Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Current Status of Mucoadhesive Gel Systems for Buccal Drug Delivery

Author(s): Neslihan Ü. Okur *, Ece Ö. Bülbül , Ayşe P. Yağcılar and Panoraia I. Siafaka

Volume 27, Issue 17, 2021

Published on: 16 March, 2021

Page: [2015 - 2025] Pages: 11

DOI: 10.2174/1381612824666210316101528

Price: $65

Abstract

Background: Buccal drug delivery is a fascinating research field. Gel-based formulations present potent characteristics as buccal systems since they have great physicochemical properties.

Methods: Among the various gels, in situ gels are viscous colloidal systems consisting of polymers; when physiological conditions change (pH, temperature, ion activation), they are transformed into the gel phase. These systems can improve bioavailability. Other systems, such as nanogels or emulgels can also be applied for buccal delivery with promising results. Polymeric gel-based systems can be produced by natural, semisynthetic, and synthetic polymers. Their main advantage is that the active molecules can be released in a sustained and controllable manner. Several gels based on chitosan are produced for the entrapment of drugs demonstrating efficient retention time and bioavailability due to chitosan mucoadhesion. Besides polysaccharides, poloxamers and carbopol are also used in buccal gels due to their high swelling ability and reversed thermal gelation behavior.

Results: Herein, the authors focused on the current development of mucoadhesive gel systems used in buccal drug delivery. After explaining buccal drug delivery and mucoadhesion, various studies with hydrogels, in situ gels, and nanogels were analyzed as buccal gel systems. Various mucoadhesive gel studies with mucoadhesive polymers have been studied and summarized. This review is presented as valuable guidance to scientists in formulating buccal mucoadhesive drug delivery systems.

Conclusion: This review aimed to assist researchers working on buccal drug delivery by summarizing buccal drug delivery, mucoadhesion, and buccal mucoadhesive gel systems recently found in the literature.

Keywords: Buccal drug delivery, buccal route, hydrogels, in situ gels, mucoadhesive polymers, nanogels.

[1]
Zhang H, Zhang J, Streisand JB. Oral mucosal drug delivery: clinical pharmacokinetics and therapeutic applications. Clin Pharmacokinet 2002; 41(9): 661-80.
[http://dx.doi.org/10.2165/00003088-200241090-00003] [PMID: 12126458]
[2]
Gilhotra RM, Ikram M, Srivastava S, Gilhotra N. A clinical perspective on mucoadhesive buccal drug delivery systems. J Biomed Res 2014; 28(2): 81-97.
[http://dx.doi.org/10.7555/JBR.27.20120136] [PMID: 24683406]
[3]
Goyal AK, Singh R, Chauhan G, Rath G. Non-invasive systemic drug delivery through mucosal routes. Artif Cells Nanomed Biotechnol 2018; 46(sup2): 539-51.
[http://dx.doi.org/10.1080/21691401.2018.1463230] [PMID: 29687750]
[4]
Morales JO, Fathe KR, Brunaugh A, et al. Challenges and future prospects for the delivery of biologics: Oral mucosal, pulmonary, and transdermal routes. AAPS J 2017; 19(3): 652-68.
[http://dx.doi.org/10.1208/s12248-017-0054-z] [PMID: 28194704]
[5]
das Neves J, Bahia MF. Gels as vaginal drug delivery systems. Int J Pharm 2006; 318(1-2): 1-14.
[http://dx.doi.org/10.1016/j.ijpharm.2006.03.012] [PMID: 16621366]
[6]
Nayak AK, Das B. Introduction to polymeric gels Polym Gels. Elsevier 2018; pp. 3-27.
[7]
Özcan Bülbül E, Mesut B, Cevher E, Öztaş E, Özsoy Y. Product transfer from lab-scale to pilot-scale of quetiapine fumarate orodispersible films using quality by design approach. J Drug Deliv Sci Technol 2019; 54: 101358.
[http://dx.doi.org/10.1016/j.jddst.2019.101358]
[8]
Baus RA, Zahir-Jouzdani F, Dünnhaupt S, Atyabi F, Bernkop-Schnürch A. Mucoadhesive hydrogels for buccal drug delivery: In vitro - in vivo correlation study. Eur J Pharm Biopharm 2019; 142: 498-505.
[http://dx.doi.org/10.1016/j.ejpb.2019.07.019] [PMID: 31330258]
[9]
Dirksen M, Dargel C, Meier L, Brändel T, Hellweg T. Smart microgels as drug delivery vehicles for the natural drug aescin: uptake, release and interactions. Colloid Polym Sci 2020; 298: 505-18.
[http://dx.doi.org/10.1007/s00396-020-04632-5]
[10]
Abdel-Rashid RS, Helal DA, Omar MM, El Sisi AM. Nanogel loaded with surfactant based nanovesicles for enhanced ocular delivery of acetazolamide. Int J Nanomedicine 2019; 14: 2973-83.
[http://dx.doi.org/10.2147/IJN.S201891] [PMID: 31118616]
[11]
Üstündağ Okur N, Yozgatlı V, Okur ME, Yoltaş A, Siafaka PI. Improving therapeutic efficacy of voriconazole against fungal keratitis: Thermo-sensitive in situ gels as ophthalmic drug carriers. J Drug Deliv Sci Technol 2019; 49: 323-33.
[http://dx.doi.org/10.1016/j.jddst.2018.12.005]
[12]
Farooq U, Rasul A, Sher M, et al. Development, characterization and evaluation of anti-fungal activity of miconazole based nanogel prepared from biodegradable polymer. Pak J Pharm Sci 2020; 33(1(Special)): 449-57.
[http://dx.doi.org/10.36721/PJPS.2020.33.1.SP.449-457.1] [PMID: 32173643]
[13]
Amasya G, Şen T, Tarimci N, Karavana SY, Baloǧlu E. Bioadhesive and mechanical properties of triamcinolone acetonide buccal gels. Turkish J Pharm Sci 2012; 9: 1-11.
[14]
Başaran B, Bozkir A. Thermosensitive and pH induced in situ ophthalmic gelling system for ciprofloxacin hydrochloride: hydroxypropyl-β-cyclodextrin complex. Acta Pol Pharm 2012; 69(6): 1137-47.
[PMID: 23285675]
[15]
Fong Yen W, Basri M, Ahmad M, Ismail M. Formulation and evaluation of galantamine gel as drug reservoir in transdermal patch delivery system. ScientificWorldJournal 2015; 2015: 495271.
[http://dx.doi.org/10.1155/2015/495271] [PMID: 25853145]
[16]
Senyiğit ZA, Karavana SY, Eraç B, Gürsel O, Limoncu MH, Baloğlu E. Evaluation of chitosan based vaginal bioadhesive gel formulations for antifungal drugs. Acta Pharm 2014; 64(2): 139-56.
[http://dx.doi.org/10.2478/acph-2014-0013] [PMID: 24914716]
[17]
Velázquez NS, Turino LN, Luna JA, Mengatto LN. Progesterone loaded thermosensitive hydrogel for vaginal application: Formulation and in vitro comparison with commercial product. Saudi Pharm J 2019; 27(8): 1096-106.
[http://dx.doi.org/10.1016/j.jsps.2019.09.006] [PMID: 31885469]
[18]
Sharma G, Italia JL, Sonaje K, Tikoo K, Ravi Kumar MNV. Biodegradable in situ gelling system for subcutaneous administration of ellagic acid and ellagic acid loaded nanoparticles: evaluation of their antioxidant potential against cyclosporine induced nephrotoxicity in rats. J Control Release 2007; 118(1): 27-37.
[http://dx.doi.org/10.1016/j.jconrel.2006.11.026] [PMID: 17258836]
[19]
Ying H, Zhou J, Wang M, et al. In situ formed collagen-hyaluronic acid hydrogel as biomimetic dressing for promoting spontaneous wound healing. Mater Sci Eng C 2019; 101: 487-98.
[http://dx.doi.org/10.1016/j.msec.2019.03.093] [PMID: 31029343]
[20]
Séchoy O, Tissié G, Sébastian C, Maurin F, Driot JY, Trinquand C. A new long acting ophthalmic formulation of carteolol containing alginic acid. Int J Pharm 2000; 207(1-2): 109-16.
[http://dx.doi.org/10.1016/S0378-5173(00)00539-1] [PMID: 11036236]
[21]
Vigani B, Faccendini A, Rossi S, et al. Development of a mucoadhesive and in situ gelling formulation based on κ-carrageenan for application on oral mucosa and esophagus walls. I. A functional in vitro characterization. Mar Drugs 2019; 17(2): E112.
[http://dx.doi.org/10.3390/md17020112] [PMID: 30759831]
[22]
Radivojša M, Grabnar I, Ahlin Grabnar P. Thermoreversible in situ gelling poloxamer-based systems with chitosan nanocomplexes for prolonged subcutaneous delivery of heparin: design and in vitro evaluation. Eur J Pharm Sci 2013; 50(1): 93-101.
[http://dx.doi.org/10.1016/j.ejps.2013.03.002] [PMID: 23524253]
[23]
Ranch K, Patel H, Chavda L, Koli A, Maulvi F, Parikh RK. Development of in situ ophthalmic gel of dexamethasone sodium phosphate and chloramphenicol: A viable alternative to conventional eye drops. J Appl Pharm Sci 2017; 7: 101-8.
[http://dx.doi.org/10.7324/JAPS.2017.70316]
[24]
Bassi da Silva J, Ferreira SBS, Reis AV, Cook MT, Bruschi ML. Assessing mucoadhesion in polymer gels: The effect of method type and instrument variables. Polymers (Basel) 2018; 10(3): 254.
[http://dx.doi.org/10.3390/polym10030254] [PMID: 30966289]
[25]
Macedo AS, Castro PM, Roque L, et al. Novel and revisited approaches in nanoparticle systems for buccal drug delivery. J Control Release 2020; 320: 125-41.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.006] [PMID: 31917295]
[26]
Shirvan AR, Bashari A, Hemmatinejad N. New insight into the fabrication of smart mucoadhesive buccal patches as a novel controlled-drug delivery system. Eur Polym J 2019; 119: 541-50.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.07.010]
[27]
Russo E, Selmin F, Baldassari S, et al. A focus on mucoadhesive polymers and their application in buccal dosage forms. J Drug Deliv Sci Technol 2016; 32: 113-25.
[http://dx.doi.org/10.1016/j.jddst.2015.06.016]
[28]
Yildiz Pekoz A, Sedef Erdal M, Okyar A, et al. Preparation and in-vivo evaluation of dimenhydrinate buccal mucoadhesive films with enhanced bioavailability. Drug Dev Ind Pharm 2016; 42(6): 916-25.
[http://dx.doi.org/10.3109/03639045.2015.1091470] [PMID: 26460061]
[29]
Silva BMA, Borges AF, Silva C, Coelho JFJ, Simões S. Mucoadhesive oral films: The potential for unmet needs. Int J Pharm 2015; 494(1): 537-51.
[http://dx.doi.org/10.1016/j.ijpharm.2015.08.038] [PMID: 26315122]
[30]
Patel VF, Liu F, Brown MB. Advances in oral transmucosal drug delivery. J Control Release 2011; 153(2): 106-16.
[http://dx.doi.org/10.1016/j.jconrel.2011.01.027] [PMID: 21300115]
[31]
Borges AF, Silva C, Coelho JFJ, Simões S. Oral films: Current status and future perspectives: I - Galenical development and quality attributes. J Control Release 2015; 206: 1-19.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.006] [PMID: 25747406]
[32]
Morales JO, Brayden DJ. Buccal delivery of small molecules and biologics: of mucoadhesive polymers, films, and nanoparticles. Curr Opin Pharmacol 2017; 36: 22-8.
[http://dx.doi.org/10.1016/j.coph.2017.07.011] [PMID: 28800417]
[33]
Ciach T, Moscicka-Studzinska A. Buccal iontophoresis: an opportunity for drug delivery and metabolite monitoring. Drug Discov Today 2011; 16(7-8): 361-6.
[http://dx.doi.org/10.1016/j.drudis.2011.01.012] [PMID: 21300173]
[34]
Kraan H, Vrieling H, Czerkinsky C, Jiskoot W, Kersten G, Amorij JP. Buccal and sublingual vaccine delivery. J Control Release 2014; 190: 580-92.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.060] [PMID: 24911355]
[35]
Sattar M, Sayed OM, Lane ME. Oral transmucosal drug delivery--current status and future prospects. Int J Pharm 2014; 471(1-2): 498-506.
[http://dx.doi.org/10.1016/j.ijpharm.2014.05.043] [PMID: 24879936]
[36]
Fonseca-Santos B, Chorilli M. An overview of polymeric dosage forms in buccal drug delivery: State of art, design of formulations and their in vivo performance evaluation. Mater Sci Eng C 2018; 86: 129-43.
[http://dx.doi.org/10.1016/j.msec.2017.12.022] [PMID: 29525088]
[37]
Gandhi RB, Robinson JR. Oral cavity as a site for bioadhesive drug delivery. Adv Drug Deliv Rev 1994; 13: 43-74.
[http://dx.doi.org/10.1016/0169-409X(94)90026-4]
[38]
Sudhakar Y, Kuotsu K, Bandyopadhyay AK. Buccal bioadhesive drug delivery--a promising option for orally less efficient drugs. J Control Release 2006; 114(1): 15-40.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.012] [PMID: 16828915]
[39]
Hoogstraate JAJ, Wertz PW. Drug delivery via the buccal mucosa. Pharm Sci Technol Today 1998; 1: 309-16.
[http://dx.doi.org/10.1016/S1461-5347(98)00076-5]
[40]
Laffleur F. Mucoadhesive polymers for buccal drug delivery. Drug Dev Ind Pharm 2014; 40(5): 591-8.
[http://dx.doi.org/10.3109/03639045.2014.892959] [PMID: 24576266]
[41]
Wang S, Zuo A, Guo J. Types and evaluation of in vitro penetration models for buccal mucosal delivery. J Drug Deliv Sci Technol 2020; 102122.
[http://dx.doi.org/10.1016/j.jddst.2020.102122]
[42]
Paderni C, Compilato D, Giannola LI, Campisi G. Oral local drug delivery and new perspectives in oral drug formulation. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 114(3): e25-34.
[http://dx.doi.org/10.1016/j.oooo.2012.02.016] [PMID: 22771408]
[43]
Guo Y gong, Pratap Singh A. Emerging strategies for enhancing buccal and sublingual administration of nutraceuticals and pharamaceuticals. J Drug Deliv Sci Technol 2019; 52: 440-51.
[http://dx.doi.org/10.1016/j.jddst.2019.05.014]
[44]
Boateng J, Okeke O. Evaluation of clay-functionalized wafers and films for nicotine replacement therapy via Buccal Mucosa. Pharmaceutics 2019; 11(3): E104.
[http://dx.doi.org/10.3390/pharmaceutics11030104] [PMID: 30832244]
[45]
Morales JO, McConville JT. Manufacture and characterization of mucoadhesive buccal films. Eur J Pharm Biopharm 2011; 77(2): 187-99.
[http://dx.doi.org/10.1016/j.ejpb.2010.11.023] [PMID: 21130875]
[46]
Hao J, Heng PWS. Buccal delivery systems. Drug Dev Ind Pharm 2003; 29(8): 821-32.
[http://dx.doi.org/10.1081/DDC-120024178] [PMID: 14570303]
[47]
Sandri G, Ruggeri M, Rossi S, Bonferoni MC, Vigani B, Ferrari F. (Trans)buccal drug delivery. Elsevier Inc 2020; 8.
[http://dx.doi.org/10.1016/b978-0-12-818038-9.00013-2]
[48]
Puratchikody A, Prasanth VV, Mathew ST, Kumar AB. Buccal drug delivery: Past, present and future - A review. Int J Drug Deliv 2011; 1: 171-84.
[http://dx.doi.org/10.5138/ijdd.v3i2.212]
[49]
Morales JO, McConville JT. Novel strategies for the buccal delivery of macromolecules. Drug Dev Ind Pharm 2014; 40(5): 579-90.
[http://dx.doi.org/10.3109/03639045.2014.892960] [PMID: 24611816]
[50]
Gavhane YN, Yadav AV. Loss of orally administered drugs in GI tract. Saudi Pharm J 2012; 20(4): 331-44.
[http://dx.doi.org/10.1016/j.jsps.2012.03.005] [PMID: 23960808]
[51]
Tran PHL, Duan W, Tran TTD. Recent developments of nanoparticle-delivered dosage forms for buccal delivery. Int J Pharm 2019; 571: 118697.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118697] [PMID: 31526839]
[52]
Junginger HE, Hoogstraate JA, Verhoef JC. Recent advances in buccal drug delivery and absorption-- in vitro and in vivo studies. J Control Release 1999; 62(1-2): 149-59.
[http://dx.doi.org/10.1016/S0168-3659(99)00032-2] [PMID: 10518646]
[53]
Salamat-Miller N, Chittchang M, Johnston TP. The use of mucoadhesive polymers in buccal drug delivery. Adv Drug Deliv Rev 2005; 57(11): 1666-91.
[http://dx.doi.org/10.1016/j.addr.2005.07.003] [PMID: 16183164]
[54]
Malallah OS, Garcia CMA, Proctor GB, Forbes B, Royall PG. Buccal drug delivery technologies for patient-centred treatment of radiation-induced xerostomia (dry mouth). Int J Pharm 2018; 541(1-2): 157-66.
[http://dx.doi.org/10.1016/j.ijpharm.2018.02.004] [PMID: 29425763]
[55]
Donnelly RF, McCarron PA, Tunney MM, Woolfson AD. Potential of photodynamic therapy in treatment of fungal infections of the mouth. Design and characterisation of a mucoadhesive patch containing toluidine blue O J Photochem Photobiol B Biol 2007; 86: 59-69.
[http://dx.doi.org/10.1016/j.jphotobiol.2006.07.011]
[56]
Rençber S, Karavana SY, Yilmaz FF, et al. Formulation and evaluation of fluconazole loaded oral strips for local treatment of oral candidiasis. J Drug Deliv Sci Technol 2019; 49: 615-21.
[http://dx.doi.org/10.1016/j.jddst.2018.12.035]
[57]
Montenegro-Nicolini M, Morales JO. Overview and future potential of buccal mucoadhesive films as drug delivery systems for biologics. AAPS PharmSciTech 2017; 18(1): 3-14.
[http://dx.doi.org/10.1208/s12249-016-0525-z] [PMID: 27084567]
[58]
Nappinnai M, Chandanbala R, Balaijirajan R. Formulation and evaluation of nitrendipine buccal films. Indian J Pharm Sci 2008; 70(5): 631-5.
[http://dx.doi.org/10.4103/0250-474X.45402] [PMID: 21394260]
[59]
Sharma M, Rathore A, Sharma S, Sadhu V, Reddy KR, Kulkarni RV. 8 - Recent progress in mucoadhesive polymers for buccal drug delivery applications. INC 2020.
[60]
Rossi S, Sandri G, Caramella CM. Buccal drug delivery: A challenge already won. 2005; pp. 59-65.
[http://dx.doi.org/10.1016/j.ddtec.2005.05.018]
[61]
Patel VF, Liu F, Brown MB. Modeling the oral cavity: in vitro and in vivo evaluations of buccal drug delivery systems. J Control Release 2012; 161(3): 746-56.
[http://dx.doi.org/10.1016/j.jconrel.2012.05.026] [PMID: 22626941]
[62]
Chatterjee B, Amalina N, Sengupta P, Mandal UK. Mucoadhesive polymers and their mode of action: A recent update. J Appl Pharm Sci 2017; 7: 195-203.
[http://dx.doi.org/10.7324/JAPS.2017.70533]
[63]
Chayed S, Winnik FM. In vitro evaluation of the mucoadhesive properties of polysaccharide-based nanoparticulate oral drug delivery systems. Eur J Pharm Biopharm 2007; 65(3): 363-70.
[http://dx.doi.org/10.1016/j.ejpb.2006.08.017] [PMID: 17055713]
[64]
Shitrit Y, Bianco-Peled H. Acrylated chitosan for mucoadhesive drug delivery systems. Int J Pharm 2017; 517(1-2): 247-55.
[http://dx.doi.org/10.1016/j.ijpharm.2016.12.023] [PMID: 27979764]
[65]
Edmans JG, Murdoch C, Santocildes-Romero ME, Hatton PV, Colley HE, Spain SG. Incorporation of lysozyme into a mucoadhesive electrospun patch for rapid protein delivery to the oral mucosa. Mater Sci Eng C 2020; 112: 110917.
[http://dx.doi.org/10.1016/j.msec.2020.110917] [PMID: 32409068]
[66]
Kurcubic I, Cvijic S, Filipcev B, Ignjatovic J, Ibric S, Djuris J. Development of propranolol hydrochloride bilayer mucoadhesive buccal tablets supported by in silico physiologically-based modeling. React Funct Polym 2020; 151: 104587.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2020.104587]
[67]
Pather SI, Rathbone MJ, Şenel S. Current status and the future of buccal drug delivery systems. Expert Opin Drug Deliv 2008; 5(5): 531-42.
[http://dx.doi.org/10.1517/17425247.5.5.531] [PMID: 18491980]
[68]
Satheesh Madhav NV, Semwal R, Semwal DK, Semwal RB. Recent trends in oral transmucosal drug delivery systems: an emphasis on the soft palatal route. Expert Opin Drug Deliv 2012; 9(6): 629-47.
[http://dx.doi.org/10.1517/17425247.2012.679260] [PMID: 22512535]
[69]
Garnock-Jones KP. Fentanyl buccal soluble film: a review in breakthrough cancer pain. Clin Drug Investig 2016; 36(5): 413-9.
[http://dx.doi.org/10.1007/s40261-016-0394-y] [PMID: 27007271]
[70]
Dos Santos AM, Carvalho SG, Araujo VHS, Carvalho GC, Gremião MPD, Chorilli M. Recent advances in hydrogels as strategy for drug delivery intended to vaginal infections. Int J Pharm 2020; 590: 119867.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119867] [PMID: 32919001]
[71]
Dhand AP, Galarraga JH, Burdick JA. Enhancing biopolymer hydrogel functionality through interpenetrating networks. Trends Biotechnol 2020; 39(5): 519-38.
[http://dx.doi.org/10.1016/j.tibtech.2020.08.007] [PMID: 32950262]
[72]
Keshari A, Sharma PK, Parvez N. Fast dissolving oral film : A novel and innovative drug delivery system. Int J Pharm Sci Res 2014; 5: 92-5.
[73]
Alopaeus JF, Hellfritzsch M, Gutowski T, et al. Mucoadhesive buccal films based on a graft co-polymer - A mucin-retentive hydrogel scaffold. Eur J Pharm Sci 2020; 142: 105142.
[http://dx.doi.org/10.1016/j.ejps.2019.105142] [PMID: 31707042]
[74]
Okur ME, Ayla Ş, Batur Ş, et al. Evaluation of in situ gel containing pycnogenol for cutaneous wound healing 2019; 34: 67-75.
[75]
Hussain Asim M, Nazir I, Jalil A, Matuszczak B, Bernkop-Schnürch A. Tetradeca-thiolated cyclodextrins: Highly mucoadhesive and in-situ gelling oligomers with prolonged mucosal adhesion. Int J Pharm 2020; 577: 119040.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119040] [PMID: 31953091]
[76]
Yao Y, Xia M, Wang H, et al. Preparation and evaluation of chitosan-based nanogels/gels for oral delivery of myricetin. Eur J Pharm Sci 2016; 91: 144-53.
[http://dx.doi.org/10.1016/j.ejps.2016.06.014] [PMID: 27328876]
[77]
Ahmed EM. Hydrogel: Preparation, characterization, and applications: A review. J Adv Res 2015; 6(2): 105-21.
[http://dx.doi.org/10.1016/j.jare.2013.07.006] [PMID: 25750745]
[78]
Vashist A, Vashist A, Gupta YK, Ahmad S. Recent advances in hydrogel based drug delivery systems for the human body. J Mater Chem B Mater Biol Med 2014; 2(2): 147-66.
[http://dx.doi.org/10.1039/C3TB21016B] [PMID: 32261602]
[79]
Peppas NA. Hydrogels and drug delivery. Curr Opin Colloid Interface Sci 1997; 2: 531-7.
[http://dx.doi.org/10.1016/S1359-0294(97)80103-3]
[80]
Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater 2016; 1(12): 16071.
[http://dx.doi.org/10.1038/natrevmats.2016.71] [PMID: 29657852]
[81]
Sarada K, Firoz S, Padmini K. In-situ gelling system: A review. Int J Curr Pharm Rev Res 2015; 5: 76-90.
[http://dx.doi.org/10.22270/jddt.v4i4.918]
[82]
Üstündaǧ-Okur N, Yoltas A, Yozgatli V. Development and characterization of voriconazole loaded in situ gel formulations for ophthalmic application. Turkish J Pharm Sci 2016; 13: 311-7.
[http://dx.doi.org/10.4274/tjps.2016.05]
[83]
Soni KS, Desale SS, Bronich TK. Nanogels: An overview of properties, biomedical applications and obstacles to clinical translation. J Control Release 2016; 240: 109-26.
[http://dx.doi.org/10.1016/j.jconrel.2015.11.009] [PMID: 26571000]
[84]
Dang N, Liu TY, Prow TW. Nano- and microtechnology in skin delivery of vaccines. Micro Nano Technol. Elsevier 2017; pp. 327-41.
[85]
Bayat M, Nasri S. Injectable microgel–hydrogel composites “plum pudding gels”: new system for prolonged drug delivery Nanomater Drug Deliv Ther. Elsevier 2019; pp. 343-72.
[86]
Pai RV, Vavia PR. Chitosan oligosaccharide enhances binding of nanostructured lipid carriers to ocular mucins: Effect on ocular disposition. Int J Pharm 2020; 577: 119095.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119095] [PMID: 32004680]
[87]
Siafaka PI, Zisi AP, Exindari MK, Karantas ID, Bikiaris DN. Porous dressings of modified chitosan with poly(2-hydroxyethyl acrylate) for topical wound delivery of levofloxacin. Carbohydr Polym 2016; 143: 90-9.
[http://dx.doi.org/10.1016/j.carbpol.2016.02.009] [PMID: 27083347]
[88]
Üstündağ Okur N, Hökenek N, Okur ME, et al. An alternative approach to wound healing field; new composite films from natural polymers for mupirocin dermal delivery. Saudi Pharm J 2019; 27(5): 738-52.
[http://dx.doi.org/10.1016/j.jsps.2019.04.010] [PMID: 31297030]
[89]
Ahmadi F, Oveisi Z, Samani SM, Amoozgar Z. Chitosan based hydrogels: characteristics and pharmaceutical applications. Res Pharm Sci 2015; 10(1): 1-16.
[PMID: 26430453]
[90]
Salunke SR, Patil SB. Ion activated in situ gel of gellan gum containing salbutamol sulphate for nasal administration. Int J Biol Macromol 2016; 87: 41-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.02.044] [PMID: 26899173]
[91]
Fini A, Bergamante V, Ceschel GC. Mucoadhesive gels designed for the controlled release of chlorhexidine in the oral cavity. Pharmaceutics 2011; 3(4): 665-79.
[http://dx.doi.org/10.3390/pharmaceutics3040665] [PMID: 24309302]
[92]
Lee SB, Jeong SY. Pilocarpine hydrochloride loaded pluronic F127/hyaluronic acid solutions for a potential ocular delivery. Biomater Res 2008; 12: 124-8.
[93]
Griesser J, Hetényi G, Bernkop-Schnürch A. Thiolated hyaluronic acid as versatile mucoadhesive polymer: From the chemistry behind to product developments-What are the capabilities? Polymers (Basel) 2018; 10(3): 243.
[http://dx.doi.org/10.3390/polym10030243] [PMID: 30966278]
[94]
Abasalizadeh F, Moghaddam SV, Alizadeh E, et al. Alginate-based hydrogels as drug delivery vehicles in cancer treatment and their applications in wound dressing and 3D bioprinting. J Biol Eng 2020; 14: 8.
[http://dx.doi.org/10.1186/s13036-020-0227-7] [PMID: 32190110]
[95]
Cirillo G, Spataro T, Curcio M, et al. Tunable thermo-responsive hydrogels: synthesis, structural analysis and drug release studies. Mater Sci Eng C 2015; 48: 499-510.
[http://dx.doi.org/10.1016/j.msec.2014.12.045] [PMID: 25579951]
[96]
Bansal M, Mittal N, Yadav SK, et al. Periodontal thermoresponsive, mucoadhesive dual antimicrobial loaded in-situ gel for the treatment of periodontal disease: Preparation, in-vitro characterization and antimicrobial study. J Oral Biol Craniofac Res 2018; 8(2): 126-33.
[http://dx.doi.org/10.1016/j.jobcr.2017.12.005] [PMID: 29892535]
[97]
Jayaraj KK, Jayachandran E, Srinivas GM, Giridhar B, Rahul N, Jayakandan M. Formulation of thermoresponsive and buccal adhesive in situ gel for treatment of oral thrush containing itraconazole. J Pharm Sci Res 2010; 2: 116-22.
[98]
Zeng N, Seguin J, Destruel PL, et al. Cyanine derivative as a suitable marker for thermosensitive in situ gelling delivery systems: In vitro and in vivo validation of a sustained buccal drug delivery. Int J Pharm 2017; 534(1-2): 128-35.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.073] [PMID: 28982548]
[99]
Marques AC, Rocha AI, Leal P, Estanqueiro M, Lobo JMS. Development and characterization of mucoadhesive buccal gels containing lipid nanoparticles of ibuprofen. Int J Pharm 2017; 533(2): 455-62.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.025] [PMID: 28412446]
[100]
Cavallari C, Brigidi P, Fini A. Ex-vivo and in-vitro assessment of mucoadhesive patches containing the gel-forming polysaccharide psyllium for buccal delivery of chlorhexidine base. Int J Pharm 2015; 496(2): 593-600.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.077] [PMID: 26541304]
[101]
Graciano TB, Coutinho TS, Cressoni CB, et al. Using chitosan gels as a toluidine blue O delivery system for photodynamic therapy of buccal cancer: In vitro and in vivo studies. Photodiagn Photodyn Ther 2015; 12(1): 98-107.
[http://dx.doi.org/10.1016/j.pdpdt.2014.11.003] [PMID: 25463317]
[102]
Zeng N, Dumortier G, Maury M, Mignet N, Boudy V. Influence of additives on a thermosensitive hydrogel for buccal delivery of salbutamol: relation between micellization, gelation, mechanic and release properties. Int J Pharm 2014; 467(1-2): 70-83.
[http://dx.doi.org/10.1016/j.ijpharm.2014.03.055] [PMID: 24699353]
[103]
Rai VK, Yadav NP, Sinha P, et al. Development of cellulosic polymer based gel of novel ternary mixture of miconazole nitrate for buccal delivery. Carbohydr Polym 2014; 103: 126-33.
[http://dx.doi.org/10.1016/j.carbpol.2013.12.019] [PMID: 24528709]
[104]
Ceschel GC, Maffei P, Sforzini A, Lombardi Borgia S, Yasin A, Ronchi C. In vitro permeation through porcine buccal mucosa of caffeic acid phenetyl ester (CAPE) from a topical mucoadhesive gel containing propolis. Fitoterapia 2002; 73(Suppl. 1): S44-52.
[http://dx.doi.org/10.1016/S0367-326X(02)00190-9] [PMID: 12495709]
[105]
Morishita M, Barichello JM, Takayama K, Chiba Y, Tokiwa S, Nagai T. Pluronic F-127 gels incorporating highly purified unsaturated fatty acids for buccal delivery of insulin. Int J Pharm 2001; 212(2): 289-93.
[http://dx.doi.org/10.1016/S0378-5173(00)00615-3] [PMID: 11165086]
[106]
Shin SC, Bum JP, Choi JS. Enhanced bioavailability by buccal administration of triamcinolone acetonide from the bioadhesive gels in rabbits. Int J Pharm 2000; 209(1-2): 37-43.
[http://dx.doi.org/10.1016/S0378-5173(00)00542-1] [PMID: 11084244]
[107]
Elkomy MH, Menshawe SF, El, Abou-taleb HA, et al. Loratadine bioavailability via buccal transferosomal gel : formulation, statistical optimization, in vitro/in vivo characterization, and pharmacokinetics in human volunteers statistical optimization, in vitro/in vivo characterization, and pharmacokinetics in human volunteers. Drug Deliv 2017; 7544.
[108]
Chaudhary B, Verma S. Preparation and evaluation of novel in situ gels containing acyclovir for the treatment of oral herpes simplex virus infections. ScientificWorldJournal 2014; 2014: 280928.
[http://dx.doi.org/10.1155/2014/280928] [PMID: 24790559]
[109]
Harish NM, Prabhu P, Charyulu RN, Gulzar MA, Subrahmanyam EVS. Formulation and evaluation of in situ gels containing clotrimazole for oral candidiasis. Indian J Pharm Sci 2009; 71(4): 421-7.
[http://dx.doi.org/10.4103/0250-474X.57291] [PMID: 20502548]
[110]
Narayana Charyulu R, Devi PP, Jose J, Shetty AV. Formulation and evaluation of mucoadhesive oral gel containing miconazole nitrate for oral candidiasis. Res J Pharm Tech 2013; 6.
[111]
Sharma D, Sharma A, Garg R. Preparation, physicochemical evaluation and characterization of mucoadhesive buccal gels impregnated with benzydamine hydrochloride for the effective treatment of aphthous stomatitis: Effect of different grades of HPMC polymer on in vitro and ex vivo perf. Drug Deliv Lett 2019; 9: 341-57.
[http://dx.doi.org/10.2174/2210303109666190529123029]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy