Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Research Article

In-vitro Functionality of Clozapine Biphasic Release Minitablet Using Advanced Statistical Tools

Author(s): Hardik B. Rana*, Rushikesh Chaudhari, Vaishali Thakkar and Tejal Gandhi

Volume 11, Issue 3, 2021

Published on: 12 April, 2021

Page: [248 - 264] Pages: 17

DOI: 10.2174/2210303111666210412163605

Price: $65

Abstract

Background: The better control of the drug release with immediate effect is the major concern to achieve better therapeutic action and patient compliance. The failure of the solid dispersion complex during storage as well as in-vivo is another concern for the oral solid dosage form.

Objective: The prime objective of the present study was to optimize the biphasic minitablet incorporating quality by design approach using the combination of waxy erodible and water-impermeable excipients. Exploration of Soluplus as a precipitation inhibitor and Dexolve as a solubility enhancer in oral solid dosage form was the secondary objective.

Methods: The drug-Excipient compatibility study was assessed by FTIR. Clozapine was chosen as a model drug that has poor aqueous solubility. The complex was formulated using B-cyclodextrin or HP B-CD or Dexolve by kneading method. The screening of solubility enhancers and their amount were performed based on phase solubility study. The precipitation inhibitor was screened as per the parachute effect study. Immediate release minitablets were formulated using a direct compression method using different disintegrating agents. The IR minitablets were evaluated for different evaluation parameters. The sustained release minitablets were formulated by hot-melt granulation technique incorporating the Precirol ATO 5 as a waxy excipient and ethyl cellulose as water impermeable excipient. The SR minitablet was optimized using a central composite design. The amount of Precirol ATO 5 and ethyl cellulose were chosen as independent variables and % drug release at 1, 6, and 10 h was selected as responses. The designed batches were evaluated for different pre and post-compressional parameters. The IR and SR minitablets were filled in a capsule as per dose requirement and evaluated for in-vitro drug release. The in-vivo plasma concentration was predicted using the Back calculation of the Wagner - Nelson approach.

Results: Drug - Excipient study revealed that no significant interaction was observed. Dexolve was screened as a solubility enhancer for the improvement of the solubility of clozapine. The Soluplus was chosen as a precipitation inhibitor from the parachute effect study. The immediate-release tablet was formulated using Prosolv EASYtab SP which yielded less disintegration time with better flowability. The sustained release mini-tablet was formulated using Precirol ATO 5 and ethyl cellulose. Two-dimensional and three-dimensional plots revealed significant effect of the amount of Precirol ATO 5 and ethyl cellulose. The overlay plot locates the optimized region. The in-vitro drug release study revealed the desired drug release of the final combined formulation. The in-vivo plasma concentration-time confirms the drug release up to 12h.

Conclusion: The biphasic mini-tablets were formulated successfully for better control of drug release leads to high patient compliance. The use of soluplus as a precipitation inhibitor is explored in the oral solid dosage form for a poorly aqueous drug. Prosolv EASYtab SP was incorporated in the formulation as super disintegrant. The amount of Precirol ATO 5 and ethyl cellulose significantly affected drug release in sustained-release minitablet. The approach can be useful in the industry.

Keywords: Clozapine, dexolve, prosolv, precirol ATO 5, biphasic minitablet, in-vitro.

Graphical Abstract
[1]
Rautamo, M.; Kvarnström, K.; Sivén, M.; Airaksinen, M.; Lahdenne, P.; Sandler, N. A focus group study about oral drug administration practices at hospital wards-aspects to consider in drug development of age-appropriate formulations for children. Pharmaceutics, 2020, 12(2), 109-122.
[http://dx.doi.org/10.3390/pharmaceutics12020109] [PMID: 32019100]
[2]
Zhang, D.; Rumondor, A.C.F.; Zhu, W.; Colace, T.; Marota, M.; Mora, J.; Liu, Z.; Li, Y. The development of minitablets for a pediatric dosage form for a combination therapy. J. Pharm. Sci., 2020, 109(12), 3590-3597.
[http://dx.doi.org/10.1016/j.xphs.2020.08.021] [PMID: 32882230]
[3]
Mitra, B.; Thool, P.; Meruva, S.; Aycinena, J.A.; Li, J.; Patel, J.; Patel, K.; Agarwal, A.; Karki, S.; Bowen, W. Decoding the small size challenges of mini-tablets for enhanced dose flexibility and micro-dosing. Int. J. Pharm., 2020, 574, 118905.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118905] [PMID: 31809860]
[4]
Khanahmadi, M.; Farhud, D.D.; Malmir, M. Genetic of alzheimer’s disease: a narrative review article. Iran. J. Public Health, 2015, 44(7), 892-901.
[PMID: 26576367]
[5]
Mottaghitalab, F.; Farokhi, M.; Shokrgozar, M.A.; Atyabi, F.; Hosseinkhani, H. Silk fibroin nanoparticle as a novel drug delivery system. J. Control. Release, 2015, 206, 161-176.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.020] [PMID: 25797561]
[6]
Ghadiri, M.; Vasheghani-Farahani, E.; Atyabi, F.; Kobarfard, F.; Mohamadyar-Toupkanlou, F.; Hosseinkhani, H. Transferrin-conjugated magnetic dextran-spermine nanoparticles for targeted drug transport across blood-brain barrier. J. Biomed. Mater. Res. A, 2017, 105(10), 2851-2864.
[http://dx.doi.org/10.1002/jbm.a.36145] [PMID: 28639394]
[7]
Alibolandi, M.; Abnous, K.; Sadeghi, F.; Hosseinkhani, H.; Ramezani, M.; Hadizadeh, F. Folate receptor-targeted multimodal polymersomes for delivery of quantum dots and doxorubicin to breast adenocarcinoma: In vitro and in vivo evaluation. Int. J. Pharm., 2016, 500(1-2), 162-178.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.040] [PMID: 26802496]
[8]
Rana, H.; Hasan, H.; Gohel, M.; Thakkar, V.; Gandhi, T. Systematic development of bicalutamide immediate release pellets using aeroperl and non-MCC extruder aid. Curr. Drug Ther., 2021, 15(5), 482-492.
[http://dx.doi.org/10.2174/1574885515999200424082315]
[9]
Lee, H.S.; Lee, J.J.; Kim, M.G.; Kim, K.T.; Cho, C.W.; Kim, D.D.; Lee, J.Y. Sprinkle formulations-A review of commercially available products. Asian J Pharm Sci, 2020, 15(3), 292-310.
[http://dx.doi.org/10.1016/j.ajps.2019.05.003] [PMID: 32636948]
[10]
Pezzini, B.R.; Beringhs, A.O.R.; Ferraz, H.G.; Silva, M.A.S.; Stulzer, H.K.; Sonaglio, D.; Sonaglio, D. Liquisolid pellets and liqui-pellets are not different. AAPS Pharm. Sci. Tech., 2020, 21(2), 72.
[http://dx.doi.org/10.1208/s12249-019-1590-x] [PMID: 31953566]
[11]
Ratul, D.; Baquee, A.A. Pellets and pelletization techniques : a critical review. Int. Res. J. Pharm., 2013, 4(4), 90-95.
[http://dx.doi.org/10.7897/2230-8407.04414]
[12]
Gupta, S.; Thool, P.; Meruva, S.; Li, J.; Patel, J.; Agrawal, A.; Karki, S.; Bowen, W.; Mitra, B. Development of low dose micro-tablets by high shear wet granulation process. Int. J. Pharm., 2020, 587, 119571.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119571] [PMID: 32652180]
[13]
Comoglu, T.; Dilek Ozyilmaz, E. Orally disintegrating tablets and orally disintegrating mini tablets - novel dosage forms for pediatric use. Pharm. Dev. Technol., 2019, 24(7), 902-914.
[http://dx.doi.org/10.1080/10837450.2019.1615090] [PMID: 31215850]
[14]
Ilhan, E. Mini tablets : a short review-revision. Open J. Chem, 2017, 3(1), 12-22.
[http://dx.doi.org/10.17352/ojc.000007]
[15]
Batchelor, H. Determination of healthcare resource and cost implications of using alternative sodium valproate formulations in the treatment of epilepsy in children in england : a retrospective database review. Eur. J. Pharm. Biopharm., 2020, 20, 30365-30369.
[http://dx.doi.org/10.1016/j.ejpb.2020.12.007] [PMID: 33338602]
[16]
Kottke, D.; Lura, A.; Lunter, D.J.; Breitkreutz, J. Manufacturing and characterisation of a novel composite dosage form for buccal drug administration. Int. J. Pharm., 2020, 589(June), 119839.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119839] [PMID: 32898634]
[17]
National Institute of Mental Health. Schizophrenia-Overview, https://www.nimh.nih.gov/health/statistics/schizophrenia.shtml
[18]
World Health Organization. Schizophrenia, https://www.who.int/news-room/fact-sheets/detail/schizophrenia
[19]
Orrico-Sánchez, A.; López-Lacort, M.; Muñoz-Quiles, C.; Sanfélix-Gimeno, G.; Díez-Domingo, J. Epidemiology of schizophrenia and its management over 8-years period using real-world data in Spain. BMC Psychiatry, 2020, 20(1), 149.
[http://dx.doi.org/10.1186/s12888-020-02538-8] [PMID: 32248839]
[20]
Charlson, F.; van Ommeren, M.; Flaxman, A.; Cornett, J.; Whiteford, H.; Saxena, S. New WHO prevalence estimates of mental disorders in conflict settings: a systematic review and meta-analysis. Lancet, 2019, 394(10194), 240-248.
[http://dx.doi.org/10.1016/S0140-6736(19)30934-1] [PMID: 31200992]
[21]
Govind, R.; Fonseca de Freitas, D.; Pritchard, M.; Hayes, R.D.; MacCabe, J.H. Clozapine treatment and risk of COVID-19 infection: retrospective cohort study. Br. J. Psychiatry, 2020, 1-7.
[http://dx.doi.org/10.1192/bjp.2020.151] [PMID: 32713374]
[22]
Rowntree, R.; Murray, S.; Fanning, F.; Keating, D.; Szigeti, A.; Doyle, R.; McWilliams, S.; Clarke, M. Clozapine use - has practice changed? J. Psychopharmacol., 2020, 34(5), 567-573.
[http://dx.doi.org/10.1177/0269881120913152] [PMID: 32297836]
[23]
de Leon, J.; Ruan, C.J.; Verdoux, H.; Wang, C. Clozapine is strongly associated with the risk of pneumonia and inflammation. Gen Psychiatr, 2020, 33(2), e100183.
[http://dx.doi.org/10.1136/gpsych-2019-100183] [PMID: 32420521]
[24]
Siskind, D.; William, G.; Clark, S.; Correll, C.U.; Hasan, A.; Kelly, D.L.; Laitman, R.; Lee, J. Psychopharmacology for the clinician use of clozapine during the COVID-19 pandemic. J. Psychiatry Neurosci., 2020, 45(3), 222-223.
[http://dx.doi.org/10.1503/jpn.200061] [PMID: 32297722]
[25]
Leucht, S.; Cipriani, A.; Spineli, L.; Mavridis, D.; Örey, D.; Richter, F.; Samara, M.; Barbui, C.; Engel, R.R.; Geddes, J.R.; Kissling, W.; Stapf, M.P.; Lässig, B.; Salanti, G.; Davis, J.M. Comparative effi cacy and tolerability of 15 antipsychotic drugs in schizophrenia : a multiple-treatments meta-analysis. Lancet, 2014, 6736(13), 1-12.
[http://dx.doi.org/10.1016/S0140-6736(13)60733-3]
[26]
Farmoudeh, A.; Rezaeiroshan, A.; Abbaspour, M.; Nokhodchi, A.; Ebrahimnejad, P. Solid dispersion pellets: an efficient pharmaceutical approach to enrich the solubility and dissolution rate of deferasirox. Biomed. Res. Int., 2020, 2020, 8583540.
[http://dx.doi.org/10.1155/2020/8583540] [PMID: 32685534]
[27]
Tekade, A.R.; Yadav, J.N.; Yadav, J.N. A review on solid dispersion and carriers used therein for solubility enhancement of poorly water soluble drugs. Adv. Pharm. Bull., 2020, 10(3), 359-369.
[http://dx.doi.org/10.34172/apb.2020.044] [PMID: 32665894]
[28]
Mohandoss, S.; Atchudan, R.; Nesakumar, T.; Edison, J.I.; Mishra, K.; John, R.; You, S.; Napoleon, A.A.; Lee, R. Enhancement ofsolubility, antibiofilm, and antioxidant activity of uridine by inclusion in β-cyclodextrin derivatives. J. Mol. Liq., 2020, 306, 112849.
[http://dx.doi.org/10.1016/j.molliq.2020.112849]
[29]
Kim, D.S.; Cho, J.H.; Park, J.H.; Kim, J.S.; Song, E.S.; Kwon, J.; Giri, B.R.; Jin, S.G.; Kim, K.S.; Choi, H.G.; Kim, D.W. Self-microemulsifying drug delivery system (SMEDDS) for improved oral delivery and photostability of methotrexate. Int. J. Nanomedicine, 2019, 14, 4949-4960.
[http://dx.doi.org/10.2147/IJN.S211014] [PMID: 31308665]
[30]
Bei, Y.Y.; Zhou, X.F.; You, B.G.; Yuan, Z.Q.; Chen, W.L.; Xia, P.; Liu, Y.; Jin, Y.; Hu, X.J.; Zhu, Q.L.; Zhang, C.G.; Zhang, X.N.; Zhang, L. Application of the central composite design to optimize the preparation of novel micelles of harmine. Int. J. Nanomedicine, 2013, 8, 1795-1808.
[http://dx.doi.org/10.2147/IJN.S43555] [PMID: 23674893]
[31]
Zhang, X.; Xing, H.; Zhao, Y.; Ma, Z. Pharmaceutical dispersion techniques for dissolution and bioavailability enhancement of poorly water-soluble drugs. Pharmaceutics, 2018, 10(3), 74.
[http://dx.doi.org/10.3390/pharmaceutics10030074] [PMID: 29937483]
[32]
Guan, J.; Jin, L.; Liu, Q.; Xu, H.; Wu, H.; Zhang, X.; Mao, S. Exploration of supersaturable lacidipine ternary amorphous solid dispersion for enhanced dissolution and in vivo absorption. Eur. J. Pharm. Sci., 2019, 139, 105043.
[http://dx.doi.org/10.1016/j.ejps.2019.105043] [PMID: 31415903]
[33]
Liu, P.; Zhou, J.Y.; Chang, J.H.; Liu, X.G.; Xue, H.F.; Wang, R.X.; Li, Z.S.; Li, C.S.; Wang, J.; Liu, C.Z. Soluplus-mediated diosgenin amorphous solid dispersion with high solubility and high stability: development, characterization and oral bioavailability. Drug Des. Devel. Ther., 2020, 14, 2959-2975.
[http://dx.doi.org/10.2147/DDDT.S253405] [PMID: 32801637]
[34]
Alshehri, S.; Imam, S.S.; Hussain, A.; Altamimi, M.A.; Alruwaili, N.K.; Alotaibi, F.; Alanazi, A.; Shakeel, F. Potential of solid dispersions to enhance solubility, bioavailability, and therapeutic efficacy of poorly water-soluble drugs: newer formulation techniques, current marketed scenario and patents. Drug Deliv., 2020, 27(1), 1625-1643.
[http://dx.doi.org/10.1080/10717544.2020.1846638] [PMID: 33207947]
[35]
Alshehri, S.; Imam, S.S.; Altamimi, M.A.; Hussain, A.; Shakeel, F.; Alshehri, A. Stimulatory effects of soluplus® on flufenamic acid β-cyclodextrin supramolecular complex: physicochemical characterization and pre-clinical anti-inflammatory assessment. AAPS PharmSciTech, 2020, 21(5), 145-157.
[http://dx.doi.org/10.1208/s12249-020-01684-2] [PMID: 32430787]
[36]
Ah, N.; Hee, K.; Oh, K.; Chul, J.; Young, L.; Choi, H.; Hoon, S. Comparison of solubility enhancement by solid dispersion and micronized butein and its correlation with in vivo study. J. Pharm. Investig., 2021, 53, 53-60.
[http://dx.doi.org/10.1007/s40005-020-00486-9]
[37]
Alopaeus, J.F.; Hagesæther, E.; Tho, I. Micellisation mechanism and behaviour of soluplus®⁻furosemide micelles: preformulation studies of an oral nanocarrier-based system. Pharmaceuticals (Basel), 2019, 12(1), 1-23.
[http://dx.doi.org/10.3390/ph12010015] [PMID: 30669484]
[38]
Silva, D.A.; Al-Gousous, J.; Davies, N.M.; Chacra, N.B.; Webster, G.K.; Lipka, E.; Amidon, G.L.; Löbenberg, R. Biphasic dissolution as an exploratory method during early drug product development. Pharmaceutics, 2020, 12(5), 420-426.
[http://dx.doi.org/10.3390/pharmaceutics12050420] [PMID: 32370237]
[39]
Rao, K.V.; Venkatchalam, V.V. Mucoadhesive biphasic minitablets of cefuroxime axetil : formulation development, characterization and in vivo bioavailability study. J. Drug Deliv. Sci. Technol., 2016, 35, 260-271.
[http://dx.doi.org/10.1016/j.jddst.2016.07.003]
[40]
Hosseinkhani, H.; Domb, A.J. Biodegradable Polymers in Gene ‐ Silencing Technology. Polym. Adv. Technol., 2019, 30(10), 1-9.
[http://dx.doi.org/10.1002/pat.4713]
[41]
Abedini, F.; Abraham, J. Overview on natural hydrophilic polysaccharide polymers in drug delivery. Polym. Adv. Technol., 2018, 29(10), 2564-2573.
[http://dx.doi.org/10.1002/pat.4375]
[42]
Tiwari, R.; Agarwal, S.K.; Tiwari, S. Formulation and multivariate optimization of microcrystalline cellulose pellets of highly water soluble drug., 2013, 5, 206-213.
[43]
Davanço, M.G.; Campos, D.R.; Carvalho, P.O. Review article in vitro – in vivo correlation in the development of oral drug formulation : a screenshot of the last two decades short running title : ivivc in the development of oral drug formulation. Int. J. Pharm., 2020, 580, 119210.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119210] [PMID: 32173499]
[44]
Gomeni, R.; Bressolle-Gomeni, F. Comparison of alternative population modeling approaches for implementing a level a ivivc and for assessing the time-scaling factor using deconvolution and convolution-based methods. AAPS J., 2020, 22(3), 67-79.
[http://dx.doi.org/10.1208/s12248-020-00445-0] [PMID: 32297044]
[45]
Cyclotab-The cyclodextrin Company. Dexolve the USP compliant SBECD of Cyclolab Ltd, https://cyclolab.hu/dexolve
[46]
Bakirova, R.; Nukhuly, A.; Iskineyeva, A.; Fazylov, S.; Burkeyev, M.; Mustafayeva, A.; Minayeva, Y.; Sarsenbekova, A. Obtaining and investigation of the β-cyclodextrin inclusion complex with vitamin D3 oil solution. Scientifica (Cairo), 2020, 2020, 6148939.
[http://dx.doi.org/10.1155/2020/6148939] [PMID: 32908782]
[47]
Basha, M.; Salama, A.; Noshi, S.H. Soluplus® based solid dispersion as fast disintegrating tablets: a combined experimental approach for enhancing the dissolution and antiulcer efficacy of famotidine. Drug Dev. Ind. Pharm., 2020, 46(2), 253-263.
[http://dx.doi.org/10.1080/03639045.2020.1716376] [PMID: 31937139]
[48]
Petrovick, G.F.; Breitkreutz, J.; Pein-Hackelbusch, M. Taste-masking properties of solid lipid based micropellets obtained by cold extrusion-spheronization. Int. J. Pharm., 2016, 506(1-2), 361-370.
[http://dx.doi.org/10.1016/j.ijpharm.2016.04.058] [PMID: 27132502]
[49]
Ali, M.T.; Fule, R.; Sav, A.; Amin, P. Porous starch: a novel carrier for solubility enhancement of carbamazepine. AAPS PharmSciTech, 2013, 14(3), 919-926.
[http://dx.doi.org/10.1208/s12249-013-9985-6] [PMID: 23715951]
[50]
Patel, N.; Thakkar, V.; Moradiya, P.; Gandhi, T.; Gohel, M. Optimization of curcumin loaded vaginal in-situ hydrogel by box- behnken statistical design for contraception. J. Drug Deliv. Sci. Technol., 2015, 29(1), 55-68.
[http://dx.doi.org/10.1016/j.jddst.2015.06.002]
[51]
Ibrahim, M.A.; El-Badry, M. Formulation of immediate release pellets containing famotidine solid dispersions. Saudi Pharm. J., 2014, 22(2), 149-156.
[http://dx.doi.org/10.1016/j.jsps.2013.01.011] [PMID: 24648827]
[52]
Yan, H.X.; Zhang, S.S.; He, J.H.; Liu, J.P. Application of ethyl cellulose, microcrystalline cellulose and octadecanol for wax based floating solid dispersion pellets. Carbohydr. Polym., 2016, 148(1), 143-152.
[http://dx.doi.org/10.1016/j.carbpol.2016.04.050] [PMID: 27185125]
[53]
Maulvi, F.A.; Dalwadi, S.J.; Thakkar, V.T.; Soni, T.G.; Gohel, M.C.; Gandhi, T.R. Improvement of dissolution rate of aceclofenac by solid dispersion technique. Powder Technol., 2011, 207(1–3), 47-54.
[http://dx.doi.org/10.1016/j.powtec.2010.10.009]
[54]
Gupta, M.M.; Khoorban, A.; Ali, A.; Ramlogan, O.; Talukdar, D. Comparative quality control study of different brands of diclofenac sodium tablet available in local and government pharmacies by in-vitro testing. Cureus, 2020, 12(11), e11348.
[http://dx.doi.org/10.7759/cureus.11348] [PMID: 33304683]
[55]
van der Merwe, J.; Steenekamp, J.; Steyn, D.; Hamman, J. The role of functional excipients in solid oral dosage forms to overcome poor drug dissolution and bioavailability. Pharmaceutics, 2020, 12(5), 393-409.
[http://dx.doi.org/10.3390/pharmaceutics12050393] [PMID: 32344802]
[56]
Sbârcea, L.; Tănase, I.M.; Ledeți, A.; Cîrcioban, D.; Vlase, G.; Barvinschi, P.; Miclău, M.; Văruţ, R.M.; Trandafirescu, C.; Ledeți, I. Encapsulation of risperidone by methylated β-cyclodextrins: physicochemical and molecular modeling studies. Molecules, 2020, 25(23), 5694-5708.
[http://dx.doi.org/10.3390/molecules25235694] [PMID: 33287127]
[57]
Quan, G.; Niu, B.; Singh, V.; Zhou, Y.; Wu, C.Y.; Pan, X.; Wu, C. Supersaturable solid self-microemulsifying drug delivery system: precipitation inhibition and bioavailability enhancement. Int. J. Nanomedicine, 2017, 12, 8801-8811.
[http://dx.doi.org/10.2147/IJN.S149717] [PMID: 29263669]
[58]
Chaudhari, S.P.; Dave, R.H. Evaluating the effects of different molecular weights of polymers in stabilizing supersaturated drug solutions and formulations using various methodologies of the model drug : fenofibrate. J. Pharm. Sci. Pharmacol., 2015, 2(3), 259-276.
[http://dx.doi.org/10.1166/jpsp.2015.1066]
[59]
Schittny, A.; Huwyler, J.; Puchkov, M. Mechanisms of increased bioavailability through amorphous solid dispersions: a review. Drug Deliv., 2020, 27(1), 110-127.
[http://dx.doi.org/10.1080/10717544.2019.1704940] [PMID: 31885288]
[60]
Rigos, G.; Smith, P. A critical approach on pharmacokinetics, pharmacodynamics, dose optimisation and withdrawal times of oxytetracycline in aquaculture. Rev. Aquacult., 2015, 7, 77-106.
[http://dx.doi.org/10.1111/raq.12055]
[61]
García, M.; Piña, J.; Palma, S.; Allemandi, D. Co—processed excipient, obtained by spray—drying, usable as a pharmaceutical excipient or food additive; WIPO, 2013, pp. 1-48.
[62]
Freerks, L.; Sommerfeldt, J.; Löper, P.C.; Klein, S. Safe, swallowable and palatable paediatric mini-tablet formulations for a WHO model list of essential medicines for children compound - A promising starting point for future PUMA applications. Eur. J. Pharm. Biopharm., 2020, 156, 11-19.
[http://dx.doi.org/10.1016/j.ejpb.2020.08.014] [PMID: 32871197]
[63]
Hadi, M.A.; Raghavendra Rao, N.G.; Srinivasa Rao, A. Formulation and evaluation of ileo-colonic targeted matrix-mini-tablets of Naproxen for chronotherapeutic treatment of rheumatoid arthritis. Saudi Pharm. J., 2016, 24(1), 64-73.
[http://dx.doi.org/10.1016/j.jsps.2015.03.001] [PMID: 26903770]
[64]
Matawo, N.; Adeleke, O.A.; Wesley-Smith, J. Optimal design, characterization and preliminary safety evaluation of an edible orodispersible formulation for pediatric tuberculosis pharmacotherapy. Int. J. Mol. Sci., 2020, 21(16), 5714-2740.
[http://dx.doi.org/10.3390/ijms21165714] [PMID: 32784947]
[65]
Shahanoor, M.; Shadab, K.; Ghadage, D.M.; Yadav, A.V.; Amit, W. Formulation and evaluation of bilayer tablets of propranolol hydrochloride. J. Drug Deliv. Ther., 2017, 7(2), 50-57.
[66]
Gaber, D.A.; Alhawas, H.S.; Alfadhel, F.A.; Abdoun, S.A.; Alsubaiyel, A.M.; Alsawi, R.M. Mini-tablets versus nanoparticles for controlling the release of amoxicillin: in vitro/in vivo study. Drug Des. Devel. Ther., 2020, 14, 5405-5418.
[http://dx.doi.org/10.2147/DDDT.S285522] [PMID: 33324038]
[67]
Chikukwa, M.T.R.; Walker, R.B.; Khamanga, S.M.M. Formulation and characterisation of a combination captopril and hydrochlorothiazide microparticulate dosage form. Pharmaceutics, 2020, 12(8), 712-730.
[http://dx.doi.org/10.3390/pharmaceutics12080712] [PMID: 32751409]
[68]
Senthilkumar, M.; Gowramma, B.; Kaviarasan, L.; Reddy, K.V.V.S.; Arun, R. Oral modified drug release solid dosage form with special reference to design; an overview. Curr. dru Res. Rev., 2020, 12, 1-10.
[http://dx.doi.org/10.2174/2589977511666191121094520]
[69]
Tamanna, S.; Nandi, T.; Shahriar, R.; Barek, A.; Zamsad, M. In-vitro comparative dissolution study of different brands of levocetirizine dihydrochloride available in bangladesh. Int. J. Innov. Appl. Stud., 2019, 26(2), 556-561.
[70]
Mansuri, N.; Patel, K.; Mehta, M.; Vyas, G.; Reddy, J.P.; Shah, T.; Steinbach, D.; Desai, D. Quality by design (QbD) approach to match tablet glossiness. Pharm. Dev. Technol., 2020, 25(8), 1010-1017.
[http://dx.doi.org/10.1080/10837450.2020.1772291] [PMID: 32432492]
[71]
Zhang, C.; Yang, L.; Wan, F.; Bera, H.; Cun, D.; Rantanen, J.; Yang, M. Quality by design thinking in the development of long-acting injectable PLGA/PLA-based microspheres for peptide and protein drug delivery. Int. J. Pharm., 2020, 585, 119441.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119441] [PMID: 32442645]
[72]
Yu, L.X.; Amidon, G.; Khan, M.A.; Hoag, S.W.; Polli, J.; Raju, G.K.; Woodcock, J. Understanding pharmaceutical quality by design. AAPS J., 2014, 16(4), 771-783.
[http://dx.doi.org/10.1208/s12248-014-9598-3] [PMID: 24854893]
[73]
Kotlowska, H.; Krotka, J.; Szymanska, M.; Kubiak, B.; Sznitowska, M.; Nalluri, B.N.; Kotlowska, H.; Krotka, J.; Szymanska, M.; Kubiak, B. The use of novel tools for the assessment of powders and granules flow properties and for the analysis of minitablets compression process. Drug Dev. Ind. Pharm., 2020, 46(4), 547-556.
[http://dx.doi.org/10.1080/03639045.2020.1734020] [PMID: 32129090]
[74]
Thakur, K.; Mahajan, A.; Sharma, G.; Singh, B.; Raza, K.; Chhibber, S.; Katare, O.P. Implementation of quality by design (QbD) approach in development of silver sulphadiazine loaded egg oil organogel: An improved dermatokinetic profile and therapeutic efficacy in burn wounds. Int. J. Pharm., 2020, 576, 118977.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118977] [PMID: 31870953]
[75]
Sangshetti, J.N.; Deshpande, M.; Zaheer, Z.; Shinde, D.B.; Arote, R. Quality by design approach: regulatory need. Arab. J. Chem., 2017, 10, S3412-S3425.
[http://dx.doi.org/10.1016/j.arabjc.2014.01.025]
[76]
Panda, M.; Rao, M.E.B.; Patra, C.N.; Panda, J.; Panigrahi, K.C.; Patro, G. Formulation and development of floating multiple-unit minitablets of nimodipine without using a gas-generating agent : in vitro and in vivo characterization. Futur. J. Pharm. Sci; , 2020, 6, pp. (4)1-9.
[78]
Ahmad, A.; Amir, M.; Alshadidi, A.A.; Hussain, M.D.; Haq, A.; Kazi, M. Central composite design expert-supported development and validation of HPTLC method: Relevance in quantitative evaluation of protopine in Fumaria indica. Saudi Pharm. J., 2020, 28(4), 487-494.
[http://dx.doi.org/10.1016/j.jsps.2020.02.011] [PMID: 32273809]
[79]
Bayuo, J.; Abdullai, M.; Kenneth, A.; Pelig, B. optimization using central composite design (ccd) of response surface methodology (RSM) for biosorption of hexavalent chromium from aqueous media. Appl. Water Sci., 2020, 10, 135-146.
[http://dx.doi.org/10.1007/s13201-020-01213-3]
[80]
Kassem, M.; El Shboury, K. Application of central composite design for the development and evaluation of chitosan-based colon targeted microspheres and in vitro characterization Indian J. Pharm. Sci, Https://Www.Ijpsonline.Com/Articles/Application-Of-2021, 81(2), 354-364.
[81]
Kumar, N.; Shishu, D-optimal experimental approach for designing topical microemulsion of itraconazole: Characterization and evaluation of antifungal efficacy against a standardized Tinea pedis infection model in Wistar rats. Eur. J. Pharm. Sci., 2015, 67, 97-112.
[http://dx.doi.org/10.1016/j.ejps.2014.10.014] [PMID: 25445834]
[82]
Charoo, N.A.; Shamsher, A.A.A.; Zidan, A.S.; Rahman, Z. Quality by design approach for formulation development: a case study of dispersible tablets. Int. J. Pharm., 2012, 423(2), 167-178.
[http://dx.doi.org/10.1016/j.ijpharm.2011.12.024] [PMID: 22209997]
[83]
Fakuda, I. Design of experiments (DoE) applied to pharmaceutical and analytical quality by design (QbD). Braz. J. Pharm. Sci., 2015, 54(Special), 1-16.
[84]
Gangurde, A.B.; Sav, A.K.; Javeer, S.D.; Moravkar, K.K.; Pawar, J.N.; Amin, P.D. Modified extrusion-spheronization as a technique of microencapsulation for stabilization of choline bitartrate using hydrogenated soya bean oil. Int. J. Pharm. Investig., 2015, 5(4), 275-283.
[http://dx.doi.org/10.4103/2230-973X.167696] [PMID: 26682198]
[85]
Kunal, P.; Gohel, M.C.; Parikh, R.K.; Bariya, S. Sustained release floating microspheres of acyclovir: formulation, optimization, characterization and in vitro evaluation. IJDDR, 2011, 3(1), 242-251.
[86]
Janseen Pharmaceuticals NDA Lable: Razadyne ER, Galantamine HBr Extended-Release Capsules; United States, 2011.
[87]
Singhvi, G.; Shah, A.; Yadav, N.; Saha, R.N. Prediction of in vivo plasma concentration-time profile from in vitro release data of designed formulations of milnacipran using numerical convolution method. Drug Dev. Ind. Pharm., 2015, 41(1), 105-108.
[http://dx.doi.org/10.3109/03639045.2013.850706] [PMID: 24164467]
[88]
Cheng, C.; Wu, P.; Lee, H.; Hsu, K. Development and validation of an in vitro e in vivo correlation (IVIVC) Model for propranolol hydrochloride extended-release matrix formulations. Yao Wu Shi Pin Fen Xi, 2013, 22(2), 257-263.
[http://dx.doi.org/10.1016/j.jfda.2013.09.016]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy