Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Olive Oil Consumption can Prevent Non-communicable Diseases and COVID-19: A Review

Author(s): Debabrata Majumder, Mousumi Debnath*, Kamal Nayan Sharma, Surinder Singh Shekhawat, G.B.K.S Prasad, Debasish Maiti and Seeram Ramakrishna

Volume 23, Issue 2, 2022

Published on: 12 April, 2021

Page: [261 - 275] Pages: 15

DOI: 10.2174/1389201022666210412143553

Price: $65

Abstract

The Mediterranean diet is appraised as the premier dietary regimen, and its espousal is correlated with the prevention of degenerative diseases and extended longevity. The consumption of olive oil stands out as the most peculiar feature of the Mediterranean diet. Olive oil rich in various bioactive compounds like oleanolic acid, oleuropein, oleocanthal, and hydroxytyrosol is known for its antiinflammatory as well as cardioprotective property. Recently in silico studies have indicated that phytochemicals present in olive oil are a potential candidate to act against SARS-CoV-2.

Although there are many extensive studies on olive oil and its phytochemical composition, however, some lacunas persist in understanding how the phytochemical composition of olive oil is dependent on upstream processing. The signaling pathways regulated by olive oil in the restriction of various diseases are also not clear. For answering these queries, a detailed search of research and review articles published between 1990 to 2019 were reviewed.

Olive oil consumption was found to be advantageous for various chronic non-communicable diseases. Olive oil’s constituents are having potent anti-inflammatory activities and thus restrict the progression of various inflammation-linked diseases ranging from arthritis to cancer. But it is also notable that the amount and nature of the phytochemical composition of household olive oil are regulated by its upstream processing, and the physicochemical properties of this oil can give a hint regarding the manufacturing method as well as its therapeutic effect. Moreover, daily uptake of olive oil should be monitored as excessive intake can cause body weight gain and a change in the basal metabolic index.

So, it can be concluded that the olive oil consumption is beneficial for human health, and particularly for the prevention of cardiovascular diseases, breast cancer, and inflammation. The simple way of processing olive oil is to maintain the polyphenol constituents, whichprovide the protection against noncommunicable diseases and SARS-CoV-2.

Keywords: Bioactive, cardiovascular, cancer, olive oil, oleuropein, oleic acid.

Graphical Abstract
[1]
Gorzynik-Debicka, M.; Przychodzen, P.; Cappello, F.; Kuban-Jankowska, A.; Marino Gammazza, A.; Knap, N.; Wozniak, M.; Gorska-Ponikowska, M. Potential health benefits of olive oil and plant polyphenols. Int. J. Mol. Sci., 2018, 19(3), 686.
[http://dx.doi.org/10.3390/ijms19030686] [PMID: 29495598]
[2]
Loued, S.; Berrougui, H.; Componova, P.; Ikhlef, S.; Helal, O.; Khalil, A. Extra-virgin olive oil consumption reduces the age-related decrease in HDL and paraoxonase 1 anti-inflammatory activities. Br. J. Nutr., 2013, 110(7), 1272-1284.
[http://dx.doi.org/10.1017/S0007114513000482] [PMID: 23510814]
[3]
Visioli, F.; Franco, M.; Toledo, E.; Luchsinger, J.; Willett, W.C.; Hu, F.B.; Martinez-Gonzalez, M.A. Olive oil and prevention of chronic diseases: summary of an international conference. Nutr. Metab. Cardiovasc. Dis., 2018, 28(7), 649-656.
[http://dx.doi.org/10.1016/j.numecd.2018.04.004] [PMID: 29804831]
[4]
Crespo, M.C.; Tomé-Carneiro, J.; Dávalos, A.; Visioli, F. Pharma-nutritional properties of olive oil phenols. Transfer of new findings to human nutrition. Foods, 2018, 7(6), 90.
[http://dx.doi.org/10.3390/foods7060090] [PMID: 29891766]
[5]
Pang, K.L.; Chin, K.Y. The biological activities of oleocanthal from a molecular perspective. Nutrients, 2018, 10(5), 570.
[http://dx.doi.org/10.3390/nu10050570] [PMID: 29734791]
[6]
Peyrol, J.; Riva, C.; Amiot, M.J. Hydroxytyrosol in the prevention of the metabolic syndrome and related disorders. Nutrients, 2017, 9(3), 306.
[http://dx.doi.org/10.3390/nu9030306] [PMID: 28335507]
[7]
Gonçalves-de-Albuquerque, C.F.; Medeiros-de-Moraes, I.M.; Oliveira, F.M.; Burth, P.; Bozza, P.T.; Castro Faria, M.V.; Silva, A.R.; Castro-Faria-Neto, H.C. Omega-9 oleic acid induces fatty acid oxidation and decreases organ dysfunction and mortality in experimental sepsis. PLoS One, 2016, 11(4)e0153607
[http://dx.doi.org/10.1371/journal.pone.0153607] [PMID: 27078880]
[8]
Casas, R.; Estruch, R.; Sacanella, E. The protective effects of extra virgin olive oil on immune-mediated inflammatory responses. Endocr. Metab. Immune Disord. Drug Targets, 2018, 18(1), 23-35.
[http://dx.doi.org/10.2174/1871530317666171114115632] [PMID: 29141575]
[9]
Cicerale, S.; Lucas, L.; Keast, R. Biological activities of phenolic compounds present in virgin olive oil. Int. J. Mol. Sci., 2010, 11(2), 458-479.
[http://dx.doi.org/10.3390/ijms11020458] [PMID: 20386648]
[10]
Barbaro, B.; Toietta, G.; Maggio, R.; Arciello, M.; Tarocchi, M.; Galli, A.; Balsano, C. Effects of the olive-derived polyphenol oleuropein on human health. Int. J. Mol. Sci., 2014, 15(10), 18508-18524.
[http://dx.doi.org/10.3390/ijms151018508] [PMID: 25318054]
[11]
Turktas, M.; Inal, B.; Okay, S.; Erkilic, E.G.; Dundar, E.; Hernandez, P.; Dorado, G.; Unver, T. Nutrition metabolism plays an important role in the alternate bearing of the olive tree (Olea europaea L.). PLoS One, 2013, 8(3)e59876
[http://dx.doi.org/10.1371/journal.pone.0059876] [PMID: 23555820]
[12]
Conte, L.; Bendini, A.; Valli, E.; Lucci, P.; Moret, S.; Maquet, A.; Lacoste, F.; Brereton, P.; García-González, D.L.; Moreda, W.; Toschi, T.G. Olive oil quality and authenticity: A review of current EU legislation, standards, relevant methods of analyses, their drawbacks and recommendations for the future. Trends Food Sci. Technol., 2020, 105, 483-493.
[http://dx.doi.org/10.1016/j.tifs.2019.02.025]
[13]
Jimenez-Lopez, C.; Carpena, M.; Lourenço-Lopes, C.; Gallardo-Gomez, M.; Lorenzo, J.M.; Barba, F.J.; Prieto, M.A.; Simal-Gandara, J. Bioactive compounds and quality of extra virgin olive oil. Foods, 2020, 9(8), 1014.
[http://dx.doi.org/10.3390/foods9081014] [PMID: 32731481]
[14]
Ben Brahim, S.; Amanpour, A.; Chtourou, F.; Kelebek, H.; Selli, S.; Bouaziz, M. Gas Chromatography–Mass Spectrometry–Olfactometry to control the aroma fingerprint of extra virgin olive oil from three Tunisian cultivars at three harvest times. J. Agric. Food Chem., 2018, 66(11), 2851-2861.
[http://dx.doi.org/10.1021/acs.jafc.7b06090] [PMID: 29485281]
[15]
Lazzerini, C.; Domenici, V. Pigments in extra-virgin olive oils produced in Tuscany (Italy) in different years. Foods, 2017, 6(4), 25.
[http://dx.doi.org/10.3390/foods6040025] [PMID: 28353651]
[16]
Hammond, B.R. Dietary Carotenoids and the Nervous System. Foods, 2015, 4(4), 698-701.
[http://dx.doi.org/10.3390/foods4040698] [PMID: 28231232]
[17]
Torres, M.; Pierantozzi, P.; Searles, P.; Rousseaux, M.C.; García-Inza, G.; Miserere, A.; Bodoira, R.; Contreras, C.; Maestri, D. Olive cultivation in the southern hemisphere: flowering, water requirements and oil quality responses to new crop environments. Front. Plant Sci., 2017, 8, 1830.
[http://dx.doi.org/10.3389/fpls.2017.01830] [PMID: 29163569]
[18]
Makri, S.; Kafantaris, I.; Savva, S.; Ntanou, P.; Stagos, D.; Argyroulis, I.; Kotsampasi, B.; Christodoulou, V.; Gerasopoulos, K.; Petrotos, K.; Komiotis, D.; Kouretas, D. Novel feed including olive oil mill wastewater bioactive compounds enhanced the redox status of lambs. In Vivo, 2018, 32(2), 291-302.
[PMID: 29475912]
[19]
Malheiro, R.; Rodrigues, N.; Pereira, J.A. Olive Oil phenolic composition as affected by geographic origin, olive cultivar and cultivation system.Olive and olive oil bioactive constituents; Boskou, D., Ed.; AOCS press: Urbana, 2015, pp. 23-146.
[http://dx.doi.org/10.1016/B978-1-63067-041-2.50010-0]
[20]
Luchetti, F. Importance and future of olive oil in the world market-an introduction to olive oil. Eur. J. Lipid Sci. Technol., 2002, 104(9), 559-563.
[http://dx.doi.org/10.1002/1438-9312(200210)104:9/10<559:AID-EJLT559>3.0.CO;2-Q]
[21]
Türkekul, B.; Günden, C.; Abay, C.; Miran, B. Competitiveness of Mediterranean countries in the olive oil market. New Medit, 2010, 9(1), 41-46.
[22]
Hashmi, M.A.; Khan, A.; Hanif, M.; Farooq, U.; Perveen, S. Traditional uses, phytochemistry, and pharmacology of Olea europaea (Olive). Evid. Based Complement. Alternat. Med., 2015, 2015541591
[http://dx.doi.org/10.1155/2015/541591] [PMID: 25802541]
[23]
Verma, N.; Shaheen, R.; Yadav, S.K.; Singh, A.K. Olive (Olea europaea L.) Introduction in India: Issues and Prospects. Int. J. Plant Res., 2012, 25(2), 44-49.
[24]
Karković Marković, A.; Torić, J.; Barbarić, M.; Jakobušić Brala, C. Hydroxytyrosol, tyrosol and derivatives and their potential effects on human health. Molecules, 2019, 24(10), 2001.
[http://dx.doi.org/10.3390/molecules24102001] [PMID: 31137753]
[25]
De Stefanis, D.; Scimè, S.; Accomazzo, S.; Catti, A.; Occhipinti, A.; Bertea, C.M.; Costelli, P. Anti-proliferative effects of an extra-virgin olive oil extract enriched in ligsteroside aglycone and oleocanthal on human liver cancer cell lines. Cancers (Basel), 2019, 11(11), 1640.
[http://dx.doi.org/10.3390/cancers11111640] [PMID: 31653043]
[26]
Reboredo-Rodríguez, P.; Figueiredo-González, M.; González-Barreiro, C.; Simal-Gándara, J.; Salvador, M.D.; Cancho-Grande, B.; Fregapane, G. State of the art on functional virgin olive oils enriched with bioactive compounds and their properties. Int. J. Mol. Sci., 2017, 18(3), 668.
[http://dx.doi.org/10.3390/ijms18030668] [PMID: 28335517]
[27]
Vissers, M.N.; Zock, P.L.; Katan, M.B. Bioavailability and antioxidant effects of olive oil phenols in humans: a review. Eur. J. Clin. Nutr., 2004, 58(6), 955-965.
[http://dx.doi.org/10.1038/sj.ejcn.1601917] [PMID: 15164117]
[28]
de Pablos, R.M.; Espinosa-Oliva, A.M.; Hornedo-Ortega, R.; Cano, M.; Arguelles, S. Hydroxytyrosol protects from aging process via AMPK and autophagy; a review of its effects on cancer, metabolic syndrome, osteoporosis, immune-mediated and neurodegenerative diseases. Pharmacol. Res., 2019, 143, 58-72.
[http://dx.doi.org/10.1016/j.phrs.2019.03.005] [PMID: 30853597]
[29]
Leri, M.; Scuto, M.; Ontario, M.L.; Calabrese, V.; Calabrese, E.J.; Bucciantini, M.; Stefani, M. Healthy Effects of Plant Polyphenols: Molecular Mechanisms. Int. J. Mol. Sci., 2020, 21(4), 1250.
[http://dx.doi.org/10.3390/ijms21041250] [PMID: 32070025]
[30]
Foscolou, A.; Critselis, E.; Panagiotakos, D. Olive oil consumption and human health: A narrative review. Maturitas, 2018, 118, 60-66.
[http://dx.doi.org/10.1016/j.maturitas.2018.10.013] [PMID: 30415757]
[31]
Pedret, A.; Fernández-Castillejo, S.; Valls, R.M.; Catalán, Ú.; Rubió, L.; Romeu, M.; Macià, A.; López de Las Hazas, M.C.; Farràs, M.; Giralt, M.; Mosele, J.I.; Martín-Peláez, S.; Remaley, A.T.; Covas, M.I.; Fitó, M.; Motilva, M.J.; Solà, R. Cardiovascular benefits of phenol-enriched virgin olive oils: new insights from the virgin olive oil and hdl functionality (VOHF) study. Mol. Nutr. Food Res., 2018, 62(16)e1800456
[http://dx.doi.org/10.1002/mnfr.201800456] [PMID: 29956886]
[32]
Flori, L.; Donnini, S.; Calderone, V.; Zinnai, A.; Taglieri, I.; Venturi, F.; Testai, L. The nutraceutical value of olive oil and its bioactive constituents on the cardiovascular system. Focusing on main strategies to slow down its quality decay during production and storage. Nutrients, 2019, 11(9), 1962.
[http://dx.doi.org/10.3390/nu11091962] [PMID: 31438562]
[33]
Berrougui, H.; Ikhlef, S.; Khalil, A. Extra Virgin Olive Oil Polyphenols Promote Cholesterol Efflux and Improve HDL Functionality. Evid. Based Complement. Alternat. Med., 2015, 2015208062
[http://dx.doi.org/10.1155/2015/208062] [PMID: 26495005]
[34]
Franconi, F.; Campesi, I.; Romani, A. Is Extra Virgin Olive Oil an Ally for Women’s and Men’s Cardiovascular Health? Cardiovasc. Ther., 2020, 20206719301
[http://dx.doi.org/10.1155/2020/6719301] [PMID: 32454893]
[35]
Chamorro, A.; Hallenbeck, J. The harms and benefits of inflammatory and immune responses in vascular disease. Stroke, 2006, 37(2), 291-293.
[http://dx.doi.org/10.1161/01.STR.0000200561.69611.f8] [PMID: 16410468]
[36]
Parkinson, L.; Keast, R. Oleocanthal, a phenolic derived from virgin olive oil: a review of the beneficial effects on inflammatory disease. Int. J. Mol. Sci., 2014, 15(7), 12323-12334.
[http://dx.doi.org/10.3390/ijms150712323] [PMID: 25019344]
[37]
Tabas, I.; García-Cardeña, G.; Owens, G.K. Recent insights into the cellular biology of atherosclerosis. J. Cell Biol., 2015, 209(1), 13-22.
[http://dx.doi.org/10.1083/jcb.201412052] [PMID: 25869663]
[38]
Serreli, G.; Deiana, M. Extra Virgin Olive Oil Polyphenols: Modulation of Cellular Pathways Related to Oxidant Species and Inflammation in Aging. Cells, 2020, 9(2), 478.
[http://dx.doi.org/10.3390/cells9020478] [PMID: 32093046]
[39]
Lucas, L.; Russell, A.; Keast, R. Molecular mechanisms of inflammation. Anti-inflammatory benefits of virgin olive oil and the phenolic compound oleocanthal. Curr. Pharm. Des., 2011, 17(8), 754-768.
[http://dx.doi.org/10.2174/138161211795428911] [PMID: 21443487]
[40]
Eskin, M.; Tamir, S. Dictionary of nutraceuticals and functional foods; CRC Press, 2005.
[http://dx.doi.org/10.1201/9780203486856]
[41]
Fabiani, R.; De Bartolomeo, A.; Rosignoli, P.; Servili, M.; Montedoro, G.F.; Morozzi, G. Cancer chemoprevention by hydroxytyrosol isolated from virgin olive oil through G1 cell cycle arrest and apoptosis. Eur. J. Cancer Prev., 2002, 11(4), 351-358.
[http://dx.doi.org/10.1097/00008469-200208000-00006] [PMID: 12195161]
[42]
Fabiani, R.; De Bartolomeo, A.; Rosignoli, P.; Servili, M.; Selvaggini, R.; Montedoro, G.F.; Di Saverio, C.; Morozzi, G. Virgin olive oil phenols inhibit proliferation of human promyelocytic leukemia cells (HL60) by inducing apoptosis and differentiation. J. Nutr., 2006, 136(3), 614-619.
[http://dx.doi.org/10.1093/jn/136.3.614] [PMID: 16484533]
[43]
Han, J.; Talorete, T.P.; Yamada, P.; Isoda, H. Anti-proliferative and apoptotic effects of oleuropein and hydroxytyrosol on human breast cancer MCF-7 cells. Cytotechnology, 2009, 59(1), 45-53.
[http://dx.doi.org/10.1007/s10616-009-9191-2] [PMID: 19353300]
[44]
Bulotta, S.; Corradino, R.; Celano, M.; D’Agostino, M.; Maiuolo, J.; Oliverio, M.; Procopio, A.; Iannone, M.; Rotiroti, D.; Russo, D. Antiproliferative and antioxidant effects on breast cancer cells of oleuropein and its semisynthetic peracetylated derivatives. Food Chem., 2011, 127(4), 1609-1614.
[http://dx.doi.org/10.1016/j.foodchem.2011.02.025]
[45]
Li, S.; Han, Z.; Ma, Y.; Song, R.; Pei, T.; Zheng, T.; Wang, J.; Xu, D.; Fang, X.; Jiang, H.; Liu, L. Hydroxytyrosol inhibits cholangiocarcinoma tumor growth: an in vivo and in vitro study. Oncol. Rep., 2014, 31(1), 145-152.
[http://dx.doi.org/10.3892/or.2013.2853] [PMID: 24247752]
[46]
Calahorra, J.; Martínez-Lara, E.; Granadino-Roldán, J.M.; Martí, J.M.; Cañuelo, A.; Blanco, S.; Oliver, F.J.; Siles, E. Crosstalk between hydroxytyrosol, a major olive oil phenol, and HIF-1 in MCF-7 breast cancer cells. Sci. Rep., 2020, 10(1), 6361.
[http://dx.doi.org/10.1038/s41598-020-63417-6] [PMID: 32286485]
[47]
Pelucchi, C.; Bosetti, C.; Negri, E.; Lipworth, L.; La Vecchia, C. Olive oil and cancer risk: an update of epidemiological findings through 2010. Curr. Pharm. Des., 2011, 17(8), 805-812.
[http://dx.doi.org/10.2174/138161211795428920] [PMID: 21443483]
[48]
Mulinacci, N.; Ieri, F.; Ignesti, G.; Romani, A.; Michelozzi, M.; Creti, D.; Innocenti, M.; Calamai, L. The freezing process helps to preserve the quality of extra virgin olive oil over time: A case study up to 18 months. Food Res. Int., 2013, 54(2), 2008-2015.
[http://dx.doi.org/10.1016/j.foodres.2013.03.052]
[49]
Abril, D.; Mirabal-Gallardo, Y.; González, A.; Marican, A.; Durán-Lara, E.F.; Silva Santos, L.; Valdés, O. Comparison of the oxidative stability and antioxidant activity of extra-virgin olive oil and oils extracted from seeds of Colliguaya integerrima and Cynara cardunculus under normal conditions and after thermal treatment. Antioxidants, 2019, 8(10), 470.
[http://dx.doi.org/10.3390/antiox8100470] [PMID: 31601036]
[50]
Santonico, M.; Grasso, S.; Genova, F.; Zompanti, A.; Parente, F.R.; Pennazza, G. Unmasking of olive oil adulteration via a multi-sensor platform. Sensors (Basel), 2015, 15(9), 21660-21672.
[http://dx.doi.org/10.3390/s150921660] [PMID: 26404285]
[51]
Rafehi, H.; Smith, A.J.; Balcerczyk, A.; Ziemann, M.; Ooi, J.; Loveridge, S.J.; Baker, E.K.; El-Osta, A.; Karagiannis, T.C. Investigation into the biological properties of the olive polyphenol, hydroxytyrosol: mechanistic insights by genome-wide mRNA-Seq analysis. Genes Nutr., 2012, 7(2), 343-355.
[http://dx.doi.org/10.1007/s12263-011-0249-3] [PMID: 21953375]
[52]
Rodis, P.S.; Karathanos, V.T.; Mantzavinou, A. Partitioning of olive oil antioxidants between oil and water phases. J. Agric. Food Chem., 2002, 50(3), 596-601.
[http://dx.doi.org/10.1021/jf010864j] [PMID: 11804535]
[53]
López-Díez, E.C.; Bianchi, G.; Goodacre, R. Rapid quantitative assessment of the adulteration of virgin olive oils with hazelnut oils using Raman spectroscopy and chemometrics. J. Agric. Food Chem., 2003, 51(21), 6145-6150.
[http://dx.doi.org/10.1021/jf034493d] [PMID: 14518936]
[54]
Caruso, D.; Colombo, R.; Patelli, R.; Giavarini, F.; Galli, G. Rapid evaluation of phenolic component profile and analysis of oleuropein aglycon in olive oil by atmospheric pressure chemical ionization-mass spectrometry (APCI-MS). J. Agric. Food Chem., 2000, 48(4), 1182-1185.
[http://dx.doi.org/10.1021/jf9905370] [PMID: 10775369]
[55]
Beltrán, G.; Del Río, C.; Sánchez, S.; Martinez, L. Seasonal changes in olive fruit characteristics and oil accumulation during ripening process. J. Sci. Food Agric., 2004, 84(13), 1783-1790.
[http://dx.doi.org/10.1002/jsfa.1887]
[56]
Tuck, K.L.; Hayball, P.J. Major phenolic compounds in olive oil: metabolism and health effects. J. Nutr. Biochem., 2002, 13(11), 636-644.
[http://dx.doi.org/10.1016/S0955-2863(02)00229-2] [PMID: 12550060]
[57]
Fuentes de Mendoza, M.; De Miguel Gordillo, C.; Marín Expóxito, J.; Sánchez Casas, J.; Martínez Cano, M.; Martín Vertedor, D.; Franco Baltasar, M.N. Chemical composition of virgin olive oils according to the ripening in olives. Food Chem., 2013, 141(3), 2575-2581.
[http://dx.doi.org/10.1016/j.foodchem.2013.05.074] [PMID: 23870997]
[58]
Bonvino, N.P.; Liang, J.; McCord, E.D.; Zafiris, E.; Benetti, N.; Ray, N.B.; Hung, A.; Boskou, D.; Karagiannis, T.C. OliveNet™: a comprehensive library of compounds from Olea europaea. Database (Oxford), 2018, 2018bay016
[http://dx.doi.org/10.1093/database/bay016] [PMID: 29688352]
[59]
Bustan, A.; Avni, A.; Lavee, S.; Zipori, I.; Yeselson, Y.; Schaffer, A.A.; Riov, J.; Dag, A. Role of carbohydrate reserves in yield production of intensively cultivated oil olive (Olea europaea L.) trees. Tree Physiol., 2011, 31(5), 519-530.
[http://dx.doi.org/10.1093/treephys/tpr036] [PMID: 21571726]
[60]
Breton, C.; Claux, D.; Metton, I.; Skorski, G.; Bervillé, A. Comparative study of methods for DNA preparation from olive oil samples to identify cultivar SSR alleles in commercial oil samples: possible forensic applications. J. Agric. Food Chem., 2004, 52(3), 531-537.
[http://dx.doi.org/10.1021/jf034588f] [PMID: 14759144]
[61]
Mateos, R.; Espartero, J.L.; Trujillo, M.; Ríos, J.J.; León-Camacho, M.; Alcudia, F.; Cert, A. Determination of phenols, flavones, and lignans in virgin olive oils by solid-phase extraction and high-performance liquid chromatography with diode array ultraviolet detection. J. Agric. Food Chem., 2001, 49(5), 2185-2192.
[http://dx.doi.org/10.1021/jf0013205] [PMID: 11368575]
[62]
Cicerale, S.; Conlan, X.A.; Sinclair, A.J.; Keast, R.S. Chemistry and health of olive oil phenolics. Crit. Rev. Food Sci. Nutr., 2009, 49(3), 218-236.
[http://dx.doi.org/10.1080/10408390701856223] [PMID: 19093267]
[63]
Gómez-Alonso, S.; Fregapane, G.; Salvador, M.D.; Gordon, M.H. Changes in phenolic composition and antioxidant activity of virgin olive oil during frying. J. Agric. Food Chem., 2003, 51(3), 667-672.
[http://dx.doi.org/10.1021/jf025932w] [PMID: 12537439]
[64]
Luaces, P.; Pérez, A.G.; Sanz, C. Role of olive seed in the biogenesis of virgin olive oil aroma. J. Agric. Food Chem., 2003, 51(16), 4741-4745.
[http://dx.doi.org/10.1021/jf034200g] [PMID: 14705906]
[65]
Dhifi, W.; Angerosa, F.; Serraiocco, A.; Oumar, I.; Hamrouni, I.; Marzouk, B. Virgin olive oil aroma: Characterization of some Tunisian cultivars. Food Chem., 2005, 93(4), 697-701.
[http://dx.doi.org/10.1016/j.foodchem.2004.12.036]
[66]
Padilla, M.N.; Hernández, M.L.; Sanz, C.; Martínez-Rivas, J.M. Functional characterization of two 13-lipoxygenase genes from olive fruit in relation to the biosynthesis of volatile compounds of virgin olive oil. J. Agric. Food Chem., 2009, 57(19), 9097-9107.
[http://dx.doi.org/10.1021/jf901777j] [PMID: 19722522]
[67]
Cinelli, G.; Cofelice, M.; Venditti, F. Veiled extra virgin olive oils: role of emulsion, water and antioxidants. Colloids and Interfaces, 2020, 4(3), 38.
[http://dx.doi.org/10.3390/colloids4030038]
[68]
Ollivier, D.; Artaud, J.; Pinatel, C.; Durbec, J.P.; Guérère, M. Triacylglycerol and fatty acid compositions of French virgin olive oils. Characterization by chemometrics. J. Agric. Food Chem., 2003, 51(19), 5723-5731.
[http://dx.doi.org/10.1021/jf034365p] [PMID: 12952425]
[69]
Psomiadou, E.; Tsimidou, M.; Boskou, D. α-tocopherol content of Greek virgin olive oils. J. Agric. Food Chem., 2000, 48(5), 1770-1775.
[http://dx.doi.org/10.1021/jf990993o] [PMID: 10820093]
[70]
Visioli, F.; Galli, C. Biological properties of olive oil phytochemicals. Crit. Rev. Food Sci. Nutr., 2002, 42(3), 209-221.
[http://dx.doi.org/10.1080/10408690290825529] [PMID: 12058980]
[71]
Kiritsakis, A.; Christie, W.W. Analysis of edible oils in the handbook of Olive oils; Harwood, J; Aparico, R., Ed.; Aspen Publisher Inc.: Gaithersburg, Maryland, USA, 2000, pp. 129-158.
[http://dx.doi.org/10.1007/978-1-4757-5371-4_6]
[72]
Ridolfi, M.; Terenziani, S.; Patumi, M.; Fontanazza, G. Characterization of the lipoxygenases in some olive cultivars and determination of their role in volatile compounds formation. J. Agric. Food Chem., 2002, 50(4), 835-839.
[http://dx.doi.org/10.1021/jf0109118] [PMID: 11829653]
[73]
Sabatini, N.; Marsilio, V. Volatile compounds in table olives (Olea europaea L., Nocellara del Belice cultivar). Food Chem., 2008, 107(4), 1522-1528.
[http://dx.doi.org/10.1016/j.foodchem.2007.10.008]
[74]
da Silva, M.D.G.; Freitas, A.M.C.; Cabrita, M.J.; Garcia, R. Olive Oil Composition: Volatile Compounds.Olive Oil-Constituents, Quality, Health Properties and Bioconversions; Dimitrios, B., Ed.;
[75]
Poiana, M.; Mincione, A. Fatty acids evolution and composition of olive oils extracted from different olive cultivars grown in Calabrian area. Grasas Aceites, 2004, 55(3), 282-290.
[http://dx.doi.org/10.3989/gya.2004.v55.i3.190]
[76]
Lobo-Prieto, A.; Tena, N.; Aparicio-Ruiz, R.; Morales, M.T.; García-González, D.L. Tracking sensory characteristics of virgin olive oils during storage: interpretation of their changes from a multiparametric perspective. Molecules, 2020, 25(7), 1686.
[http://dx.doi.org/10.3390/molecules25071686] [PMID: 32272674]
[77]
Sabatini, N.; Mucciarella, M.R.; Marsilio, V. Volatile compounds in uninoculated and inoculated table olives with Lactobacillus plantarum (Olea europaea L., cv. Moresca and Kalamata). Lebensm. Wiss. Technol., 2008, 41(10), 2017-2022.
[http://dx.doi.org/10.1016/j.lwt.2007.12.002]
[78]
Angerosa, F.; Mostallino, R.; Basti, C.; Vito, R. Virgin olive oil odour notes: their relationships with volatile compounds from the lipoxygenase pathway and secoiridoid compounds. Food Chem., 2000, 68(3), 283-287.
[http://dx.doi.org/10.1016/S0308-8146(99)00189-2]
[79]
Inarejos-García, A.M.; Gómez-Rico, A.; Desamparados Salvador, M.; Fregapane, G. Effect of preprocessing olive storage conditions on virgin olive oil quality and composition. J. Agric. Food Chem., 2010, 58(8), 4858-4865.
[http://dx.doi.org/10.1021/jf902486f] [PMID: 20356076]
[80]
De Marchis, F.; Valeri, M.C.; Pompa, A.; Bouveret, E.; Alagna, F.; Grisan, S.; Stanzione, V.; Mariotti, R.; Cultrera, N.; Baldoni, L.; Bellucci, M. Overexpression of the olive acyl carrier protein gene (OeACP1) produces alterations in fatty acid composition of tobacco leaves. Transgenic Res., 2016, 25(1), 45-61.
[http://dx.doi.org/10.1007/s11248-015-9919-z] [PMID: 26560313]
[81]
Neelakantan, N.; Seah, J.Y.H.; van Dam, R.M. The effect of coconut oil consumption on cardiovascular risk factors: a systematic review and meta-analysis of clinical trials. Circulation, 2020, 141(10), 803-814.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.119.043052] [PMID: 31928080]
[82]
Nydahl, M.; Gustafsson, I.B.; Ohrvall, M.; Vessby, B. Similar effects of rapeseed oil (canola oil) and olive oil in a lipid-lowering diet for patients with hyperlipoproteinemia. J. Am. Coll. Nutr., 1995, 14(6), 643-651.
[http://dx.doi.org/10.1080/07315724.1995.10718554] [PMID: 8598426]
[83]
Lin, L.; Allemekinders, H.; Dansby, A.; Campbell, L.; Durance-Tod, S.; Berger, A.; Jones, P.J. Evidence of health benefits of canola oil. Nutr. Rev., 2013, 71(6), 370-385.
[http://dx.doi.org/10.1111/nure.12033] [PMID: 23731447]
[84]
Preedy, V.R.; Watson, R.R., Eds.; Olives and olive oil in health and disease prevention; Academic press, 2010.
[85]
Lu, S.; Aziz, M.; Sturtevant, D.; Chapman, K.D.; Guo, L. Heterogeneous Distribution of Erucic Acid in Brassica napus Seeds. Front. Plant Sci., 2020, 10, 1744.
[http://dx.doi.org/10.3389/fpls.2019.01744] [PMID: 32082336]
[86]
Pedan, V.; Popp, M.; Rohn, S.; Nyfeler, M.; Bongartz, A. Characterization of phenolic compounds and their contribution to sensory properties of olive oil. Molecules, 2019, 24(11), 2041.
[http://dx.doi.org/10.3390/molecules24112041] [PMID: 31142034]
[87]
Koski, A.; Psomiadou, E.; Tsimidou, M.; Hopia, A.; Kefalas, P.; Wähälä, K.; Heinonen, M. Oxidative stability and minor constituents of virgin olive oil and cold-pressed rapeseed oil. Eur. Food Res. Technol., 2002, 214(4), 294-298.
[http://dx.doi.org/10.1007/s00217-001-0479-5]
[88]
Menendez, J.A.; Vazquez-Martin, A.; Colomer, R.; Brunet, J.; Carrasco-Pancorbo, A.; Garcia-Villalba, R.; Fernandez-Gutierrez, A.; Segura-Carretero, A. Olive oil’s bitter principle reverses acquired autoresistance to trastuzumab (Herceptin) in HER2-overexpressing breast cancer cells. BMC Cancer, 2007, 7, 80.
[http://dx.doi.org/10.1186/1471-2407-7-80] [PMID: 17490486]
[89]
Menendez, J.A.; Vazquez-Martin, A.; Garcia-Villalba, R.; Carrasco-Pancorbo, A.; Oliveras-Ferraros, C.; Fernandez-Gutierrez, A.; Segura-Carretero, A. tabAnti-HER2 (erbB-2) oncogene effects of phenolic compounds directly isolated from commercial Extra-Virgin Olive Oil (EVOO). BMC Cancer, 2008, 8, 377.
[http://dx.doi.org/10.1186/1471-2407-8-377] [PMID: 19094209]
[90]
Qusa, M.H.; Siddique, A.B.; Nazzal, S.; El Sayed, K.A. Novel olive oil phenolic (-)-oleocanthal (+)-xylitol-based solid dispersion formulations with potent oral anti-breast cancer activities. Int. J. Pharm., 2019, 569118596
[http://dx.doi.org/10.1016/j.ijpharm.2019.118596] [PMID: 31394181]
[91]
Owen, R.W.; Giacosa, A.; Hull, W.E.; Haubner, R.; Spiegelhalder, B.; Bartsch, H. The antioxidant/anticancer potential of phenolic compounds isolated from olive oil. Eur. J. Cancer, 2000, 36(10), 1235-1247.
[http://dx.doi.org/10.1016/S0959-8049(00)00103-9] [PMID: 10882862]
[92]
Owen, R.W.; Mier, W.; Giacosa, A.; Hull, W.E.; Spiegelhalder, B.; Bartsch, H. Phenolic compounds and squalene in olive oils: the concentration and antioxidant potential of total phenols, simple phenols, secoiridoids, lignansand squalene. Food Chem. Toxicol., 2000, 38(8), 647-659.
[http://dx.doi.org/10.1016/S0278-6915(00)00061-2] [PMID: 10908812]
[93]
Raederstorff, D. Antioxidant activity of olive polyphenols in humans: a review. Int. J. Vitam. Nutr. Res., 2009, 79(3), 152-165.
[http://dx.doi.org/10.1024/0300-9831.79.3.152] [PMID: 20209466]
[94]
Alkhatib, A.; Tsang, C.; Tuomilehto, J. Olive Oil Nutraceuticals in the Prevention and Management of Diabetes: From Molecules to Lifestyle. Int. J. Mol. Sci., 2018, 19(7)E2024
[http://dx.doi.org/10.3390/ijms19072024] [PMID: 30002281]
[95]
Juli, G.; Oliverio, M.; Bellizzi, D.; Gallo Cantafio, M.E.; Grillone, K.; Passarino, G.; Colica, C.; Nardi, M.; Rossi, M.; Procopio, A.; Tagliaferri, P.; Tassone, P.; Amodio, N. Anti-tumor activity and epigenetic impact of the polyphenol oleacein in multiple myeloma. Cancers (Basel), 2019, 11(7), 990.
[http://dx.doi.org/10.3390/cancers11070990] [PMID: 31315220]
[96]
Fernandes, J.; Fialho, M.; Santos, R.; Peixoto-Plácido, C.; Madeira, T.; Sousa-Santos, N.; Virgolino, A.; Santos, O.; Vaz Carneiro, A. Is olive oil good for you? A systematic review and meta-analysis on anti-inflammatory benefits from regular dietary intake. Nutrition, 2020, 69110559
[http://dx.doi.org/10.1016/j.nut.2019.110559] [PMID: 31539817]
[97]
De Leonardis, A.; Macciola, V.; Iorizzo, M.; Lombardi, S.J.; Lopez, F.; Marconi, E. Effective assay for olive vinegar production from olive oil mill wastewaters. Food Chem., 2018, 240, 437-440.
[http://dx.doi.org/10.1016/j.foodchem.2017.07.159] [PMID: 28946295]
[98]
Joshi, T.; Joshi, T.; Sharma, P.; Mathpal, S.; Pundir, H.; Bhatt, V.; Chandra, S. In silico screening of natural compounds against COVID-19 by targeting Mpro and ACE2 using molecular docking. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(8), 4529-4536.
[PMID: 32373991]
[99]
Kumar, A.; Choudhir, G.; Shukla, S.K.; Sharma, M.; Tyagi, P.; Bhushan, A.; Rathore, M. Identification of phytochemical inhibitors against main protease of COVID-19 using molecular modeling approaches. J. Biomol. Struct. Dyn., 2020, 1-11.
[http://dx.doi.org/10.1080/07391102.2020.1772112] [PMID: 32448034]
[100]
da Silva Antonio, A.; Wiedemann, L.S.M.; Veiga-Junior, V.F. Natural products’ role against COVID-19. RSC Advances, 2020, 10(39), 23379-23393.
[http://dx.doi.org/10.1039/D0RA03774E]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy