Generic placeholder image

Mini-Reviews in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-193X
ISSN (Online): 1875-6298

Review Article

Metallic Nanomaterials with Mimic Oxidoreductase Enzyme Activity: New Insight for Sensing and Biosensing

Author(s): Xuemin Huang, Bin Qiu*, Longhua Guo and Zhenyu Lin*

Volume 19, Issue 2, 2022

Published on: 22 April, 2021

Page: [231 - 241] Pages: 11

DOI: 10.2174/1570193X18666210422115819

Price: $65

Abstract

It has been found that the metallic nanomaterials with mimetic enzyme activity have multiple oxidoreductase-like enzyme activities, such as horseradish peroxidase, glutathione peroxidase, catalase, oxidase, glucose oxidase, etc. In recent years, many applied researches based on these nanozymes have been reported. This review summarizes three kinds of representative nanozymes, including metal nanomaterials, MOFs, metal oxide nanomaterials, and their corresponding applications in sensing and biosensing.

Keywords: Metallic nanomaterials, oxidoreductase enzyme, biosensing, horseradish peroxidase, glutathione peroxidase, catalase, oxidase, glucose oxidase.

Graphical Abstract
[1]
Behrens, M.; Studt, F.; Kasatkin, I.; Kühl, S.; Hävecker, M.; Abild-Pedersen, F.; Zander, S.; Girgsdies, F.; Kurr, P.; Kniep, B-L.; Tovar, M.; Fischer, R.W.; Nørskov, J.K.; Schlögl, R. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science, 2012, 336(6083), 893-897.
[http://dx.doi.org/10.1126/science.1219831] [PMID: 22517324]
[2]
Bornscheuer, U.T.; Huisman, G.W.; Kazlauskas, R.J.; Lutz, S.; Moore, J.C.; Robins, K. Engineering the third wave of biocatalysis. Nature, 2012, 485(7397), 185-194.
[http://dx.doi.org/10.1038/nature11117] [PMID: 22575958]
[3]
Gao, L.; Yan, X. Nanozymes: an emerging field bridging nanotechnology and biology. Sci. China Life Sci., 2016, 59(4), 400-402.
[http://dx.doi.org/10.1007/s11427-016-5044-3] [PMID: 27002958]
[4]
Choct, M. Enzymes for the feed industry: Past, present and future. Worlds Poult. Sci. J., 2006, 62, 5-16.
[http://dx.doi.org/10.1079/WPS200480]
[5]
Gurung, N.; Ray, S.; Bose, S.; Rai, V. A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. BioMed Res. Int., 2013, 2013329121
[http://dx.doi.org/10.1155/2013/329121] [PMID: 24106701]
[6]
Wang, Q.; Wei, H.; Zhang, Z.; Wang, E.; Dong, S. Nanozyme: An emerging alternative to natural enzyme for biosensing and immunoassay. TrAC Trends Analyt. Chem., 2018, 105, 218-224.
[http://dx.doi.org/10.1016/j.trac.2018.05.012]
[7]
Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; Yan, X. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol., 2007, 2(9), 577-583.
[http://dx.doi.org/10.1038/nnano.2007.260] [PMID: 18654371]
[8]
Lin, Y.; Ren, J.; Qu, X. Nano-gold as artificial enzymes: hidden talents. Adv. Mater., 2014, 26(25), 4200-4217.
[http://dx.doi.org/10.1002/adma.201400238] [PMID: 24692212]
[9]
Yin, W.; Yu, J.; Lv, F.; Yan, L.; Zheng, L.R.; Gu, Z.; Zhao, Y. Functionalized Nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications. ACS Nano, 2016, 10(12), 11000-11011.
[http://dx.doi.org/10.1021/acsnano.6b05810] [PMID: 28024334]
[10]
Biparva, P.; Abedirad, S.M.; Kazemi, S.Y. ZnO nanoparticles as an oxidase mimic-mediated flow-injection chemiluminescence system for sensitive determination of carvedilol. Talanta, 2014, 130, 116-121.
[http://dx.doi.org/10.1016/j.talanta.2014.06.036] [PMID: 25159387]
[11]
Dalapati, R.; Sakthivel, B.; Ghosalya, M.K.; Dhakshinamoorthy, A.; Biswas, S. A cerium-based metal–organic framework having inherent oxidase-like activity applicable for colorimetric sensing of biothiols and aerobic oxidation of thiols. CrystEngComm, 2017, 19, 5915-5925.
[http://dx.doi.org/10.1039/C7CE01053B]
[12]
Pogacean, F.; Socaci, C.; Pruneanu, S.; Biris, A.R.; Coros, M.; Magerusan, L.; Katona, G.; Turcu, R.; Borodi, G. Graphene based nanomaterials as chemical sensors for hydrogen peroxide – A comparison study of their intrinsic peroxidase catalytic behavior. Sens. Actuators B Chem., 2015, 213, 474-483.
[http://dx.doi.org/10.1016/j.snb.2015.02.124]
[13]
Lin, Y.; Ren, J.; Qu, X. Catalytically active nanomaterials: a promising candidate for artificial enzymes. Acc. Chem. Res., 2014, 47(4), 1097-1105.
[http://dx.doi.org/10.1021/ar400250z] [PMID: 24437921]
[14]
Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes (II). Chem. Soc. Rev., 2019, 48(4), 1004-1076.
[http://dx.doi.org/10.1039/C8CS00457A] [PMID: 30534770]
[15]
Wei, H.; Wang, E. Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chem. Soc. Rev., 2013, 42(14), 6060-6093.
[http://dx.doi.org/10.1039/c3cs35486e] [PMID: 23740388]
[16]
Zhou, Y.; Liu, B.; Yang, R.; Liu, J. Filling in the gaps between nanozymes and enzymes: challenges and opportunities. Bioconjug. Chem., 2017, 28(12), 2903-2909.
[http://dx.doi.org/10.1021/acs.bioconjchem.7b00673] [PMID: 29172463]
[17]
Sharma, T.K.; Ramanathan, R.; Weerathunge, P.; Mohammadtaheri, M.; Daima, H.K.; Shukla, R.; Bansal, V. Aptamer-mediated ‘turn-off/turn-on’ nanozyme activity of gold nanoparticles for kanamycin detection. Chem. Commun. (Camb.), 2014, 50(100), 15856-15859.
[http://dx.doi.org/10.1039/C4CC07275H] [PMID: 25331713]
[18]
Tian, L.; Qi, J.; Oderinde, O.; Yao, C.; Song, W.; Wang, Y. Planar intercalated copper (II) complex molecule as small molecule enzyme mimic combined with Fe3O4 nanozyme for bienzyme synergistic catalysis applied to the microRNA biosensor. Biosens. Bioelectron., 2018, 110, 110-117.
[http://dx.doi.org/10.1016/j.bios.2018.03.045] [PMID: 29604519]
[19]
Qiu, H.; Pu, F.; Ran, X.; Liu, C.; Ren, J.; Qu, X. Nanozyme as artificial receptor with multiple readouts for pattern recognition. Anal. Chem., 2018, 90(20), 11775-11779.
[http://dx.doi.org/10.1021/acs.analchem.8b03807] [PMID: 30264986]
[20]
Duan, D.; Fan, K.; Zhang, D.; Tan, S.; Liang, M.; Liu, Y.; Zhang, J.; Zhang, P.; Liu, W.; Qiu, X.; Kobinger, G.P.; Gao, G.F.; Yan, X. Nanozyme-strip for rapid local diagnosis of Ebola. Biosens. Bioelectron., 2015, 74, 134-141.
[http://dx.doi.org/10.1016/j.bios.2015.05.025] [PMID: 26134291]
[21]
Chen, W.; Li, S.; Wang, J.; Sun, K.; Si, Y. Metal and metal-oxide nanozymes: bioenzymatic characteristics, catalytic mechanism, and eco-environmental applications. Nanoscale, 2019, 11(34), 15783-15793.
[http://dx.doi.org/10.1039/C9NR04771A] [PMID: 31432841]
[22]
Huang, Y.; Ran, X.; Lin, Y.; Ren, J.; Qu, X. Self-assembly of an organic-inorganic hybrid nanoflower as an efficient biomimetic catalyst for self-activated tandem reactions. Chem. Commun. (Camb.), 2015, 51(21), 4386-4389.
[http://dx.doi.org/10.1039/C5CC00040H] [PMID: 25676383]
[23]
Chen, Z.; Wang, Z.; Ren, J.; Qu, X. Enzyme mimicry for combating bacteria and biofilms. Acc. Chem. Res., 2018, 51(3), 789-799.
[http://dx.doi.org/10.1021/acs.accounts.8b00011] [PMID: 29489323]
[24]
Niu, J.; Sun, Y.; Wang, F.; Zhao, C.; Ren, J.; Qu, X. Photomodulated nanozyme used for a gram-selective antimicrobial. Chem. Mater., 2018, 30, 7027-7033.
[http://dx.doi.org/10.1021/acs.chemmater.8b02365]
[25]
Wu, J.; Li, S.; Wei, H. Integrated nanozymes: facile preparation and biomedical applications. Chem. Commun. (Camb.), 2018, 54(50), 6520-6530.
[http://dx.doi.org/10.1039/C8CC01202D] [PMID: 29564455]
[26]
Zhang, X.; Li, G.; Wu, D.; Li, X.; Hu, N.; Chen, J.; Chen, G.; Wu, Y. Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy. Biosens. Bioelectron., 2019, 137, 178-198.
[http://dx.doi.org/10.1016/j.bios.2019.04.061] [PMID: 31100598]
[27]
Zhang, Y.; Li, S.; Liu, H.; Long, W.; Zhang, X-D. Enzyme-like properties of gold clusters for biomedical application. Front Chem., 2020, 8, 219.
[http://dx.doi.org/10.3389/fchem.2020.00219] [PMID: 32309272]
[28]
Liang, M.; Fan, K.; Pan, Y.; Jiang, H.; Wang, F.; Yang, D. Di Lu; Feng, J.; Zhao, J.; Yang, L.; Yan, X. Fe3O4 magnetic nanoparticle peroxidase mimic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent. Anal. Chem., 2013, 85, 308-312.
[http://dx.doi.org/10.1021/ac302781r] [PMID: 23153113]
[29]
Hu, Y.; Cheng, H.; Zhao, X.; Wu, J.; Muhammad, F.; Lin, S.; He, J.; Zhou, L.; Zhang, C.; Deng, Y.; Wang, P.; Zhou, Z.; Nie, S.; Wei, H. Surface-enhanced raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues. ACS Nano, 2017, 11(6), 5558-5566.
[http://dx.doi.org/10.1021/acsnano.7b00905] [PMID: 28549217]
[30]
Zheng, X.; Liu, Q.; Jing, C.; Li, Y.; Li, D.; Luo, W.; Wen, Y.; He, Y.; Huang, Q.; Long, Y.T.; Fan, C. Catalytic gold nanoparticles for nanoplasmonic detection of DNA hybridization. Angew. Chem. Int. Ed. Engl., 2011, 50(50), 11994-11998.
[http://dx.doi.org/10.1002/anie.201105121] [PMID: 21998071]
[31]
Ni, P.; Chen, C.; Jiang, Y.; Zhang, C.; Wang, B.; Cao, B.; Li, C.; Lu, Y. Gold nanoclusters-based dual-channel assay for colorimetric and turn-on fluorescent sensing of alkaline phosphatase. Sens. Actuators B Chem., 2019, 301127080
[http://dx.doi.org/10.1016/j.snb.2019.127080]
[32]
Xiong, Y.; Chen, S.; Ye, F.; Su, L.; Zhang, C.; Shen, S.; Zhao, S. Synthesis of a mixed valence state Ce-MOF as an oxidase mimetic for the colorimetric detection of biothiols. Chem. Commun. (Camb.), 2015, 51(22), 4635-4638.
[http://dx.doi.org/10.1039/C4CC10346G] [PMID: 25690559]
[33]
Huang, Y.; Zhao, M.; Han, S.; Lai, Z.; Yang, J.; Tan, C.; Ma, Q.; Lu, Q.; Chen, J.; Zhang, X.; Zhang, Z.; Li, B.; Chen, B.; Zong, Y.; Zhang, H. Growth of Au nanoparticles on 2D metalloporphyrinic metal-organic framework nanosheets used as biomimic catalysts for cascade reactions. Adv. Mater. (Deerfield Beach, Fla.), 2017, 291700102
[http://dx.doi.org/10.1002/adma.201700102]
[34]
Zhang, Y.; Wang, F.; Liu, C.; Wang, Z.; Kang, L.; Huang, Y.; Dong, K.; Ren, J.; Qu, X. Nanozyme decorated metal-organic frameworks for enhanced photodynamic therapy. ACS Nano, 2018, 12(1), 651-661.
[http://dx.doi.org/10.1021/acsnano.7b07746] [PMID: 29290107]
[35]
Ge, C.; Fang, G.; Shen, X.; Chong, Y.; Wamer, W.G.; Gao, X.; Chai, Z.; Chen, C.; Yin, J-J. Facet energy versus enzyme-like activities: the unexpected protection of palladium nanocrystals against oxidative damage. ACS Nano, 2016, 10(11), 10436-10445.
[http://dx.doi.org/10.1021/acsnano.6b06297] [PMID: 27934089]
[36]
Huang, Y.; Liu, Z.; Liu, C.; Ju, E.; Zhang, Y.; Ren, J.; Qu, X. Self-assembly of multi-nanozymes to mimic an intracellular antioxidant defense system. Angew. Chem. Int. Ed. Engl., 2016, 55(23), 6646-6650.
[http://dx.doi.org/10.1002/anie.201600868] [PMID: 27098681]
[37]
Li, W.; Liu, Z.; Liu, C.; Guan, Y.; Ren, J.; Qu, X. Manganese dioxide nanozymes as responsive cytoprotective shells for individual living cell encapsulation. Angew. Chem. Int. Ed. Engl., 2017, 56(44), 13661-13665.
[http://dx.doi.org/10.1002/anie.201706910] [PMID: 28884490]
[38]
Kim, C.K.; Kim, T.; Choi, I-Y.; Soh, M.; Kim, D.; Kim, Y-J.; Jang, H.; Yang, H-S.; Kim, J.Y.; Park, H-K.; Park, S.P.; Park, S.; Yu, T.; Yoon, B-W.; Lee, S-H.; Hyeon, T. Ceria nanoparticles that can protect against ischemic stroke. Angew. Chem. Int. Ed. Engl., 2012, 51(44), 11039-11043.
[http://dx.doi.org/10.1002/anie.201203780] [PMID: 22968916]
[39]
Li, Y.; He, X.; Yin, J-J.; Ma, Y.; Zhang, P.; Li, J.; Ding, Y.; Zhang, J.; Zhao, Y.; Chai, Z.; Zhang, Z. Acquired superoxide-scavenging ability of ceria nanoparticles. Angew. Chem. Int. Ed. Engl., 2015, 54(6), 1832-1835.
[http://dx.doi.org/10.1002/anie.201410398] [PMID: 25515687]
[40]
Lin, Y.; Li, Z.; Chen, Z.; Ren, J.; Qu, X. Mesoporous silica-encapsulated gold nanoparticles as artificial enzymes for self-activated cascade catalysis. Biomaterials, 2013, 34(11), 2600-2610.
[http://dx.doi.org/10.1016/j.biomaterials.2013.01.007] [PMID: 23352119]
[41]
Vernekar, A.A.; Sinha, D.; Srivastava, S.; Paramasivam, P.U.; D’Silva, P.; Mugesh, G. An antioxidant nanozyme that uncovers the cytoprotective potential of vanadia nanowires. Nat. Commun., 2014, 5, 5301.
[http://dx.doi.org/10.1038/ncomms6301] [PMID: 25412933]
[42]
Huang, Y.; Ren, J.; Qu, X. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev., 2019, 119(6), 4357-4412.
[http://dx.doi.org/10.1021/acs.chemrev.8b00672] [PMID: 30801188]
[43]
Yan, Z.; Yuan, H.; Zhao, Q.; Xing, L.; Zheng, X.; Wang, W.; Zhao, Y.; Yu, Y.; Hu, L.; Yao, W. Recent developments of nanoenzyme-based colorimetric sensors for heavy metal detection and the interaction mechanism. Analyst (Lond.), 2020, 145(9), 3173-3187.
[http://dx.doi.org/10.1039/D0AN00339E] [PMID: 32222739]
[44]
Hasan, A.; Nanakali, N.M.Q.; Salihi, A.; Rasti, B.; Sharifi, M.; Attar, F.; Derakhshankhah, H.; Mustafa, I.A.; Abdulqadir, S.Z.; Falahati, M. Nanozyme-based sensing platforms for detection of toxic mercury ions: An alternative approach to conventional methods. Talanta, 2020, 215120939
[http://dx.doi.org/10.1016/j.talanta.2020.120939] [PMID: 32312429]
[45]
Zhang, X. Di Wu; Zhou, X.; Yu, Y.; Liu, J.; Hu, N.; Wang, H.; Li, G.; Wu, Y. Recent progress in the construction of nanozyme-based biosensors and their applications to food safety assay. TrAC Trends Analyt. Chem., 2019, 121115668
[http://dx.doi.org/10.1016/j.trac.2019.115668]
[46]
Biswas, S.; Tripathi, P.; Kumar, N.; Nara, S. Gold nanorods as peroxidase mimics and its application for colorimetric biosensing of malathion. Sens. Actuators B Chem., 2016, 231, 584-592.
[http://dx.doi.org/10.1016/j.snb.2016.03.066]
[47]
Du, Z.; Wei, C. Using G‐rich sequence to enhance the peroxidase‐mimicking activity of DNA‐Cu/Ag nanoclusters for rapid colorimetric detection of hydrogen peroxide and glucose. ChemistrySelect, 2020, 5, 5166-5171.
[http://dx.doi.org/10.1002/slct.202000956]
[48]
Liu, L.; Du, J.; Liu, W-E.; Guo, Y.; Wu, G.; Qi, W.; Lu, X. Enhanced His@AuNCs oxidase-like activity by reduced graphene oxide and its application for colorimetric and electrochemical detection of nitrite. Anal. Bioanal. Chem., 2019, 411(10), 2189-2200.
[http://dx.doi.org/10.1007/s00216-019-01655-y] [PMID: 30868189]
[49]
Huang, X.; Lan, M.; Wang, J.; Guo, L.; Lin, Z.; Sun, N.; Wu, C.; Qiu, B. A fluorescence signal amplification and specific energy transfer strategy for sensitive detection of β-galactosidase based on the effects of AIE and host-guest recognition. Biosens. Bioelectron., 2020, 169112655
[http://dx.doi.org/10.1016/j.bios.2020.112655] [PMID: 33007614]
[50]
Huang, X.; Zhao, H.; Qiu, W.; Wang, J.; Guo, L.; Lin, Z.; Pan, W.; Wu, Y.; Qiu, B. A fluorescence signal amplification strategy for modification-free ratiometric determination of tyrosinase in situ based on the use of dual-templated copper nanoclusters. Mikrochim. Acta, 2020, 187(4), 240.
[http://dx.doi.org/10.1007/s00604-020-4186-y] [PMID: 32198661]
[51]
Jv, Y.; Li, B.; Cao, R. Positively-charged gold nanoparticles as peroxidase mimic and their application in hydrogen peroxide and glucose detection. Chem. Commun. (Camb.), 2010, 46(42), 8017-8019.
[http://dx.doi.org/10.1039/c0cc02698k] [PMID: 20871928]
[52]
Liu, Y.; Wang, C.; Cai, N.; Long, S.; Yu, F. Negatively charged gold nanoparticles as an intrinsic peroxidase mimic and their applications in the oxidation of dopamine. J. Mater. Sci., 2014, 49, 7143-7150.
[http://dx.doi.org/10.1007/s10853-014-8422-x]
[53]
Cao, G-X.; Wu, X-M.; Dong, Y-M.; Li, Z-J.; Wang, G-L. Colorimetric determination of melamine based on the reversal of the mercury(II) induced inhibition of the light-triggered oxidase-like activity of gold nanoclusters. Mikrochim. Acta, 2016, 183, 441-448.
[http://dx.doi.org/10.1007/s00604-015-1669-3]
[54]
Wang, F.; Ju, E.; Guan, Y.; Ren, J.; Qu, X. Light-mediated reversible modulation of ROS level in living cells by using an activity-controllable nanozyme. Small, 2017, 131603051
[55]
Zhou, H.; Han, T.; Wei, Q.; Zhang, S. Efficient enhancement of electrochemiluminescence from cadmium sulfide quantum dots by glucose oxidase mimicking gold nanoparticles for highly sensitive assay of methyltransferase activity. Anal. Chem., 2016, 88(5), 2976-2983.
[http://dx.doi.org/10.1021/acs.analchem.6b00450] [PMID: 26857780]
[56]
Zhang, H.; Liang, X.; Han, L.; Li, F. Non-naked” gold with glucose oxidase-like activity: a nanozyme for tandem catalysis. Small, 2018, 141803256
[57]
Hu, L.; Yuan, Y.; Zhang, L.; Zhao, J.; Majeed, S.; Xu, G. Copper nanoclusters as peroxidase mimetics and their applications to H2O2 and glucose detection. Anal. Chim. Acta, 2013, 762, 83-86.
[http://dx.doi.org/10.1016/j.aca.2012.11.056] [PMID: 23327949]
[58]
Lan, J.; Xu, W.; Wan, Q.; Zhang, X.; Lin, J.; Chen, J.; Chen, J. Colorimetric determination of sarcosine in urine samples of prostatic carcinoma by mimic enzyme palladium nanoparticles. Anal. Chim. Acta, 2014, 825, 63-68.
[http://dx.doi.org/10.1016/j.aca.2014.03.040] [PMID: 24767152]
[59]
Jin, L.; Meng, Z.; Zhang, Y.; Cai, S.; Zhang, Z.; Li, C.; Shang, L.; Shen, Y. Ultrasmall Pt nanoclusters as robust peroxidase mimics for colorimetric detection of glucose in human serum. ACS Appl. Mater. Interfaces, 2017, 9(11), 10027-10033.
[http://dx.doi.org/10.1021/acsami.7b01616] [PMID: 28244734]
[60]
Zhang, X.; Wang, B.; Alsalme, A.; Xiang, S.; Zhang, Z.; Chen, B. Design and applications of water-stable metal-organic frameworks: status and challenges. Coord. Chem. Rev., 2020, 423213507
[http://dx.doi.org/10.1016/j.ccr.2020.213507]
[61]
Zhang, X.; Chen, Z.; Liu, X.; Hanna, S.L.; Wang, X.; Taheri-Ledari, R.; Maleki, A.; Li, P.; Farha, O.K. A historical overview of the activation and porosity of metal-organic frameworks. Chem. Soc. Rev., 2020, 49(20), 7406-7427.
[http://dx.doi.org/10.1039/D0CS00997K] [PMID: 32955065]
[62]
Zhou, J.; Li, Y.; Wang, W.; Tan, X.; Lu, Z.; Han, H. Metal-organic frameworks-based sensitive electrochemiluminescence biosensing. Biosens. Bioelectron., 2020, 164112332
[http://dx.doi.org/10.1016/j.bios.2020.112332] [PMID: 32553355]
[63]
Anik, Ü.; Timur, S.; Dursun, Z. Metal organic frameworks in electrochemical and optical sensing platforms: A review. Mikrochim. Acta, 2019, 186(3), 196.
[http://dx.doi.org/10.1007/s00604-019-3321-0] [PMID: 30788595]
[64]
Nath, I.; Chakraborty, J.; Verpoort, F. Metal organic frameworks mimicking natural enzymes: A structural and functional analogy. Chem. Soc. Rev., 2016, 45(15), 4127-4170.
[http://dx.doi.org/10.1039/C6CS00047A] [PMID: 27251115]
[65]
Wang, D.; Jana, D.; Zhao, Y. Metal-organic framework derived nanozymes in biomedicine. Acc. Chem. Res., 2020, 53(7), 1389-1400.
[http://dx.doi.org/10.1021/acs.accounts.0c00268] [PMID: 32597637]
[66]
Kukkar, D.; Vellingiri, K.; Kim, K-H.; Deep, A. Recent progress in biological and chemical sensing by luminescent metal-organic frameworks. Sens. Actuators B Chem., 2018, 273, 1346-1370.
[http://dx.doi.org/10.1016/j.snb.2018.06.128]
[67]
Li, H.; Han, W.; Lv, R.; Zhai, A.; Li, X.L.; Gu, W.; Liu, X. Dual-Function mixed-lanthanide metal-organic framework for ratiometric water detection in bioethanol and temperature sensing. Anal. Chem., 2019, 91(3), 2148-2154.
[http://dx.doi.org/10.1021/acs.analchem.8b04690] [PMID: 30616342]
[68]
Fu, L-H.; Qi, C.; Lin, J.; Huang, P. Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment. Chem. Soc. Rev., 2018, 47(17), 6454-6472.
[http://dx.doi.org/10.1039/C7CS00891K] [PMID: 30024579]
[69]
Liu, W.; Yin, X-B. Metal–organic frameworks for electrochemical applications. TrAC Trends Analyt. Chem., 2016, 75, 86-96.
[http://dx.doi.org/10.1016/j.trac.2015.07.011]
[70]
Hu, S.; Yan, J.; Huang, X.; Guo, L.; Lin, Z.; Luo, F.; Qiu, B.; Wong, K-Y.; Chen, G. A sensing platform for hypoxanthine detection based on amino-functionalized metal organic framework nanosheet with peroxidase mimic and fluorescence properties. Sens. Actuators B Chem., 2018, 267, 312-319.
[http://dx.doi.org/10.1016/j.snb.2018.04.055]
[71]
Wang, C.; Gao, J.; Cao, Y.; Tan, H. Colorimetric logic gate for alkaline phosphatase based on copper (II)-based metal-organic frameworks with peroxidase-like activity. Anal. Chim. Acta, 2018, 1004, 74-81.
[http://dx.doi.org/10.1016/j.aca.2017.11.078] [PMID: 29329711]
[72]
Qin, L.; Wang, X.; Liu, Y.; Wei, H. 2D-metal-organic-framework-nanozyme sensor arrays for probing phosphates and their enzymatic hydrolysis. Anal. Chem., 2018, 90(16), 9983-9989.
[http://dx.doi.org/10.1021/acs.analchem.8b02428] [PMID: 30044077]
[73]
Yang, H.; Yang, R.; Zhang, P.; Qin, Y.; Chen, T.; Ye, F. A bimetallic (Co/2Fe) metal-organic framework with oxidase and peroxidase mimicking activity for colorimetric detection of hydrogen peroxide. Mikrochim. Acta, 2017, 184, 4629-4635.
[http://dx.doi.org/10.1007/s00604-017-2509-4]
[74]
Wang, J.; Bao, M.; Wei, T.; Wang, Z.; Dai, Z. Bimetallic metal-organic framework for enzyme immobilization by biomimetic mineralization: Constructing a mimic enzyme and simultaneously immobilizing natural enzymes. Anal. Chim. Acta, 2020, 1098, 148-154.
[http://dx.doi.org/10.1016/j.aca.2019.11.039] [PMID: 31948578]
[75]
Liu, J.; Meng, L.; Fei, Z.; Dyson, P.J.; Jing, X.; Liu, X. MnO2 nanosheets as an artificial enzyme to mimic oxidase for rapid and sensitive detection of glutathione. Biosens. Bioelectron., 2017, 90, 69-74.
[http://dx.doi.org/10.1016/j.bios.2016.11.046] [PMID: 27886603]
[76]
Yan, X.; Song, Y.; Wu, X.; Zhu, C.; Su, X.; Du, D.; Lin, Y. Oxidase-mimicking activity of ultrathin MnO2 nanosheets in colorimetric assay of acetylcholinesterase activity. Nanoscale, 2017, 9(6), 2317-2323.
[http://dx.doi.org/10.1039/C6NR08473G] [PMID: 28134376]
[77]
Huang, L.; Zhang, W.; Chen, K.; Zhu, W.; Liu, X.; Wang, R.; Zhang, X.; Hu, N.; Suo, Y.; Wang, J. Facet-selective response of trigger molecule to CeO2 {1 1 0} for up-regulating oxidase-like activity. Chem. Eng. J., 2017, 330, 746-752.
[http://dx.doi.org/10.1016/j.cej.2017.08.026]
[78]
Hu, M.; Korschelt, K.; Daniel, P.; Landfester, K.; Tremel, W.; Bannwarth, M.B. Fibrous nanozyme dressings with catalase-like activity for H2O2 reduction to promote wound healing. ACS Appl. Mater. Interfaces, 2017, 9(43), 38024-38031.
[http://dx.doi.org/10.1021/acsami.7b12212] [PMID: 29019391]
[79]
Yao, J.; Cheng, Y.; Zhou, M.; Zhao, S.; Lin, S.; Wang, X.; Wu, J.; Li, S.; Wei, H. ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chem. Sci. (Camb.), 2018, 9(11), 2927-2933.
[http://dx.doi.org/10.1039/C7SC05476A] [PMID: 29732076]
[80]
Singh, N.; Savanur, M.A.; Srivastava, S.; D’Silva, P.; Mugesh, G. A Redox modulatory Mn3O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a Parkinson’s disease model. Angew. Chem. Int. Ed. Engl., 2017, 56(45), 14267-14271.
[http://dx.doi.org/10.1002/anie.201708573] [PMID: 28922532]
[81]
Ghosh, S.; Roy, P.; Karmodak, N.; Jemmis, E.D.; Mugesh, G. Nanoisozymes: crystal-facet-dependent enzyme-mimetic activity of V2O5 nanomaterials. Angew. Chem. Int. Ed. Engl., 2018, 57(17), 4510-4515.
[http://dx.doi.org/10.1002/anie.201800681] [PMID: 29424075]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy