Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

A Novel 4H-Chromen-4-One Derivative from Marine Streptomyces ovatisporus S4702T as Potential Antibacterial and Anti-Cancer Agent

Author(s): Aslıhan Kurt-Kızıldoğan*, Neslihan Akarsu, Çiğdem Otur, Arif Kivrak, Nevroz Aslan-Ertas, Sevki Arslan, Dogukan Mutlu, Metin Konus, Can Yılmaz, Dogan Cetin, Tufan Topal and Nevzat Şahin

Volume 22, Issue 2, 2022

Published on: 11 March, 2021

Page: [362 - 370] Pages: 9

DOI: 10.2174/1871520621666210311085748

Price: $65

Abstract

Background: Marine actinomycetes are among indispensable sources of natural bioactive compounds with unique antimicrobial and anti-cancer activities.

Objective: Herein, it was aimed to elucidate the bioactive potential of a marine-derived Streptomyces ovatisporus S4702T, isolated previously.

Methods: Streptomyces ovatisporus S4702T was cultured in N-Z Amine broth, and extraction was carried out using different organic solvents. Bioassay-guided purification was followed by chemical characterization using NMR and LC-MS/MS. The compound was then evaluated for its antibacterial, antioxidant and cytotoxic activities.

Results: Etyl acetate extracts gave the highest antibacterial activity, and chemical characterization of this extract indicated the formula as C15H29O5N3 and the corresponding possible molecular structure as 4H-chromen-4-one derivative. It was found highly potent against Bacillus subtilis ATCC 6633 (MIC: 0.25 μg ml-1) and Micrococcus luteus ATCC 9341 (MBC: 0.5 μg ml-1). It has no remarkable antioxidant activity, but a higher EC50 value and less cytotoxicity against normal cells. The EC50 values of this chromen derivative were found as 9.68 μg ml-1 for human colon carcinoma, 9.93 μg ml-1 for human prostate adenocarcinoma and 25.5 μg ml-1 for human embryonic kidney cells.

Conclusion: Overall, the presented 4H-chromen-4-one derivative is a remarkable bioactive compound with potent antibacterial and cytotoxic activity. With its high bioactive potential, it is proposed as a good candidate in medicine.

Keywords: Streptomyces ovatisporus S4702T, 4H-chromen-4-one, antibacterial activity, NMR, LC-MS/MS, cytotoxicity.

Graphical Abstract
[1]
Liu, R.; Deng, Z.; Liu, T. Streptomyces species: Ideal chassis for natural product discovery and overproduction. Metab. Eng., 2018, 50, 74-84.
[http://dx.doi.org/10.1016/j.ymben.2018.05.015] [PMID: 29852270]
[2]
Tiwari, K.; Gupta, R.K. Rare actinomycetes: a potential storehouse for novel antibiotics. Crit. Rev. Biotechnol., 2012, 32(2), 108-132.
[http://dx.doi.org/10.3109/07388551.2011.562482] [PMID: 21619453]
[3]
Takahashi, Y.; Nakashima, T. Actinomycetes, an inexhaustible source of naturally occurring antibiotics. Antibiotics (Basel), 2018, 7(2), 45.
[http://dx.doi.org/10.3390/antibiotics7020045] [PMID: 29795019]
[4]
Martens, E.; Demain, A.L. The antibiotic resistance crisis, with a focus on the United States. J. Antibiot. (Tokyo), 2017, 70(5), 520-526.
[http://dx.doi.org/10.1038/ja.2017.30] [PMID: 28246379]
[5]
Zhu, S.; Duan, Y.; Huang, Y. The application of ribosome engineering to natural product discovery and yield improvement in Streptomyces. Antibiotics (Basel), 2019, 8(3), 1-16.
[http://dx.doi.org/10.3390/antibiotics8030133] [PMID: 31480298]
[6]
de Kraker, M.E.A.; Stewardson, A.J.; Harbarth, S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med., 2016, 13(11)e1002184
[http://dx.doi.org/10.1371/journal.pmed.1002184] [PMID: 27898664]
[7]
Demain, A.L.; Sanchez, S. Microbial drug discovery: 80 years of progress. J. Antibiot. (Tokyo), 2009, 62(1), 5-16.
[http://dx.doi.org/10.1038/ja.2008.16] [PMID: 19132062]
[8]
Veyisoglu, A.; Cetin, D.; Inan Bektas, K.; Guven, K.; Sahin, N. Streptomyces ovatisporus sp. nov., isolated from deep marine sediment. Int. J. Syst. Evol. Microbiol., 2016, 66(11), 4856-4863.
[http://dx.doi.org/10.1099/ijsem.0.001442] [PMID: 27553490]
[9]
Özcengiz, G.; Okay, S.; Ünsaldı, E.; Taşkın, B.; Liras, P.; Piret, J. Homologous expression of aspartokinase (ask) gene in Streptomyces clavuligerus and its hom-deleted mutant: effects on cephamycin C production. Bioeng. Bugs, 2010, 1(3), 191-197.
[http://dx.doi.org/10.4161/bbug.1.3.11244] [PMID: 21326925]
[10]
Patel, J. B.; Cockerill, F. R.; Bradford, P. A. Performance standards for antimicrobial susceptibility testing: twenty-fifth informational supplement. Clin. Lab. Standard Inst. M100-S24, 2015, 35, 29-50.
[11]
Bonev, B.; Hooper, J.; Parisot, J. Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method. J. Antimicrob. Chemother., 2008, 61(6), 1295-1301.
[http://dx.doi.org/10.1093/jac/dkn090] [PMID: 18339637]
[12]
Rex, J. Method for antifungal disk diffusion susceptibility testing of yeast; approved Guideline–second ed M44 A2 , 2009; 29, pp. 1-44.
[13]
Clinical and Laboratory Standards Institute. Method for antifungal disk diffusion susceptibility testing of nondermatophyte filamentous fungi. Approved guideline. M51-A, 2010, 30, 1-29.
[14]
Winn, W.; Allen, S.; Janda, W.; Koneman, E.; Procop, G.; Schreckenberger, P.; Woods, G. Koneman’s Color Atlas and Textbook of Diagnostic Microbiology, 6th ed; Lippincott Williams & Wilkins: Philadelphia, PA, 2006, pp. 945-1021.
[15]
Xu, D.; Han, L.; Li, C.; Cao, Q.; Zhu, D.; Barrett, N.H.; Harmody, D.; Chen, J.; Zhu, H.; McCarthy, P.J.; Sun, X.; Wang, G. Bioprospecting deep-sea actinobacteria for novel anti-infective natural products. Front. Microbiol., 2018, 9, 787.
[http://dx.doi.org/10.3389/fmicb.2018.00787] [PMID: 29760684]
[16]
Wayne, P. A. Reference method for broth dilution antifungal susceptibility testing of yeasts, approved standard. Clinical and Laboratory Standard Institute M27-A2, 2002, 22, 1-29.
[17]
Clinical and Laboratory Standards Institute. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard, 9th ed; , 2009; pp. M07-A9.
[18]
Clinical and Laboratory Standard Institute Methods for Dilution Antifungal susceptibility testing of Filamentous Fungi-Approved edition microbial Susceptibility Tests for Bacteria That Grow Aerobically 2008.
[20]
Shi, H.; Niki, E. Stoichiometric and kinetic studies on Ginkgo biloba extract and related antioxidants. Lipids, 1998, 33(4), 365-370.
[http://dx.doi.org/10.1007/s11745-998-0216-8] [PMID: 9590623]
[21]
Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature, 1958, 181(4617), 1199-1200.
[http://dx.doi.org/10.1038/1811199a0]
[22]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med., 1999, 26(9-10), 1231-1237.
[http://dx.doi.org/10.1016/S0891-5849(98)00315-3] [PMID: 10381194]
[23]
Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem., 1996, 239(1), 70-76.
[http://dx.doi.org/10.1006/abio.1996.0292] [PMID: 8660627]
[24]
Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal. Biochem., 1999, 269(2), 337-341.
[http://dx.doi.org/10.1006/abio.1999.4019] [PMID: 10222007]
[25]
de la Fuente, A.; Lorenzana, L.M.; Martín, J.F.; Liras, P. Mutants of Streptomyces clavuligerus with disruptions in different genes for clavulanic acid biosynthesis produce large amounts of holomycin: possible cross-regulation of two unrelated secondary metabolic pathways. J. Bacteriol., 2002, 184(23), 6559-6565.
[http://dx.doi.org/10.1128/JB.184.23.6559-6565.2002] [PMID: 12426344]
[26]
Álvarez-Álvarez, R.; Martínez-Burgo, Y.; Rodríguez-García, A.; Liras, P. Discovering the potential of S. clavuligerus for bioactive compound production: cross-talk between the chromosome and the pSCL4 megaplasmid. BMC Genomics, 2017, 18(1), 907.
[http://dx.doi.org/10.1186/s12864-017-4289-y] [PMID: 29178826]
[27]
Tang, J.S.; Gillevet, P.M. Reclassification of ATCC 9341 from Micrococcus luteus to Kocuria rhizophila. Int. J. Syst. Evol. Microbiol., 2003, 53(Pt 4), 995-997.
[http://dx.doi.org/10.1099/ijs.0.02372-0] [PMID: 12892116]
[28]
French, G.L. Bactericidal agents in the treatment of MRSA infections--the potential role of daptomycin. J. Antimicrob. Chemother., 2006, 58(6), 1107-1117.
[http://dx.doi.org/10.1093/jac/dkl393] [PMID: 17040922]
[29]
Law, J.W.F.; Ser, H.L.; Duangjai, A.; Saokaew, S.; Bukhari, S.I.; Khan, T.M.; Ab Mutalib, N.S.; Chan, K.G.; Goh, B.H.; Lee, L.H. Streptomyces colonosanans sp. nov., A novel actinobacterium isolated from malaysia mangrove soil exhibiting antioxidative activity and cytotoxic potential against human colon cancer cell lines. Front. Microbiol., 2017, 8, 877.
[http://dx.doi.org/10.3389/fmicb.2017.00877] [PMID: 28559892]
[30]
Chandra, P.; Sharma, R.K.; Arora, D.S. Antioxidant compounds from microbial sources: A review. Food Res. Int., 2020, 129108849
[http://dx.doi.org/10.1016/j.foodres.2019.108849] [PMID: 32036890]
[31]
Tan, L.T.H.; Ser, H.L.; Yin, W.F.; Chan, K.G.; Lee, L.H.; Goh, B.H. Investigation of antioxidative and anticancer potentials of Streptomyces sp. MUM256 isolated from Malaysia mangrove soil. Front. Microbiol., 2015, 6, 1316.
[http://dx.doi.org/10.3389/fmicb.2015.01316] [PMID: 26635777]
[32]
Hassan, S.S.; Anjum, K.; Abbas, S.Q.; Akhter, N.; Shagufta, B.I.; Shah, S.A.; Tasneem, U. Emerging biopharmaceuticals from marine actinobacteria. Environ. Toxicol. Pharmacol., 2017, 49, 34-47.
[http://dx.doi.org/10.1016/j.etap.2016.11.015] [PMID: 27898308]
[33]
Jiang, M.; Chen, S.; Li, J.; Liu, L. The biological and chemical diversity of tetramic acid compounds from marine-derived microorganisms. Mar. Drugs, 2020, 18(2), 114.
[http://dx.doi.org/10.3390/md18020114] [PMID: 32075282]
[34]
Manivasagan, P.; Venkatesan, J.; Sivakumar, K.; Kim, S.K. Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiol. Res., 2014, 169(4), 262-278.
[http://dx.doi.org/10.1016/j.micres.2013.07.014] [PMID: 23958059]
[35]
Gaspar, A.; Matos, M.J.; Garrido, J.; Uriarte, E.; Borges, F. Chromone: a valid scaffold in medicinal chemistry. Chem. Rev., 2014, 114(9), 4960-4992.
[http://dx.doi.org/10.1021/cr400265z] [PMID: 24555663]
[36]
Sholkamy, E.N.; Ahmed, M.S.; Yasser, M.M.; Mostafa, A.A. Antimicrobial quercetin 3-O-glucoside derivative isolated from Streptomyces antibioticus strain ess_amA8. J. King Saud Univ. Sci., 2020, 32, 1838-1844.
[http://dx.doi.org/10.1016/j.jksus.2020.01.026]
[37]
Li, J.; Lu, C.H.; Zhao, B.B.; Zheng, Z.H.; Shen, Y.M. Phaeochromycins F-H, three new polyketide metabolites from Streptomyces sp. DSS-18. Beilstein J. Org. Chem., 2008, 4, 46.
[http://dx.doi.org/10.1016/j.jorganchem.2007.10.017] [PMID: 19190740]
[38]
Conti, C.; Desideri, N. New 4H-chromen-4-one and 2H-chromene derivatives as anti-picornavirus capsid-binders. Bioorg. Med. Chem., 2010, 18(17), 6480-6488.
[http://dx.doi.org/10.1016/j.bmc.2010.06.103] [PMID: 20673722]
[39]
Cao, D.T.; Nguyen, T.L.; Tran, V.H.; Doan-Thi-Mai, H.; Vu-Thi, Q.; Nguyen, M.; Le-Thi, H.M.; Chau, V.M.; Pham, V.C. Synthesis, structure and antimicrobial activity of novel metabolites from a marine actinomycete in Vietnam’s East Sea. Nat. Prod. Commun., 2019, 14(1), 121-124.
[http://dx.doi.org/10.1177/1934578X1901400132]
[40]
Cao, D.T.; Tran, V.H.; Vu, V.N.; Mai, H.D.T.; Le, T.H.M.; Vu, T.Q.; Nguyen, H.H.; Chau, V.M.; Pham, V.C. Antimicrobial metabolites from a marine-derived Actinomycete Streptomyces sp. G278. Nat. Prod. Res., 2019, 33(22), 3223-3230.
[http://dx.doi.org/10.1080/14786419.2018.1468331] [PMID: 29726708]
[41]
Siddharth, S.; Vittal, R.R. Isolation, characterization, and structural elucidation of 4-methoxyacetanilide from marine actinobacteria Streptomyces sp. SCA29 and evaluation of its enzyme inhibitory, antibacterial, and cytotoxic potential. Arch. Microbiol., 2019, 201(6), 737-746.
[http://dx.doi.org/10.1007/s00203-019-01634-y] [PMID: 30820617]
[42]
Fu, S.; Wang, F.; Li, H.; Bao, Y.; Yang, Y.; Shen, H.; Lin, B.; Zhou, G. Secondary metabolites from marine-derived Streptomyces antibioticus strain H74-21. Nat. Prod. Res., 2016, 30(21), 2460-2467.
[http://dx.doi.org/10.1080/14786419.2016.1201668] [PMID: 27379435]
[43]
Vicente, J.; Stewart, A.K.; van Wagoner, R.M.; Elliott, E.; Bourdelais, A.J.; Wright, J.L. Monacyclinones, newangucyclinone metabolites isolated from Streptomyces sp. M7 15 associated with the puerto rican sponge Scopalina ruetzleri. Mar. Drugs, 2015, 13(8), 4682-4700.
[http://dx.doi.org/10.3390/md13084682] [PMID: 26230704]
[44]
Bae, M.; An, J.S.; Hong, S.H.; Bae, E.S.; Chung, B.; Kwon, Y.; Hong, S.; Oh, K.B.; Shin, J.; Lee, S.K. Oh., D.C. Donghaecyclinones A-C: New cytotoxic rearranged angucyclinones from a volcanic island-derived marine Streptomyces sp. Mar. Drugs, 2020, 18(2), 121.
[http://dx.doi.org/10.3390/md18020121]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy