [PMID: 17299095]
[72]
Patil, M.A.; Lee, S.A.; Macias, E.; Lam, E.T.; Xu, C.; Jones, K.D.; Ho, C.; Rodriguez-Puebla, M.; Chen, X. Role of cyclin D1 as a mediator of c-Met- and β-catenin-induced hepatocarcinogenesis. Cancer Res., 2009, 69(1), 253-261.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2514] [PMID: 19118010]
[73]
Xia, W.; Lo, C.M.; Poon, R.Y.C.; Cheung, T.T.; Chan, A.C.Y.; Chen, L.; Yang, S.; Tsao, G.S.W.; Wang, X.Q. Smad inhibitor induces CSC differentiation for effective chemosensitization in cyclin D1- and TGF-β/Smad-regulated liver cancer stem cell-like cells. Oncotarget, 2017, 8(24), 38811-38824.
[http://dx.doi.org/10.18632/oncotarget.16402] [PMID: 28415588]
[74]
Orr, S.J.; Gaymes, T.; Ladon, D.; Chronis, C.; Czepulkowski, B.; Wang, R.; Mufti, G.J.; Marcotte, E.M.; Thomas, N.S. Reducing MCM levels in human primary T cells during the G(0)->G(1) transition causes genomic instability during the first cell cycle. Oncogene, 2010, 29(26), 3803-3814.
[http://dx.doi.org/10.1038/onc.2010.138] [PMID: 20440261]
[75]
Gorini, S.; De Angelis, A.; Berrino, L.; Malara, N.; Rosano, G.; Ferraro, E. Chemotherapeutic Drugs and Mitochondrial Dysfunction: Focus on Doxorubicin, Trastuzumab, and Sunitinib. Oxid. Med. Cell. Longev., 2018, 2018, 7582730.
[http://dx.doi.org/10.1155/2018/7582730] [PMID: 29743983]
[76]
Pommier, Y.; Leo, E.; Zhang, H.; Marchand, C. DNA topoisomerases and their poisoning by anticancer and antibacterial drugs. Chem. Biol., 2010, 17(5), 421-433.
[http://dx.doi.org/10.1016/j.chembiol.2010.04.012] [PMID: 20534341]
[77]
Capone, F.; Guerriero, E.; Sorice, A.; Colonna, G.; Storti, G.; Pagliuca, J.; Castello, G.; Costantini, S. Synergistic antitumor effect of Doxorubicin and tacrolimus (FK506) on hepatocellular carcinoma cell lines. ScientificWorldJournal, 2014, 2014, 450390.
[http://dx.doi.org/10.1155/2014/450390] [PMID: 24701168]
[78]
Sakai, M.; Miyake, H.; Tashiro, S.; Okumura, Y.; Kido, H. Inhibitory effect of FK506 and cyclosporine A on the growth and invasion of human liver cancer cells. J. Med. Invest., 2004, 51(1-2), 63-69.
[http://dx.doi.org/10.2152/jmi.51.63] [PMID: 15000258]
[79]
Migita, K.; Eguchi, K. FK 506-mediated T-cell apoptosis induction. Transplant. Proc., 2001, 33(3), 2292-2293.
[http://dx.doi.org/10.1016/S0041-1345(01)01994-7] [PMID: 11377532]
[80]
Navarro-Villarán, E.; de la Cruz-Ojeda, P.; Contreras, L.; González, R.; Negrete, M.; Rodríguez-Hernández, M. A.; Marín-Gómez, L. M.; Álamo-Martínez, J. M.; Calvo, A.; Gómez-Bravo, M. A.; de la Cruz, J.; Padillo, J.; Muntané, J. Molecular Pathways Leading to Induction of Cell Death and Anti-Proliferative Properties by Tacrolimus and mTOR Inhibitors in Liver Cancer Cells. Cellular physiology and biochemistry: International journal of experimental cellular physiology, biochemistry, and pharmacology, 2020, 54(3), 457-473.
[http://dx.doi.org/10.33594/000000230]

© 2024 Bentham Science Publishers | Privacy Policy