Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Mini-Review Article

Applications of 3-Substituted 2-Alkoxy- and 2-Alkylthiopropenals in Organic Synthesis

Author(s): Nadezhda V. Vchislo* and Ekaterina A. Verochkina

Volume 19, Issue 2, 2022

Published on: 22 April, 2021

Page: [173 - 179] Pages: 7

DOI: 10.2174/1570193X18666210422121054

Price: $65

Abstract

α-Functionally substituted α,β-unsaturated aldehydes belong to the highly reactive class of compounds. They are used as versatile building blocks in organic synthesis. Due to the presence of several reactive sites in their structure, α,β-unsaturated aldehydes are widely employed as precursors of various acyclic and heterocyclic compounds, as well as complex natural products. At the same time, the acrylic systems with heteroatomic substituents (OAlk, SAlk) in the α-position are poorly studied. Therefore, it is impossible to establish the distribution of electron density reliably and evaluate the real reactivity of each new representative of this class of compounds. This minireview summarizes the works demonstrating the broad applicability of 3-substituted 2-alkoxy and 2- alkylthiopropenals in organic synthesis.

Keywords: α, β-unsaturated aldehydes, heterocycles, hydrolysis, nucleophilic addition, organic synthesis, heteroatomic substituents.

Graphical Abstract
[1]
(a) Keiko, N.A.; Vchislo, N.V. α,β‐unsaturated aldehydes in the synthesis of five‐membered heterocyclic compounds with one heteroatom: Recent Advances from Developments in Metal‐ and Organocatalysis. Asian J. Org. Chem., 2016, 5(4), 439-461.
[http://dx.doi.org/10.1002/ajoc.201600010]
(b) Keiko, N.A.; Vchislo, N.V. Synthesis of diheteroatomic five‐membered heterocyclic compounds from α,β‐unsaturated aldehydes. Asian J. Org. Chem., 2016, 5(10), 1169-1197.
[http://dx.doi.org/10.1002/ajoc.201600227]
(c) Vchislo, N.V. α,β‐unsaturated aldehydes as C‐building blocks in the synthesis of pyridines, 1,4‐dihydropyridines and 1,2‐dihydropyridines. Asian J. Org. Chem., 2019, 8(8), 1207-1226.
[http://dx.doi.org/10.1002/ajoc.201900275]
(d) Vinogradov, M.G.; Turova, O.V.; Zlotin, S.G. Recent advances in the asymmetric synthesis of pharmacology-relevant nitrogen heterocycles via stereoselective aza-Michael reactions. Org. Biomol. Chem., 2019, 17(15), 3670-3708.
[http://dx.doi.org/10.1039/C8OB03034K] [PMID: 30874264]
(e) Vchislo, N.V. Epoxides and Aziridines from α,β‐Unsaturated Aldehydes. Mini Rev. Org. Chem., 2017, 14(3), 197-203.
[http://dx.doi.org/10.2174/1570193X14666170206114541]
(f) Vchislo, N.V.; Verochkina, E.A. Recent Advances in Total Synthesis of Alkaloids from α,β‐Unsaturated Aldehydes. ChemistrySelect, 2020, 5(31), 9579-9589.
[http://dx.doi.org/10.1002/slct.202002872]
[2]
(a) Erkkilä, A.; Majander, I.; Pihko, P.M. Iminium catalysis. Chem. Rev., 2007, 107(12), 5416-5470.
[http://dx.doi.org/10.1021/cr068388p] [PMID: 18072802]
(b) Pellissier, H. Recent Developments in Asymmetric Organocatalytic Domino Reactions. Adv. Synth. Catal., 2012, 354(2-3), 237-294.
[http://dx.doi.org/10.1002/adsc.201100714]
(c) Vicario, J.L.; Badía, D.; Carrillo, L.; Reyes, E. Organocatalytic enantioselective conjugate addition reactions: A powerfull tool for the stereocontrolled synthesis of complex molecules, 2010, 1-16.
(d) Albrecht, Ł.; Jiang, H.; Jørgensen, K.A. 2020.
(e) Reyes-Rodríguez, G.J.; Rezayee, N.M.; Vidal-Albalat, A.; Jørgensen, K.A. Prevalence of diarylprolinol silyl ethers as catalysts in total synthesis and patents. Chem. Rev., 2019, 119(6), 4221-4260.
[http://dx.doi.org/10.1021/acs.chemrev.8b00583] [PMID: 30747525]
[3]
(a) Kappe, C.O. Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed. Engl. 2004, 43(46), 6250-6284.
[http://dx.doi.org/10.1002/anie.200400655] [PMID: 15558676]
Kappe, C.O.; Stadler, A.; Dallinger, D. Microwave in Organic and Medicinal Chemistry. 2012, Vol. 52
[http://dx.doi.org/10.1002/9783527647828]
[4]
(a) Spandl, R.J.; Díaz-Gavilán, M.; O’Connell, K.M.; Thomas, G.L.; Spring, D.R. Diversity-oriented synthesis. Chem. Rec., 2008, 8(3), 129-142.
[http://dx.doi.org/10.1002/tcr.20144] [PMID: 18563806]
(b) Burke, M.D.; Schreiber, S.L. A planning strategy for diversity-oriented synthesis. Angew. Chem. Int. Ed. Engl., 2004, 43(1), 46-58.
[http://dx.doi.org/10.1002/anie.200300626] [PMID: 14694470]
[5]
(a) Wetzel, S.; Bon, R.S.; Kumar, K.; Waldmann, H. Biology-oriented synthesis. Angew. Chem. Int. Ed. Engl., 2011, 50(46), 10800-10826.
[http://dx.doi.org/10.1002/anie.201007004] [PMID: 22038946]
(b) van Hattum, H.; Waldmann, H. Biology-oriented synthesis: harnessing the power of evolution. J. Am. Chem. Soc., 2014, 136(34), 11853-11859.
[http://dx.doi.org/10.1021/ja505861d] [PMID: 25074019]
[6]
Fyjita, E.; Nagao, Y. Tumor inhibitors having potential for interaction with mercapto enzymes and/or coenzymes: A review. Bioorg. Chem., 1977, 6(3), 287-309.
[http://dx.doi.org/10.1016/0045-2068(77)90030-X]
[7]
(a) Chang, G.G.; Shiao, M-S.; Lee, K-R.; Wu, J-J. Modification of human placental alkaline phosphatase by periodate-oxidized 1,N6-ethenoadenosine monophosphate. Biochem. J., 1990, 272(3), 683-690.
[http://dx.doi.org/10.1042/bj2720683] [PMID: 2176472]
(b) Sy, L.K.; Brown, G.D. Coniferaldehyde Derivatives from Tissue Culture of Artemisia Annua and Tanacetum Parthenium. Phytochemistry, 1999, 5(10), 781-785.
[http://dx.doi.org/10.1016/S0031-9422(98)00607-4]
[8]
Kim, H.; Ralph, J.; Lu, F.; Ralph, S.A.; Boudet, A.M.; MacKay, J.J.; Sederoff, R.R.; Ito, T.; Kawai, S.; Ohashi, H.; Higuchi, T. NMR analysis of lignins in CAD-deficient plants. Part 1. Incorporation of hydroxycinnamaldehydes and hydroxybenzaldehydes into lignins. Org. Biomol. Chem., 2003, 1(2), 268-281.
[http://dx.doi.org/10.1039/b209686b] [PMID: 12929422]
[9]
(a) Mamashvili, T.N.; Keiko, N.A.; Chipanina, N.N.; Voronkov, M.G.; Potapova, G.I.; Gudratov, O.N.; Treshchalina, E.M. Synthesis of methylglyoxal thiosemicarbazone and its copper-containing complex possessing DNA-inhibiting and antitumor activity. Pharm. Chem. J., 1999, 33(11), 579-581.
[http://dx.doi.org/10.1007/BF02508278]
(b) Keiko, N.A.; Stepanova, L.G.; Voronkov, M.G.; Potapova, G.I.; Gudratov, O.N.; Treshchalina, E.M. Synthesis, DNA-Inhibiting Activity, and Antitumor Activity of 2-Formyl-2,5-dimethoxy-2,3-dihydro-4H-pyran thiosemicarbazone, a related ethyl analog, and a copper complex. Pharm. Chem. J., 2002, 36, 407.
[http://dx.doi.org/10.1023/A:1021246107534]
(c) Keiko, N.A.; Stepanova, L.G.; Kleptsova, E.A.; Vdovina, G.P.; Odegova, T.F. synthesis and antimicrobial activity of new aldehydes and acetals. Pharm. Chem. J., 2009, 43(9), 502-504.
[http://dx.doi.org/10.1007/s11094-009-0339-3]
[10]
(a) Keiko, N.A.; Mamashvili, T.N. New syntheses of the bis-guanylhydrazone and bis-thiosemicarbazone of methylglyoxal. Pharm. Chem. J., 2005, 39, 82-83.
[http://dx.doi.org/10.1007/s11094-005-0088-x]
(b) Mamashvili, T.N.; Keiko, N.A.; Sarapulova, G.I.; Voronkov, M.G. hydrolysis of 2-alkoxyalk-2-enals. Russ. Chem. Bull., 1998, 47, 2465.
[http://dx.doi.org/10.1007/BF02641556]
[11]
Kalapos, M.P. Methylglyoxal in living organisms: chemistry, biochemistry, toxicology and biological implications. Toxicol. Lett., 1999, 110(3), 145-175.
[http://dx.doi.org/10.1016/S0378-4274(99)00160-5] [PMID: 10597025]
[12]
(a) Keiko, N.A.; Aksamentova, T.N.; Chipanina, N.N.; Verochkina, E.A.; Vchislo, N.V. 2-Alkoxy- and 2-alkylthio-2-alkenals in the reactions of electrophilic and nucleophilic addition. DFT study and NBO analysis. Tetrahedron, 2013, 69(8), 2022-2032.
[http://dx.doi.org/10.1016/j.tet.2012.12.055]
(b) Keiko, N.A.; Verochkina, E.A.; Vchislo, N.V.; Larina, L.I. One-pot, three-component cascade synthesis of new tetrasubstituted pyrroles by coupling reaction of 2-functionally substituted 2-alkenals, amines, and nitroethane. Tetrahedron, 2014, 70(46), 8959-8970.
[http://dx.doi.org/10.1016/j.tet.2014.08.040]
[13]
Shiraishi, H.; Nishitani, T.; Sakaguchi, S.; Ishii, Y. Preparation of substituted alkylpyrroles via samarium-catalyzed three-component coupling reaction of aldehydes, amines, and nitroalkanes. J. Org. Chem., 1998, 63(18), 6234-6238.
[http://dx.doi.org/10.1021/jo980435t] [PMID: 11672254]
[14]
Keiko, N.A.; Vchislo, N.V.; Verochkina, E.A.; Chuvashev, Y.A.; Larina, L.I. hydrolysis of (Z)-2-alkoxy-3-arylpropenals as a short-cut to benzylglyoxals. Mend. Commun., 2016, 26(5), 431-433.
[http://dx.doi.org/10.1016/j.mencom.2016.09.023]
[15]
Eftekhari-Sis, B.; Zirak, M.; Akbari, A. Arylglyoxals in synthesis of heterocyclic compounds. Chem. Rev., 2013, 113(5), 2958-3043.
[http://dx.doi.org/10.1021/cr300176g] [PMID: 23347156]
[16]
(a) Fröhlich, L.G.; Kotsonis, P.; Traub, H.; Taghavi-Moghadam, S.; Al-Masoudi, N.; Hofmann, H.; Strobel, H.; Matter, H.; Pfleiderer, W.; Schmidt, H.H.H.W. Inhibition of neuronal nitric oxide synthase by 4-amino pteridine derivatives: structure-activity relationship of antagonists of (6R)-5,6,7,8-tetrahydrobiopterin cofactor. J. Med. Chem., 1999, 42(20), 4108-4121.
[http://dx.doi.org/10.1021/jm981129a] [PMID: 10514281]
(b) Mosrin, M.; Bresser, T.; Knochel, P. Regio- and chemoselective multiple functionalization of chloropyrazine derivatives. Application to the synthesis of coelenterazine. Org. Lett., 2009, 11(15), 3406-3409.\
[http://dx.doi.org/10.1021/ol901275n] [PMID: 19719188]
(c) Lu, Y.; Hendra, R.; Oakley, A.J.; Keller, P.A. Efficient synthesis and antioxidant activity of coelenterazine analogues. Tetrahedron Lett., 2014, 55, 6212.
[http://dx.doi.org/10.1016/j.tetlet.2014.09.065]
[17]
Vchislo, N.V.; Verochkina, E.A.; Larina, L.I.; Vashchenko, A.V.; Chuvashev, Y.A. Reaction of 2-Alkoxy- and 2-Hydroxypropenals with o-phenylenediamine: a route to benzimidazoles and quinoxalines. Mend. Commun., 2017, 27, 166.
[http://dx.doi.org/10.1016/j.mencom.2017.03.020]
[18]
(a) Smits, R.A.; Lim, H.D.; Hanzer, A.; Zuiderveld, O.P.; Guaita, E.; Adami, M.; Coruzzi, G.; Leurs, R.; de Esch, I.J.P. Fragment based design of new H4 receptor-ligands with anti-inflammatory properties in vivo. J. Med. Chem., 2008, 51(8), 2457-2467.
[http://dx.doi.org/10.1021/jm7014217] [PMID: 18357976]
(b) Tariq, S.; Somakala, K.; Amir, M. Quinoxaline: An insight into the recent pharmacological advances. Eur. J. Med. Chem., 2018, 143, 542-557.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.064] [PMID: 29207337]
(c) Roy, N.; Sen, U.; Madaan, Y.; Muthukumar, V.; Varddhan, S.; Sahoo, S.K.; Panda, D.; Bose, B.; Paira, P. Mitochondria-targeting click-derived pyridinyltriazolylmethylquinoxaline-based Y-shaped binuclear luminescent ruthenium(II) and iridium(III) complexes as cancer theranostic agents. Inorg. Chem., 2020, 59(23), 17689-17711.
[http://dx.doi.org/10.1021/acs.inorgchem.0c02928] [PMID: 33210921]
[19]
Adamovich, S.N.; Vchislo, N.V.; Oborina, E.N.; Ushakov, I.A.; Rozentsveig, I.B. Novel α,β-unsaturated imine derivatives of 3-aminopropylsilatrane. Mend. Commun, 2017, 27, 443-445.
[http://dx.doi.org/10.1016/j.mencom.2017.09.003]
[20]
(a) Al Zoubi, W.; Al‐Hamdani, A.A.S.; Kaseem, M. Synthesis and Antioxidant Activities of Schiff Bases and Their Complexes: a Review. Appl. Organomet. Chem., 2016, 30(10), 810-817.
[http://dx.doi.org/10.1002/aoc.3506]
(b) Zuo, J.; Bi, C.; Fan, Y.; Buac, D.; Nardon, C.; Daniel, K.G.; Dou, Q.P. Cellular and computational studies of proteasome inhibition and apoptosis induction in human cancer cells by amino acid Schiff base-copper complexes. J. Inorg. Biochem., 2013, 118, 83-93.
[http://dx.doi.org/10.1016/j.jinorgbio.2012.10.006] [PMID: 23142973]
(c) Duff, B.; Thangella, V.R.; Creaven, B.S.; Walsh, M.; Egan, D.A. Anti-cancer activity and mutagenic potential of novel copper(II) quinolinone schiff base complexes in hepatocarcinoma cells. Eur. J. Pharmacol., 2012, 689(1-3), 45-55.
[http://dx.doi.org/10.1016/j.ejphar.2012.06.004] [PMID: 22705894]
(d) Devi, J.; Yadav, M.; Kumar, D.; Naik, L.S.; Jindal, D.K. Some divalent metal (II) complexes of salicylaldehyde‐derived schiff bases: Synthesis, spectroscopic characterization, antimicrobial and in vitro anticancer studies. Appl. Organomet. Chem., 2019, 33e4693
[http://dx.doi.org/10.1002/aoc.4693]
[21]
(a) Ye, F.; Song, X.; Liu, J.; Xu, X.; Wang, Y.; Hu, L.; Wang, Y.; Liang, G.; Guo, P.; Xie, Z. Design, synthesis, and biological evaluation of γ-aminopropyl silatrane-acyclovir hybrids with immunomodulatory effects. Chem. Biol. Drug Des., 2015, 86(4), 905-910.
[http://dx.doi.org/10.1111/cbdd.12519] [PMID: 25599975]
(b) Adamovich, S.N.; Ushakov, I.A.; Mirskova, A.N.; Mirskov, R.G.; Voronov, V.K. Novel complexes of 1-(2-Hydroxyethyl)-2-methyl-5-nitroimidazole with metal acetates and arylchalcogenylacetates. Mend. Commun., 2014, 24(5), 293-294.
[http://dx.doi.org/10.1016/j.mencom.2014.09.015]
(c) Singh, G.; Girdhar, S.; Khullarand, S.; Mandal, S.K. Imidazolyl-substituted silatranes derived from triethanolamine and tris(isopropanol)amine: syntheses and structural characterization. J. Coord. Chem., 2015, 68, 875.
[http://dx.doi.org/10.1080/00958972.2014.1003547]
[22]
(a) Adamovich, S.N. New atranes and similar ionic complexes. Synthesis, structure, properties. Appl. Organomet. Chem., 2019, 33e4940
[http://dx.doi.org/10.1002/aoc.4940]
(b) Materna, K.L.; Brennan, B.J.; Brudvig, G.W. Silatranes for binding inorganic complexes to metal oxide surfaces. Dalton Trans., 2015, 44(47), 20312-20315.
[http://dx.doi.org/10.1039/C5DT03463A] [PMID: 26506505]
(c) Huang, K-W.; Hsieh, C-W.; Kan, H-C.; Hsieh, M-L.; Hsieh, S.; Chau, L-K.; Chao, T-E.; Hsieh, C-W. Improved performance of aminopropylsilatrane over aminopropyltriethoxysilane as an adhesive film for anchoring gold nanoparticles on silicon surfaces. Nanosci. Nanotechnol, 2009, 9, 2894-2901.
[http://dx.doi.org/10.1166/jnn.2009.039]
[23]
Vchislo, N.V.; Fedoseeva, V.G.; Novokshonov, V.V.; Larina, L.I.; Rosentsveig, I.B.; Verochkina, E.A. Synthesis of new alkoxy/alkylthiovinylated oxazoles using tosylmethyl isocyanide. Mend. Commun., 2020, 30(3), 350-351.
[http://dx.doi.org/10.1016/j.mencom.2020.05.030]
[24]
Van Leusen, A.M.; Hoogenboom, B.E.; Siderius, H. A novel and efficient synthesis of oxazoles from tosylmethylisocyanide and carbonyl compounds. Tetrahedron Lett., 1972, 13, 2369.
[http://dx.doi.org/10.1016/S0040-4039(01)85305-3]
[25]
(a) Zhang, H-Z.; Zhao, Z-L.; Zhou, C.H. Recent advance in oxazole-based medicinal chemistry. Eur. J. Med. Chem., 2018, 144, 444-492.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.044] [PMID: 29288945]
(b) Zhang, D.; Guo, J.; Zhang, M.; Liu, X.; Ba, M.; Tao, X.; Yu, L.; Guo, Y.; Dai, J. Oxazole-containing diterpenoids from cell cultures of salvia miltiorrhiza and their Anti-HIV-1 activities. J. Nat. Prod., 2017, 80(12), 3241-3246.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00659] [PMID: 29185738]
(c) Zhou, H.; Cheng, J.Q.; Wang, Z-S.; Chen, F.H.; Liu, X.H. Oxazole: A promising building block for the development of potent antitumor agents. Curr. Top. Med. Chem., 2016, 16(30), 3582-3589.
[http://dx.doi.org/10.2174/1568026616666160414122521] [PMID: 27086791]
(d) Swellmeen, L. 1,3-Oxazole Derivatives: A review of biological activities as antipathogenic. Pharma Chem., 2016, 8, 269.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy