Review Article

Prospects of Non-Coding Elements in Genomic DNA Based Gene Therapy

Author(s): S.P. Simna and Zongchao Han*

Volume 22, Issue 2, 2022

Published on: 19 April, 2021

Page: [89 - 103] Pages: 15

DOI: 10.2174/1566523221666210419090357

Price: $65

Abstract

Gene therapy has made significant development since the commencement of the first clinical trials a few decades ago and has remained a dynamic area of research regardless of obstacles such as immune response and insertional mutagenesis. Progression in various technologies like next-generation sequencing (NGS) and nanotechnology has established the importance of non-- coding segments of a genome, thereby taking gene therapy to the next level. In this review, we have summarized the importance of non-coding elements, highlighting the advantages of using full- length genomic DNA loci (gDNA) compared to complementary DNA (cDNA) or minigene, currently used in gene therapy. The focus of this review is to provide an overview of the advances and the future of potential use of gDNA loci in gene therapy, expanding the therapeutic repertoire in molecular medicine.

Keywords: Gene therapy, cDNA, genomic DNA, non-coding DNA, gene expression, polygenic diseases.

Graphical Abstract
[1]
Kouprina N, Tomilin AN, Masumoto H, Earnshaw WC, Larionov V. Human artificial chromosome-based gene delivery vectors for biomedicine and biotechnology. Expert Opin Drug Deliv 2014; 11(4): 517-35.
[http://dx.doi.org/10.1517/17425247.2014.882314] [PMID: 24479793]
[2]
Wirth T, Parker N, Ylä-Herttuala S. History of gene therapy. Gene 2013; 525(2): 162-9.
[http://dx.doi.org/10.1016/j.gene.2013.03.137] [PMID: 23618815]
[3]
Rosenberg SA, Aebersold P, Cornetta K, et al. Gene transfer into humans--immunotherapy of patients with advanced melanoma, using tumor-infiltrating lymphocytes modified by retroviral gene transduction. N Engl J Med 1990; 323(9): 570-8.
[http://dx.doi.org/10.1056/NEJM199008303230904] [PMID: 2381442]
[4]
Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR. Gene therapy clinical trials worldwide to 2017: An update. J Gene Med 2018; 20(5): e3015.
[http://dx.doi.org/10.1002/jgm.3015] [PMID: 29575374]
[5]
Finot E. Operational Complexity in Cell and Gene Therapy Trials. Appl Clin Trials 2019; 28(10)
[6]
McCarthy M. Scientists call for moratorium on clinical use of human germline editing. British Medical Journal Publishing Group 2015.
[http://dx.doi.org/10.1136/bmj.h6603]
[7]
Cohen IG, Adashi EY. SCIENCE AND REGULATION. The FDA is prohibited from going germline. Science 2016; 353(6299): 545-6.
[http://dx.doi.org/10.1126/science.aag2960] [PMID: 27493171]
[8]
Naldini L. Gene therapy returns to centre stage. Nature 2015; 526(7573): 351-60.
[http://dx.doi.org/10.1038/nature15818] [PMID: 26469046]
[9]
Bouard D, Alazard-Dany D, Cosset FL. Viral vectors: from virology to transgene expression. Br J Pharmacol 2009; 157(2): 153-65.
[http://dx.doi.org/10.1038/bjp.2008.349] [PMID: 18776913]
[10]
Goswami R, Subramanian G, Silayeva L, et al. Gene therapy leaves a vicious cycle. Front Oncol 2019; 9: 297.
[http://dx.doi.org/10.3389/fonc.2019.00297] [PMID: 31069169]
[11]
Ramamoorth M, Narvekar A. Non viral vectors in gene therapy- an overview. J Clin Diagn Res 2015; 9(1): GE01-6.
[http://dx.doi.org/10.7860/JCDR/2015/10443.5394] [PMID: 25738007]
[12]
Zhang S, Xu Y, Wang B, Qiao W, Liu D, Li Z. Cationic compounds used in lipoplexes and polyplexes for gene delivery. J Control Release 2004; 100(2): 165-80.
[http://dx.doi.org/10.1016/j.jconrel.2004.08.019] [PMID: 15544865]
[13]
Laner A, Goussard S, Ramalho AS, et al. Bacterial transfer of large functional genomic DNA into human cells. Gene Ther 2005; 12(21): 1559-72.
[http://dx.doi.org/10.1038/sj.gt.3302576] [PMID: 15973438]
[14]
Zheng M, Mitra RN, Filonov NA, Han Z. Nanoparticle-mediated rhodopsin cDNA but not intron-containing DNA delivery causes transgene silencing in a rhodopsin knockout model. FASEB J 2016; 30(3): 1076-86.
[http://dx.doi.org/10.1096/fj.15-280511] [PMID: 26564956]
[15]
The International HapMap Project. Nature 2003; 426(6968): 789-96.
[http://dx.doi.org/10.1038/nature02168] [PMID: 14685227]
[16]
Abecasis GR, Altshuler D, Auton A, et al. 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 2010; 467(7319): 1061-73.
[http://dx.doi.org/10.1038/nature09534] [PMID: 20981092]
[17]
The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 2004; 306(5696): 636-40.
[http://dx.doi.org/10.1126/science.1105136] [PMID: 15499007]
[18]
Dunham I, Kundaje A, Aldred SF, et al. An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489(7414): 57-74.
[PMID: 22955616]
[19]
Kundaje A, Meuleman W, Ernst J, et al. Roadmap Epigenomics Consortium. Integrative analysis of 111 reference human epigenomes. Nature 2015; 518(7539): 317-30.
[http://dx.doi.org/10.1038/nature14248] [PMID: 25693563]
[20]
Lander ES, Linton LM, Birren B, et al. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 2001; 409(6822): 860-921.
[http://dx.doi.org/10.1038/35057062] [PMID: 11237011]
[21]
Spielmann M, Mundlos S. Looking beyond the genes: the role of non-coding variants in human disease. Hum Mol Genet 2016; 25(R2): R157-65.
[http://dx.doi.org/10.1093/hmg/ddw205] [PMID: 27354350]
[22]
Han Z. Gene Therapy Using Genomic DNA: Advances and Challenges.Gene Therapy in Neurological Disorders. Academic Press 2018; pp. 63-80.
[http://dx.doi.org/10.1016/B978-0-12-809813-4.00003-X]
[23]
Chalifour LE, Wirak DO, Hansen U, Wassarman PM, DePamphilis ML. cis- and trans-acting sequences required for expression of simian virus 40 genes in mouse oocytes. Genes Dev 1987; 1(10): 1096-106.
[http://dx.doi.org/10.1101/gad.1.10.1096] [PMID: 2828165]
[24]
Lee JK, Tam JW, Tsai MJ, Tsai SY. Identification of cis- and trans-acting factors regulating the expression of the human insulin receptor gene. J Biol Chem 1992; 267(7): 4638-45.
[http://dx.doi.org/10.1016/S0021-9258(18)42881-5] [PMID: 1311316]
[25]
Reuveni E, Getselter D, Oron O, Elliott E. Differential contribution of cis and trans gene transcription regulatory mechanisms in amygdala and prefrontal cortex and modulation by social stress. Sci Rep 2018; 8(1): 6339.
[http://dx.doi.org/10.1038/s41598-018-24544-3] [PMID: 29679052]
[26]
Mattioli K, Oliveros W, Gerhardinger C, et al. Cis and trans effects differentially contribute to the evolution of promoters and enhancers. Genome Biol 2020; 21(1): 210.
[http://dx.doi.org/10.1186/s13059-020-02110-3] [PMID: 32819422]
[27]
Blackshaw S, Fraioli RE, Furukawa T, Cepko CL. Comprehensive analysis of photoreceptor gene expression and the identification of candidate retinal disease genes. Cell 2001; 107(5): 579-89.
[http://dx.doi.org/10.1016/S0092-8674(01)00574-8] [PMID: 11733058]
[28]
Shibata M, Gulden FO, Sestan N. From trans to cis: transcriptional regulatory networks in neocortical development. Trends Genet 2015; 31(2): 77-87.
[http://dx.doi.org/10.1016/j.tig.2014.12.004] [PMID: 25624274]
[29]
Yao Y, Minor PJ, Zhao Y-T, et al. Cis-regulatory architecture of a brain signaling center predates the origin of chordates. Nat Genet 2016; 48(5): 575-80.
[http://dx.doi.org/10.1038/ng.3542] [PMID: 27064252]
[30]
Corbo JC. The role of cis-regulatory elements in the design of gene therapy vectors for inherited blindness. Expert Opin Biol Ther 2008; 8(5): 599-608.
[http://dx.doi.org/10.1517/14712598.8.5.599] [PMID: 18407764]
[31]
Petit L, Punzo C. Gene therapy approaches for the treatment of retinal disorders. Discov Med 2016; 22(121): 221-9.
[PMID: 27875674]
[32]
Allocca M, Mussolino C, Garcia-Hoyos M, et al. Novel adeno-associated virus serotypes efficiently transduce murine photoreceptors. J Virol 2007; 81(20): 11372-80.
[http://dx.doi.org/10.1128/JVI.01327-07] [PMID: 17699581]
[33]
Cashman S M, McCullough L, Kumar-Singh R. Improved retinal transduction in vivo and photoreceptor-specific transgene expression using adenovirus vectors with modified penton base. Molecular therapy : the journal of the American Society of Gene Therapy 2007; 15(9): 1640-6.
[34]
Naik R, Mukhopadhyay A, Ganguli M. Gene delivery to the retina: focus on non-viral approaches. Drug Discov Today 2009; 14(5-6): 306-15.
[http://dx.doi.org/10.1016/j.drudis.2008.09.012] [PMID: 18973824]
[35]
Andrieu-Soler C, Bejjani R-A, de Bizemont T, Normand N, BenEzra D, Behar-Cohen F. Ocular gene therapy: a review of nonviral strategies Molecular vision 2006; 1334-47. Available at: http://europepmc.org/abstract/MED/17110916accessed 2006
[36]
Roberts TC, Morris KV. Not so pseudo anymore: pseudogenes as therapeutic targets. Pharmacogenomics 2013; 14(16): 2023-34.
[http://dx.doi.org/10.2217/pgs.13.172] [PMID: 24279857]
[37]
Bermúdez Brito M, Goulielmaki E, Papakonstanti EA. Focus on PTEN Regulation. Front Oncol 2015; 5: 166.
[http://dx.doi.org/10.3389/fonc.2015.00166] [PMID: 26284192]
[38]
Yndestad S, Austreid E, Skaftnesmo KO, Lønning PE, Eikesdal HP. Divergent Activity of the Pseudogene PTENP1 in ER-Positive and Negative Breast Cancer. Mol Cancer Res 2018; 16(1): 78-89.
[http://dx.doi.org/10.1158/1541-7786.MCR-17-0207] [PMID: 29021233]
[39]
Gong T, Zheng S, Huang S, et al. PTENP1 inhibits the growth of esophageal squamous cell carcinoma by regulating SOCS6 expression and correlates with disease prognosis. Mol Carcinog 2017; 56(12): 2610-9.
[http://dx.doi.org/10.1002/mc.22705] [PMID: 28731203]
[40]
Gao L, Ren W, Zhang L, et al. PTENp1, a natural sponge of miR-21, mediates PTEN expression to inhibit the proliferation of oral squamous cell carcinoma. Mol Carcinog 2017; 56(4): 1322-34.
[http://dx.doi.org/10.1002/mc.22594] [PMID: 27862321]
[41]
Liu J, Xing Y, Xu L, Chen W, Cao W, Zhang C. Decreased expression of pseudogene PTENP1 promotes malignant behaviours and is associated with the poor survival of patients with HNSCC. Sci Rep 2017; 7: 41179.
[http://dx.doi.org/10.1038/srep41179] [PMID: 28112249]
[42]
Poliseno L, Haimovic A, Christos PJ, et al. Deletion of PTENP1 pseudogene in human melanoma. J Invest Dermatol 2011; 131(12): 2497-500.
[http://dx.doi.org/10.1038/jid.2011.232] [PMID: 21833010]
[43]
Yu G, Yao W, Gumireddy K, et al. Pseudogene PTENP1 functions as a competing endogenous RNA to suppress clear-cell renal cell carcinoma progression. Mol Cancer Ther 2014; 13(12): 3086-97.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0245] [PMID: 25249556]
[44]
Cheng Q, Chang JT, Geradts J, et al. Amplification and high-level expression of heat shock protein 90 marks aggressive phenotypes of human epidermal growth factor receptor 2 negative breast cancer. Breast Cancer Res 2012; 14(2): R62.
[http://dx.doi.org/10.1186/bcr3168] [PMID: 22510516]
[45]
Zuehlke AD, Beebe K, Neckers L, Prince T. Regulation and function of the human HSP90AA1 gene. Gene 2015; 570(1): 8-16.
[http://dx.doi.org/10.1016/j.gene.2015.06.018] [PMID: 26071189]
[46]
Fitzwalter BE, Towers CG, Sullivan KD, et al. Autophagy Inhibition Mediates Apoptosis Sensitization in Cancer Therapy by Relieving FOXO3a Turnover. Dev Cell 2018; 44(5): 555-565.e3.
[http://dx.doi.org/10.1016/j.devcel.2018.02.014] [PMID: 29533771]
[47]
Yang W, Du WW, Li X, Yee AJ, Yang BB. Foxo3 activity promoted by non-coding effects of circular RNA and Foxo3 pseudogene in the inhibition of tumor growth and angiogenesis. Oncogene 2016; 35(30): 3919-31.
[http://dx.doi.org/10.1038/onc.2015.460] [PMID: 26657152]
[48]
Zou M, Baitei EY, Alzahrani AS, et al. Oncogenic activation of MAP kinase by BRAF pseudogene in thyroid tumors. Neoplasia 2009; 11(1): 57-65.
[http://dx.doi.org/10.1593/neo.81044] [PMID: 19107232]
[49]
Karreth FA, Reschke M, Ruocco A, et al. The BRAF pseudogene functions as a competitive endogenous RNA and induces lymphoma in vivo. Cell 2015; 161(2): 319-32.
[http://dx.doi.org/10.1016/j.cell.2015.02.043] [PMID: 25843629]
[50]
Lian Y, Xu Y, Xiao C, et al. The pseudogene derived from long non-coding RNA DUXAP10 promotes colorectal cancer cell growth through epigenetically silencing of p21 and PTEN. Sci Rep 2017; 7(1): 7312.
[http://dx.doi.org/10.1038/s41598-017-07954-7] [PMID: 28779166]
[51]
Chan JJ, Kwok ZH, Chew XH, et al. A FTH1 gene:pseudogene:microRNA network regulates tumorigenesis in prostate cancer. Nucleic Acids Res 2018; 46(4): 1998-2011.
[http://dx.doi.org/10.1093/nar/gkx1248] [PMID: 29240947]
[52]
Grimes BR, Rhoades AA, Willard HF. α-satellite DNA and vector composition influence rates of human artificial chromosome formation. Mol Ther 2002; 5(6): 798-805.
[http://dx.doi.org/10.1006/mthe.2002.0612] [PMID: 12027565]
[53]
Hu X, Yang L, Mo Y-Y. Role of Pseudogenes in Tumorigenesis. Cancers (Basel) 2018; 10(8): 256.
[http://dx.doi.org/10.3390/cancers10080256] [PMID: 30071685]
[54]
Li S, Zou H, Shao Y-Y, et al. Pseudogenes of annexin A2, novel prognosis biomarkers for diffuse gliomas. Oncotarget 2017; 8(63): 106962-75.
[http://dx.doi.org/10.18632/oncotarget.22197] [PMID: 29291003]
[55]
Stewart GL, Enfield KSS, Sage AP, et al. Aberrant expression of pseudogene-derived lncRNAs as an alternative mechanism of cancer gene regulation in lung adenocarcinoma. Front Genet 2019; 10: 138.
[http://dx.doi.org/10.3389/fgene.2019.00138] [PMID: 30894871]
[56]
Ahmed M, Liang P. Transposable elements are a significant contributor to tandem repeats in the human genome. Comp Funct Genomics 2012; 2012: 947089.
[http://dx.doi.org/10.1155/2012/947089] [PMID: 22792041]
[57]
Plohl M, Luchetti A, Mestrović N, Mantovani B. Satellite DNAs between selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. Gene 2008; 409(1-2): 72-82.
[http://dx.doi.org/10.1016/j.gene.2007.11.013] [PMID: 18182173]
[58]
Plohl M, Meštrović N, Mravinac B. Satellite DNA evolution.Repetitive DNA. Karger Publishers 2012; Vol. 7: pp. 126-52.
[http://dx.doi.org/10.1159/000337122]
[59]
Plohl M, Meštrović N, Mravinac B. Centromere identity from the DNA point of view. Chromosoma 2014; 123(4): 313-25.
[http://dx.doi.org/10.1007/s00412-014-0462-0] [PMID: 24763964]
[60]
Telenius H, Szeles A, Keresö J, et al. Stability of a functional murine satellite DNA-based artificial chromosome across mammalian species. Chromosome Res 1999; 7(1): 3-7.
[http://dx.doi.org/10.1023/A:1009215026001] [PMID: 10219727]
[61]
deJong G, Telenius AH, Telenius H, Perez CF, Drayer JI, Hadlaczky G. Mammalian artificial chromosome pilot production facility: large-scale isolation of functional satellite DNA-based artificial chromosomes. Cytometry 1999; 35(2): 129-33.
[http://dx.doi.org/10.1002/(SICI)1097-0320(19990201)35:2<129::AID-CYTO4>3.0.CO;2-A] [PMID: 10554168]
[62]
Co DO, Borowski AH, Leung JD, et al. Generation of transgenic mice and germline transmission of a mammalian artificial chromosome introduced into embryos by pronuclear microinjection. Chromosome Res 2000; 8(3): 183-91.
[http://dx.doi.org/10.1023/A:1009206926548] [PMID: 10841045]
[63]
Hadlaczky G. Satellite DNA-based artificial chromosomes for use in gene therapy. Curr Opin Mol Ther 2001; 3(2): 125-32.
[PMID: 11338924]
[64]
Moralli D, Monaco ZL. Developing de novo human artificial chromosomes in embryonic stem cells using HSV-1 amplicon technology. Chromosome Res 2015; 23(1): 105-10.
[http://dx.doi.org/10.1007/s10577-014-9456-2] [PMID: 25657030]
[65]
De Sandre-Giovannoli A, Bernard R, Cau P, et al. Lamin a truncation in Hutchinson-Gilford progeria. Science 2003; 300(5628): 2055-5.
[http://dx.doi.org/10.1126/science.1084125] [PMID: 12702809]
[66]
Decker ML, Chavez E, Vulto I, Lansdorp PM. Telomere length in Hutchinson-Gilford progeria syndrome. Mech Ageing Dev 2009; 130(6): 377-83.
[http://dx.doi.org/10.1016/j.mad.2009.03.001] [PMID: 19428457]
[67]
Vaziri H, Schächter F, Uchida I, et al. Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am J Hum Genet 1993; 52(4): 661-7.
[PMID: 8460632]
[68]
Vulliamy T, Beswick R, Kirwan M, et al. Mutations in the telomerase component NHP2 cause the premature ageing syndrome dyskeratosis congenita. Proc Natl Acad Sci USA 2008; 105(23): 8073-8.
[http://dx.doi.org/10.1073/pnas.0800042105] [PMID: 18523010]
[69]
Metcalfe JA, Parkhill J, Campbell L, et al. Accelerated telomere shortening in ataxia telangiectasia. Nat Genet 1996; 13(3): 350-3.
[http://dx.doi.org/10.1038/ng0796-350] [PMID: 8673136]
[70]
Batenburg NL, Mitchell TR, Leach DM, Rainbow AJ, Zhu X-D. Cockayne Syndrome group B protein interacts with TRf2 and regulates telomere length and stability. Nucleic Acids Res 2012; 40(19): 9661-74.
[http://dx.doi.org/10.1093/nar/gks745] [PMID: 22904069]
[71]
Shiloh Y. Ataxia-telangiectasia and the Nijmegen breakage syndrome: related disorders but genes apart. Annu Rev Genet 1997; 31: 635-62.
[http://dx.doi.org/10.1146/annurev.genet.31.1.635] [PMID: 9442910]
[72]
Turner KJ, Vasu V, Griffin DK. Telomere Biology and Human Phenotype. Cells 2019; 8(1): 73.
[http://dx.doi.org/10.3390/cells8010073] [PMID: 30669451]
[73]
Hong J, Yun C-O. Telomere Gene Therapy: Polarizing Therapeutic Goals for Treatment of Various Diseases. Cells 2019; 8(5): 392.
[http://dx.doi.org/10.3390/cells8050392] [PMID: 31035374]
[74]
Berk AJ. Discovery of RNA splicing and genes in pieces. Proc Natl Acad Sci USA 2016; 113(4): 801-5.
[http://dx.doi.org/10.1073/pnas.1525084113] [PMID: 26787897]
[75]
Norris SR, Meyer SE, Callis J. The intron of Arabidopsis thaliana polyubiquitin genes is conserved in location and is a quantitative determinant of chimeric gene expression. Plant Mol Biol 1993; 21(5): 895-906.
[http://dx.doi.org/10.1007/BF00027120] [PMID: 8385509]
[76]
Plesse B, Criqui M-C, Durr A, Parmentier Y, Fleck J, Genschik P. Effects of the polyubiquitin gene Ubi. U4 leader intron and first ubiquitin monomer on reporter gene expression in Nicotiana tabacum. Plant Mol Biol 2001; 45(6): 655-67.
[http://dx.doi.org/10.1023/A:1010671405594] [PMID: 11430428]
[77]
Weise A, Rodriguez-Franco M, Timm B, et al. Use of Physcomitrella patens actin 5′ regions for high transgene expression: importance of 5′ introns. Appl Microbiol Biotechnol 2006; 70(3): 337-45.
[http://dx.doi.org/10.1007/s00253-005-0087-6] [PMID: 16059684]
[78]
Jeong Y-M, Mun J-H, Lee I, Woo JC, Hong CB, Kim S-G. Distinct roles of the first introns on the expression of Arabidopsis profilin gene family members. Plant Physiol 2006; 140(1): 196-209.
[http://dx.doi.org/10.1104/pp.105.071316] [PMID: 16361517]
[79]
Jeon J-S, Lee S, Jung K-H, Jun S-H, Kim C, An G. Tissue-preferential expression of a rice α-tubulin gene, OsTubA1, mediated by the first intron. Plant Physiol 2000; 123(3): 1005-14.
[http://dx.doi.org/10.1104/pp.123.3.1005] [PMID: 10889249]
[80]
Fiume E, Christou P, Gianì S, Breviario D. Introns are key regulatory elements of rice tubulin expression. Planta 2004; 218(5): 693-703.
[http://dx.doi.org/10.1007/s00425-003-1150-0] [PMID: 14625773]
[81]
Chung S, Perry RP. Importance of introns for expression of mouse ribosomal protein gene rpL32. Mol Cell Biol 1989; 9(5): 2075-82.
[http://dx.doi.org/10.1128/MCB.9.5.2075] [PMID: 2747643]
[82]
Ares M Jr, Grate L, Pauling MH. A handful of intron-containing genes produces the lion’s share of yeast mRNA. RNA 1999; 5(9): 1138-9.
[http://dx.doi.org/10.1017/S1355838299991379] [PMID: 10496214]
[83]
Zhang C, Wohlhueter R, Zhang H. Genetically modified foods: A critical review of their promise and problems. Food Sci Hum Wellness 2016; 5(3): 116-23.
[http://dx.doi.org/10.1016/j.fshw.2016.04.002]
[84]
Curie C, Liboz T, Bardet C, et al. Cis and trans-acting elements involved in the activation of Arabidopsis thaliana A1 gene encoding the translation elongation factor EF-1 α. Nucleic Acids Res 1991; 19(6): 1305-10.
[http://dx.doi.org/10.1093/nar/19.6.1305] [PMID: 1840652]
[85]
Rose AB. Introns as gene regulators: a brick on the accelerator. Front Genet 2019; 9: 672.
[http://dx.doi.org/10.3389/fgene.2018.00672] [PMID: 30792737]
[86]
Mitchell PJ, Tjian R. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 1989; 245(4916): 371-8.
[http://dx.doi.org/10.1126/science.2667136] [PMID: 2667136]
[87]
Palmiter RD, Sandgren EP, Avarbock MR, Allen DD, Brinster RL. Heterologous introns can enhance expression of transgenes in mice. Proc Natl Acad Sci USA 1991; 88(2): 478-82.
[http://dx.doi.org/10.1073/pnas.88.2.478] [PMID: 1988947]
[88]
Okkema PG, Harrison SW, Plunger V, Aryana A, Fire A. Sequence requirements for myosin gene expression and regulation in Caenorhabditis elegans. Genetics 1993; 135(2): 385-404.
[http://dx.doi.org/10.1093/genetics/135.2.385] [PMID: 8244003]
[89]
Gallegos JE, Rose AB. Intron DNA sequences can be more important than the proximal promoter in determining the site of transcript initiation. Plant Cell 2017; 29(4): 843-53.
[http://dx.doi.org/10.1105/tpc.17.00020] [PMID: 28373518]
[90]
Emami S, Arumainayagam D, Korf I, Rose AB. The effects of a stimulating intron on the expression of heterologous genes in Arabidopsis thaliana. Plant Biotechnol J 2013; 11(5): 555-63.
[http://dx.doi.org/10.1111/pbi.12043] [PMID: 23347383]
[91]
Liu M, Maurano MT, Wang H, et al. Genomic discovery of potent chromatin insulators for human gene therapy. Nat Biotechnol 2015; 33(2): 198-203.
[http://dx.doi.org/10.1038/nbt.3062] [PMID: 25580597]
[92]
Han Z, Banworth MJ, Makkia R, et al. Genomic DNA nanoparticles rescue rhodopsin-associated retinitis pigmentosa phenotype. FASEB J 2015; 29(6): 2535-44.
[http://dx.doi.org/10.1096/fj.15-270363] [PMID: 25713057]
[93]
Pandey R, Mukerji M. From ‘JUNK’ to just unexplored noncoding knowledge: the case of transcribed Alus. Brief Funct Genomics 2011; 10(5): 294-311.
[http://dx.doi.org/10.1093/bfgp/elr029] [PMID: 21987713]
[94]
Hube F, Guo J, Chooniedass-Kothari S, et al. Alternative splicing of the first intron of the steroid receptor RNA activator (SRA) participates in the generation of coding and noncoding RNA isoforms in breast cancer cell lines. DNA Cell Biol 2006; 25(7): 418-28.
[http://dx.doi.org/10.1089/dna.2006.25.418] [PMID: 16848684]
[95]
Lukiw WJ, Handley P, Wong L, Crapper McLachlan DR. BC200 RNA in normal human neocortex, non-Alzheimer dementia (NAD), and senile dementia of the Alzheimer type (AD). Neurochem Res 1992; 17(6): 591-7.
[http://dx.doi.org/10.1007/BF00968788] [PMID: 1603265]
[96]
Salman OF, El-Rayess HM, Abi Khalil C, Nemer G, Refaat MM. Inherited Cardiomyopathies and the Role of Mutations in Non-coding Regions of the Genome. Front Cardiovasc Med 2018; 5: 77.
[http://dx.doi.org/10.3389/fcvm.2018.00077] [PMID: 29998127]
[97]
Yuan X, Larsson C, Xu D. Mechanisms underlying the activation of TERT transcription and telomerase activity in human cancer: old actors and new players. Oncogene 2019; 38(34): 6172-83.
[http://dx.doi.org/10.1038/s41388-019-0872-9] [PMID: 31285550]
[98]
Soldner F, Stelzer Y, Shivalila CS, et al. Parkinson-associated risk variant in distal enhancer of α-synuclein modulates target gene expression. Nature 2016; 533(7601): 95-9.
[http://dx.doi.org/10.1038/nature17939] [PMID: 27096366]
[99]
Cardoso AR, Lopes-Marques M, Silva RM, et al. Essential genetic findings in neurodevelopmental disorders. Hum Genomics 2019; 13(1): 31.
[http://dx.doi.org/10.1186/s40246-019-0216-4] [PMID: 31288856]
[100]
Birnbaum S, Ludwig KU, Reutter H, et al. Key susceptibility locus for nonsyndromic cleft lip with or without cleft palate on chromosome 8q24. Nat Genet 2009; 41(4): 473-7.
[http://dx.doi.org/10.1038/ng.333] [PMID: 19270707]
[101]
Zhang W, Bojorquez-Gomez A, Velez DO, et al. A global transcriptional network connecting noncoding mutations to changes in tumor gene expression. Nat Genet 2018; 50(4): 613-20.
[http://dx.doi.org/10.1038/s41588-018-0091-2] [PMID: 29610481]
[102]
Cebola I, Pasquali L. Non-coding genome functions in diabetes. J Mol Endocrinol 2016; 56(1): R1-R20.
[http://dx.doi.org/10.1530/JME-15-0197] [PMID: 26438568]
[103]
Benko S, Fantes JA, Amiel J, et al. Highly conserved non-coding elements on either side of SOX9 associated with Pierre Robin sequence. Nat Genet 2009; 41(3): 359-64.
[http://dx.doi.org/10.1038/ng.329] [PMID: 19234473]
[104]
Gordon CT, Attanasio C, Bhatia S, et al. Identification of novel craniofacial regulatory domains located far upstream of SOX9 and disrupted in Pierre Robin sequence. Hum Mutat 2014; 35(8): 1011-20.
[http://dx.doi.org/10.1002/humu.22606] [PMID: 24934569]
[105]
Lettice LA, Horikoshi T, Heaney SJ, et al. Disruption of a long-range cis-acting regulator for Shh causes preaxial polydactyly. Proc Natl Acad Sci USA 2002; 99(11): 7548-53.
[http://dx.doi.org/10.1073/pnas.112212199] [PMID: 12032320]
[106]
Lettice LA, Heaney SJ, Purdie LA, et al. A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum Mol Genet 2003; 12(14): 1725-35.
[http://dx.doi.org/10.1093/hmg/ddg180] [PMID: 12837695]
[107]
Weedon MN, Cebola I, Patch A-M, et al. International Pancreatic Agenesis Consortium. Recessive mutations in a distal PTf1A enhancer cause isolated pancreatic agenesis. Nat Genet 2014; 46(1): 61-4.
[http://dx.doi.org/10.1038/ng.2826] [PMID: 24212882]
[108]
Bhatia S, Bengani H, Fish M, et al. Disruption of autoregulatory feedback by a mutation in a remote, ultraconserved PAX6 enhancer causes aniridia. Am J Hum Genet 2013; 93(6): 1126-34.
[http://dx.doi.org/10.1016/j.ajhg.2013.10.028] [PMID: 24290376]
[109]
Tayebi N, Jamsheer A, Flöttmann R, et al. Deletions of exons with regulatory activity at the DYNC1I1 locus are associated with split-hand/split-foot malformation: array CGH screening of 134 unrelated families. Orphanet J Rare Dis 2014; 9(1): 108.
[http://dx.doi.org/10.1186/s13023-014-0108-6] [PMID: 25231166]
[110]
Lango Allen H, Caswell R, Xie W, et al. Next generation sequencing of chromosomal rearrangements in patients with split-hand/split-foot malformation provides evidence for DYNC1I1 exonic enhancers of DLX5/6 expression in humans. J Med Genet 2014; 51(4): 264-7.
[http://dx.doi.org/10.1136/jmedgenet-2013-102142] [PMID: 24459211]
[111]
Dathe K, Kjaer KW, Brehm A, et al. Duplications involving a conserved regulatory element downstream of BMP2 are associated with brachydactyly type A2. Am J Hum Genet 2009; 84(4): 483-92.
[http://dx.doi.org/10.1016/j.ajhg.2009.03.001] [PMID: 19327734]
[112]
Klopocki E, Ott C-E, Benatar N, Ullmann R, Mundlos S, Lehmann K. A microduplication of the long range SHH limb regulator (ZRS) is associated with triphalangeal thumb-polysyndactyly syndrome. J Med Genet 2008; 45(6): 370-5.
[http://dx.doi.org/10.1136/jmg.2007.055699] [PMID: 18178630]
[113]
Jamshidi F, Place EM, Mehrotra S, et al. Contribution of noncoding pathogenic variants to RPGRIP1-mediated inherited retinal degeneration. Genet Med 2019; 21(3): 694-704.
[http://dx.doi.org/10.1038/s41436-018-0104-7] [PMID: 30072743]
[114]
Wade-Martins R, White RE, Kimura H, Cook PR, James MR. Stable correction of a genetic deficiency in human cells by an episome carrying a 115 kb genomic transgene. Nat Biotechnol 2000; 18(12): 1311-4.
[http://dx.doi.org/10.1038/82444] [PMID: 11101814]
[115]
Xia C F, Chu C, Li J, et al. Comparison of cDNA and genomic forms of tyrosine hydroxylase gene therapy of the brain with Trojan horse liposomes. The Journal of Gene Medicine: A cross‐disciplinary journal for research on the science of gene transfer and its clinical applications 2007; 9(7): 605-12.
[116]
Petitclerc D, Attal J, Théron MC, et al. The effect of various introns and transcription terminators on the efficiency of expression vectors in various cultured cell lines and in the mammary gland of transgenic mice. J Biotechnol 1995; 40(3): 169-78.
[http://dx.doi.org/10.1016/0168-1656(95)00047-T] [PMID: 7632393]
[117]
Chorev M, Carmel L. The function of introns. Front Genet 2012; 3: 55-5.
[http://dx.doi.org/10.3389/fgene.2012.00055] [PMID: 22518112]
[118]
Alexander MR, Wheatley AK, Center RJ, Purcell DF. Efficient transcription through an intron requires the binding of an Sm-type U1 snRNP with intact stem loop II to the splice donor. Nucleic Acids Res 2010; 38(9): 3041-53.
[http://dx.doi.org/10.1093/nar/gkp1224] [PMID: 20071748]
[119]
Tikhonov MV, Maksimenko OG, Georgiev PG, Korobko IV. [Optimal Artificial Mini-Introns for Transgenic Expression in the Cells of Mice and Hamsters]. Mol Biol (Mosk) 2017; 51(4): 671-6.
[PMID: 28900086]
[120]
Brinster RL, Allen JM, Behringer RR, Gelinas RE, Palmiter RD. Introns increase transcriptional efficiency in transgenic mice. Proc Natl Acad Sci USA 1988; 85(3): 836-40.
[http://dx.doi.org/10.1073/pnas.85.3.836] [PMID: 3422466]
[121]
Choi T, Huang M, Gorman C, Jaenisch R. A generic intron increases gene expression in transgenic mice. Mol Cell Biol 1991; 11(6): 3070-4.
[http://dx.doi.org/10.1128/MCB.11.6.3070] [PMID: 2038318]
[122]
Jaenisch R. Transgenic animals. Science 1988; 240(4858): 1468-74.
[http://dx.doi.org/10.1126/science.3287623] [PMID: 3287623]
[123]
Schedl A, Ross A, Lee M, et al. Influence of PAX6 gene dosage on development: overexpression causes severe eye abnormalities. Cell 1996; 86(1): 71-82.
[http://dx.doi.org/10.1016/S0092-8674(00)80078-1] [PMID: 8689689]
[124]
Gibson TJ, Seiler M, Veitia RA. The transience of transient overexpression. Nat Methods 2013; 10(8): 715-21.
[http://dx.doi.org/10.1038/nmeth.2534] [PMID: 23900254]
[125]
Pérez-Luz S, Gimenez-Cassina A, Fernández-Frías I, Wade-Martins R, Díaz-Nido J. Delivery of the 135 kb human frataxin genomic DNA locus gives rise to different frataxin isoforms. Genomics 2015; 106(2): 76-82.
[http://dx.doi.org/10.1016/j.ygeno.2015.05.006] [PMID: 26027909]
[126]
Wade-Martins R, Saeki Y, Chiocca EA. Infectious delivery of a 135-kb LDLR genomic locus leads to regulated complementation of low-density lipoprotein receptor deficiency in human cells. Mol Ther 2003; 7(5 Pt 1): 604-12.
[http://dx.doi.org/10.1016/S1525-0016(03)00060-1] [PMID: 12718903]
[127]
Cichon G, Willnow T, Herwig S, et al. Non‐physiological overexpression of the low density lipoprotein receptor (LDLr) gene in the liver induces pathological intracellular lipid and cholesterol storage. The Journal of Gene Medicine: A cross‐disciplinary journal for research on the science of gene transfer and its clinical applications 2004; 6(2): 166-75.
[128]
Gimenez-Cassina A, Wade-Martins R, Gomez-Sebastian S, Corona JC, Lim F, Diaz-Nido J. Infectious delivery and long-term persistence of transgene expression in the brain by a 135-kb iBAC-FXN genomic DNA expression vector. Gene Ther 2011; 18(10): 1015-9.
[http://dx.doi.org/10.1038/gt.2011.45] [PMID: 21490681]
[129]
Inoue R, Moghaddam K, Saeki Y, Chiocca E, Wade-Martins R, Ranasinghe M. Infectious delivery of the 132 kb CDKN2A/CDKN2B genomic DNA region results in correctly spliced gene expression and growth suppression in glioma cells. 2003.
[130]
Han Z. Gene therapy using genomic DNA: advances and challenges.Gene Therapy in Neurological Disorders. Elsevier 2018; pp. 63-80.
[http://dx.doi.org/10.1016/B978-0-12-809813-4.00003-X]
[131]
Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013; 339(6121): 819-23.
[http://dx.doi.org/10.1126/science.1231143] [PMID: 23287718]
[132]
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. science 2012; 337(6096): 816-21.
[133]
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016; 533(7603): 420-4.
[http://dx.doi.org/10.1038/nature17946] [PMID: 27096365]
[134]
Ghosh D, Venkataramani P, Nandi S, Bhattacharjee S. CRISPR-Cas9 a boon or bane: the bumpy road ahead to cancer therapeutics. Cancer Cell Int 2019; 19(1): 12.
[http://dx.doi.org/10.1186/s12935-019-0726-0] [PMID: 30636933]
[135]
Sauvageau M, Goff LA, Lodato S, et al. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. eLife 2013; 2: e01749-9.
[http://dx.doi.org/10.7554/eLife.01749] [PMID: 24381249]
[136]
Gutschner T. Silencing long noncoding RNAs with genome-editing tools. Methods Mol Biol 2015; 1239: 241-50.
[http://dx.doi.org/10.1007/978-1-4939-1862-1_13] [PMID: 25408410]
[137]
Yang J, Meng X, Pan J, et al. CRISPR/Cas9-mediated noncoding RNA editing in human cancers. RNA Biol 2018; 15(1): 35-43.
[http://dx.doi.org/10.1080/15476286.2017.1391443] [PMID: 29028415]
[138]
Zhuo C, Hou W, Hu L, Lin C, Chen C, Lin X. Genomic Editing of Non-Coding RNA Genes with CRISPR/Cas9 Ushers in a Potential Novel Approach to Study and Treat Schizophrenia. Front Mol Neurosci 2017; 10(28): 28.
[http://dx.doi.org/10.3389/fnmol.2017.00028] [PMID: 28217082]
[139]
Chang H, Yi B, Ma R, Zhang X, Zhao H, Xi Y. CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo. Sci Rep 2016; 6: 22312.
[http://dx.doi.org/10.1038/srep22312] [PMID: 26924382]
[140]
Canver MC, Bauer DE, Orkin SH. Functional interrogation of non-coding DNA through CRISPR genome editing. Methods 2017; 121-122: 118-29.
[http://dx.doi.org/10.1016/j.ymeth.2017.03.008] [PMID: 28288828]
[141]
Yin S, Ma L, Shao T, et al. Enhanced genome editing to ameliorate a genetic metabolic liver disease through co-delivery of adeno-associated virus receptor. Sci China Life Sci 2020.
[http://dx.doi.org/10.1007/s11427-020-1744-6] [PMID: 32815069]
[142]
Maeder ML, Gersbach CA. Genome-editing technologies for gene and cell therapy. Mol Ther 2016; 24(3): 430-46.
[http://dx.doi.org/10.1038/mt.2016.10] [PMID: 26755333]
[143]
Meng D, Ragi SD, Tsang SH. Therapy in Rhodopsin-Mediated Autosomal Dominant Retinitis Pigmentosa. Mol Ther 2020; 28(10): 2139-49.
[http://dx.doi.org/10.1016/j.ymthe.2020.08.012] [PMID: 32882181]
[144]
Li Q, Qin Z, Wang Q, Xu T, Yang Y, He Z. Applications of Genome Editing Technology in Animal Disease Modeling and Gene Therapy. Comput Struct Biotechnol J 2019; 17: 689-98.
[http://dx.doi.org/10.1016/j.csbj.2019.05.006] [PMID: 31303973]
[145]
Cox DBT, Platt RJ, Zhang F. Therapeutic genome editing: prospects and challenges. Nat Med 2015; 21(2): 121-31.
[http://dx.doi.org/10.1038/nm.3793] [PMID: 25654603]
[146]
Gonçalves GAR, Paiva RMA. Gene therapy: advances, challenges and perspectives. Einstein (Sao Paulo) 2017; 15(3): 369-75.
[http://dx.doi.org/10.1590/s1679-45082017rb4024] [PMID: 29091160]
[147]
Teboul L, Herault Y, Wells S, Qasim W, Pavlovic G. Variability in genome editing outcomes: challenges for research reproducibility and clinical safety. Mol Ther 2020; 28(6): 1422-31.
[http://dx.doi.org/10.1016/j.ymthe.2020.03.015] [PMID: 32243835]
[148]
Gilissen C, Hehir-Kwa JY, Thung DT, et al. Genome sequencing identifies major causes of severe intellectual disability. Nature 2014; 511(7509): 344-7.
[http://dx.doi.org/10.1038/nature13394] [PMID: 24896178]
[149]
Stoll SM, Sclimenti CR, Baba EJ, Meuse L, Kay MA, Calos MP. Epstein-Barr virus/human vector provides high-level, long-term expression of α1-antitrypsin in mice. Mol Ther 2001; 4(2): 122-9.
[http://dx.doi.org/10.1006/mthe.2001.0429] [PMID: 11482983]
[150]
White RE, Wade-Martins R, James MR. Infectious delivery of 120-kilobase genomic DNA by an epstein-barr virus amplicon vector. Mol Ther 2002; 5(4): 427-35.
[http://dx.doi.org/10.1006/mthe.2002.0557] [PMID: 11945070]
[151]
Kiyosue K, Miwa Y. Epstein-Barr virus-derived vector suitable for long-term expression in neurons. Heliyon 2020; 6(3): e03504.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03504] [PMID: 32190754]
[152]
Mazda O. Improvement of nonviral gene therapy by Epstein-Barr virus (EBV)-based plasmid vectors. Curr Gene Ther 2002; 2(3): 379-92.
[http://dx.doi.org/10.2174/1566523023347814] [PMID: 12189722]
[153]
Tsimbouri P. Drotar, M. E.; Coy, J. L.; Wilson, J. B., Bcl-x L and RAG genes are induced and the response to IL-2 enhanced in EμEBNA-1 transgenic mouse lymphocytes. Oncogene 2002; 21(33): 5182-7.
[http://dx.doi.org/10.1038/sj.onc.1205490] [PMID: 12140768]
[154]
Conese M, Auriche C, Ascenzioni F. Gene therapy progress and prospects: episomally maintained self-replicating systems. Gene Ther 2004; 11(24): 1735-41.
[http://dx.doi.org/10.1038/sj.gt.3302362] [PMID: 15385951]
[155]
Shizuya H, Birren B, Kim U-J, et al. Cloning and stable maintenance of 300-kilobase-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc Natl Acad Sci USA 1992; 89(18): 8794-7.
[http://dx.doi.org/10.1073/pnas.89.18.8794] [PMID: 1528894]
[156]
Yang XW, Lu X-H. The Bac Transgenic Approach to Study Parkinson’s Disease in Mice.Parkinson’s Disease. San Diego: Academic Press 2008; pp. 247-68.
[http://dx.doi.org/10.1016/B978-0-12-374028-1.00019-1]
[157]
Yang XW. BAC Use in the Study of the CNS. In: Squire LR, Ed. Encyclopedia of Neuroscience. Oxford: Academic Press 2009; pp. 13-20.
[http://dx.doi.org/10.1016/B978-008045046-9.02008-8]
[158]
Lai C, Transgenesis BAC. Cell-Type Specific Expression in the Nervous System.Reference Module in Biomedical Sciences. Elsevier 2016.
[http://dx.doi.org/10.1016/B978-0-12-801238-3.04520-7]
[159]
Macnab S, Whitehouse A. Progress and prospects: human artificial chromosomes. Gene Ther 2009; 16(10): 1180-8.
[http://dx.doi.org/10.1038/gt.2009.102] [PMID: 19710706]
[160]
Rai R, Alwani S, Badea I. Polymeric Nanoparticles in Gene Therapy: New Avenues of Design and Optimization for Delivery Applications. Polymers (Basel) 2019; 11(4): E745.
[http://dx.doi.org/10.3390/polym11040745] [PMID: 31027272]
[161]
Obeid MA, Khadra I, Mullen AB, Tate RJ, Ferro VA. The effects of hydration media on the characteristics of non-ionic surfactant vesicles (NISV) prepared by microfluidics. Int J Pharm 2017; 516(1-2): 52-60.
[http://dx.doi.org/10.1016/j.ijpharm.2016.11.015] [PMID: 27836752]
[162]
Soleimani M, Al Zaabi AM, Merheb M, Matar R. Nanoparticles in gene therapy. Int J Integr Biol 2016; 17(1): 7.
[163]
Pelaz B, Alexiou C, Alvarez-Puebla RA, et al. Diverse applications of nanomedicine. ACS Publications 2017.
[http://dx.doi.org/10.1021/acsnano.6b06040]
[164]
Tessitore A, Parisi F, Denti MA, et al. Preferential silencing of a common dominant rhodopsin mutation does not inhibit retinal degeneration in a transgenic model. Mol Ther 2006; 14(5): 692-9.
[http://dx.doi.org/10.1016/j.ymthe.2006.07.008] [PMID: 16979943]
[165]
Obeid MA, Al Qaraghuli MM, Alsaadi M, Alzahrani AR, Niwasabutra K, Ferro VA. Delivering natural products and biotherapeutics to improve drug efficacy. Ther Deliv 2017; 8(11): 947-56.
[http://dx.doi.org/10.4155/tde-2017-0060] [PMID: 29061102]
[166]
Mitra RN, Zheng M, Weiss ER, Han Z. Genomic form of rhodopsin DNA nanoparticles rescued autosomal dominant Retinitis pigmentosa in the P23H knock-in mouse model. Biomaterials 2018; 157: 26-39.
[http://dx.doi.org/10.1016/j.biomaterials.2017.12.004] [PMID: 29232624]
[167]
Ziady A-G, Gedeon CR, Muhammad O, et al. Minimal toxicity of stabilized compacted DNA nanoparticles in the murine lung. Mol Ther 2003; 8(6): 948-56.
[http://dx.doi.org/10.1016/j.ymthe.2003.09.002] [PMID: 14664797]
[168]
Yurek DM, Fletcher AM, Smith GM, et al. Long-term transgene expression in the central nervous system using DNA nanoparticles. Mol Ther 2009; 17(4): 641-50.
[http://dx.doi.org/10.1038/mt.2009.2] [PMID: 19223866]
[169]
Han Z, Conley SM, Makkia RS, Cooper MJ, Naash MI. DNA nanoparticle-mediated ABCA4 delivery rescues Stargardt dystrophy in mice. J Clin Invest 2012; 122(9): 3221-6.
[http://dx.doi.org/10.1172/JCI64833] [PMID: 22886305]
[170]
Han Z, Conley SM, Makkia R, Guo J, Cooper MJ, Naash MI. Comparative analysis of DNA nanoparticles and AAVs for ocular gene delivery. PLoS One 2012; 7(12): e52189.
[http://dx.doi.org/10.1371/journal.pone.0052189] [PMID: 23272225]
[171]
Ding X-Q, Quiambao AB, Fitzgerald JB, Cooper MJ, Conley SM, Naash MI. Ocular delivery of compacted DNA-nanoparticles does not elicit toxicity in the mouse retina. PLoS One 2009; 4(10): e7410.
[http://dx.doi.org/10.1371/journal.pone.0007410] [PMID: 19823583]
[172]
Zheng M, Mitra RN, Weiss ER, Han Z. Rhodopsin genomic loci DNA nanoparticles improve expression and rescue of retinal degeneration in a model for retinitis pigmentosa. Mol Ther 2020; 28(2): 523-35.
[http://dx.doi.org/10.1016/j.ymthe.2019.11.031] [PMID: 31879189]
[173]
Villar D, Frost S, Deloukas P, Tinker A. The contribution of non-coding regulatory elements to cardiovascular disease. Open Biol 2020; 10(7): 200088.
[http://dx.doi.org/10.1098/rsob.200088] [PMID: 32603637]
[174]
Saito M, Momma T, Kono K. Targeted therapy according to next generation sequencing-based panel sequencing. Fukushima J Med Sci 2018; 64(1): 9-14.
[http://dx.doi.org/10.5387/fms.2018-02] [PMID: 29628467]
[175]
Moorcraft SY, Gonzalez D, Walker BA. Understanding next generation sequencing in oncology: A guide for oncologists. Crit Rev Oncol Hematol 2015; 96(3): 463-74.
[http://dx.doi.org/10.1016/j.critrevonc.2015.06.007] [PMID: 26160606]
[176]
Malone ER, Oliva M, Sabatini PJB, Stockley TL, Siu LL. Molecular profiling for precision cancer therapies. Genome Med 2020; 12(1): 8.
[http://dx.doi.org/10.1186/s13073-019-0703-1] [PMID: 31937368]
[177]
Di Resta C, Galbiati S, Carrera P, Ferrari M. Next-generation sequencing approach for the diagnosis of human diseases: open challenges and new opportunities. EJIFCC 2018; 29(1): 4-14.
[PMID: 29765282]
[178]
Aleem AA. DNA Sequencing Resolves Misdiagnosed and Rare Genetic Disorders.DNA Sequencing-Deciphering the’Code of Life. IntechOpen 2019.
[179]
Moore AT. Genetic testing for inherited retinal disease. Ophthalmology 2017; 124(9): 1254-5.
[http://dx.doi.org/10.1016/j.ophtha.2017.06.018] [PMID: 28823343]
[180]
Devanna P, Chen XS, Ho J, et al. Next-gen sequencing identifies non-coding variation disrupting miRNA-binding sites in neurological disorders. Mol Psychiatry 2018; 23(5): 1375-84.
[http://dx.doi.org/10.1038/mp.2017.30] [PMID: 28289279]
[181]
Guffanti A, Simchovitz A, Soreq H. Emerging bioinformatics approaches for analysis of NGS-derived coding and non-coding RNAs in neurodegenerative diseases. Front Cell Neurosci 2014; 8(89): 89.
[http://dx.doi.org/10.3389/fncel.2014.00089] [PMID: 24723850]
[182]
Elsaid MF, Chalhoub N, Ben-Omran T, et al. Mutation in noncoding RNA RNU12 causes early onset cerebellar ataxia. Ann Neurol 2017; 81(1): 68-78.
[http://dx.doi.org/10.1002/ana.24826] [PMID: 27863452]
[183]
Sakthikumar S, Roy A, Haseeb L, et al. Whole-genome sequencing of glioblastoma reveals enrichment of non-coding constraint mutations in known and novel genes. Genome Biol 2020; 21(1): 127.
[http://dx.doi.org/10.1186/s13059-020-02035-x] [PMID: 32513296]
[184]
Bronstein R, Capowski EE, Mehrotra S, et al. A combined RNA-seq and whole genome sequencing approach for identification of non-coding pathogenic variants in single families. Hum Mol Genet 2020; 29(6): 967-79.
[http://dx.doi.org/10.1093/hmg/ddaa016] [PMID: 32011687]
[185]
Azodi M, Kamps R, Heymans S, Robinson EL. The Missing “lnc” between Genetics and Cardiac Disease. Noncoding RNA 2020; 6(1): 3.
[http://dx.doi.org/10.3390/ncrna6010003] [PMID: 31947625]
[186]
Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 2017; 16(3): 203-22.
[http://dx.doi.org/10.1038/nrd.2016.246] [PMID: 28209991]
[187]
Smolle MA, Calin HN, Pichler M, Calin GA. Noncoding RNAs and immune checkpoints-clinical implications as cancer therapeutics. FEBS J 2017; 284(13): 1952-66.
[http://dx.doi.org/10.1111/febs.14030] [PMID: 28132417]
[188]
Tang Q, Hann SS. HOTAIR: an oncogenic long non-coding RNA in human cancer. Cell Physiol Biochem 2018; 47(3): 893-913.
[http://dx.doi.org/10.1159/000490131] [PMID: 29843138]
[189]
Meng J, Li P, Zhang Q, Yang Z, Fu S. A four-long non-coding RNA signature in predicting breast cancer survival. J Exp Clin Cancer Res 2014; 33(1): 84.
[http://dx.doi.org/10.1186/s13046-014-0084-7] [PMID: 25288503]
[190]
Zhou M, Zhao H, Wang Z, et al. Identification and validation of potential prognostic lncRNA biomarkers for predicting survival in patients with multiple myeloma. J Exp Clin Cancer Res 2015; 34(1): 102.
[http://dx.doi.org/10.1186/s13046-015-0219-5] [PMID: 26362431]
[191]
Jariwala N, Sarkar D. Emerging role of lncRNA in cancer: a potential avenue in molecular medicine. Ann Transl Med 2016; 4(15): 286.
[http://dx.doi.org/10.21037/atm.2016.06.27] [PMID: 27569205]
[192]
Chubb JE, Bradshaw NJ, Soares DC, Porteous DJ, Millar JK. The DISC locus in psychiatric illness. Mol Psychiatry 2008; 13(1): 36-64.
[http://dx.doi.org/10.1038/sj.mp.4002106] [PMID: 17912248]
[193]
Scheele C, Nielsen AR, Walden TB, et al. Altered regulation of the PINK1 locus: a link between type 2 diabetes and neurodegeneration? FASEB J 2007; 21(13): 3653-65.
[http://dx.doi.org/10.1096/fj.07-8520com] [PMID: 17567565]
[194]
Grillone K, Riillo C, Scionti F, et al. Non-coding RNAs in cancer: platforms and strategies for investigating the genomic “dark matter”. J Exp Clin Cancer Res 2020; 39(1): 117.
[http://dx.doi.org/10.1186/s13046-020-01622-x] [PMID: 32563270]
[195]
Mizrahi A, Czerniak A, Levy T, et al. Development of targeted therapy for ovarian cancer mediated by a plasmid expressing diphtheria toxin under the control of H19 regulatory sequences. J Transl Med 2009; 7: 69.
[http://dx.doi.org/10.1186/1479-5876-7-69] [PMID: 19656414]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy