Generic placeholder image

Current Nutraceuticals

Editor-in-Chief

ISSN (Print): 2665-9786
ISSN (Online): 2665-9794

Research Article

Development of Ultrasound-assisted Extraction Conditions for the Optimal Yield of Phenolic Compounds and Antioxidant Properties from Lemon Myrtle (Backhousia Citriodora) Leaves

Author(s): Md Saifullah*, Rebecca McCullum and Quan V. Vuong

Volume 2, Issue 4, 2021

Published on: 09 March, 2021

Page: [250 - 264] Pages: 15

DOI: 10.2174/2665978602666210309143905

Price: $65

Abstract

Background: Lemon myrtle (Backhousia citriodora), is native to Australia and has a significant value as an aromatic herb and folk medicine. Recently, it has shown potential applications in the food, pharmaceutical, and cosmetic industries.

Objective: This study was designed to identify the most suitable safe solvent for the extraction of phenolic compounds and antioxidant properties from lemon myrtle leaves and then apply response surface methodology (RSM) to develop the optimal conditions (time, temperature, and sonication power) for the extraction of phenolic compounds and antioxidant properties from lemon myrtle using ultrasonic-assisted extraction (UAE).

Methods: Five different solvents viz water, acetone, ethanol, acetone: water (50:50), and ethanol: water (50:50) were tested for extraction efficiency of phenolic compounds and antioxidant properties from dried lemon myrtle leaves. A three-level three-factor Box-Behnken design was employed to elucidate the effect of sonication time, extraction temperature, and sonication power on the yields of total phenolics, antioxidant capacities, and major individual compounds (gallic acid and hesperetin).

Results: The results showed that solvents have a significant impact on the extraction efficiency of bioactive compounds and antioxidant properties from lemon myrtle, and 50% acetone is the best solvent. Mathematical models were reliable for the prediction of optimal extraction conditions and the optimal conditions for the extraction of phenolic compounds and antioxidant capacity, as well as gallic acid and hesperetin are 50 min, 60°C and sonication power of 250 W.

Conclusion: These optimal conditions and 50% acetone in water (as solvent) are recommended to extract phenolic compounds and antioxidant capacity from lemon myrtle leaves as a functional food ingredient.

Keywords: Lemon myrtle, extraction, ultrasound, optimization, antioxidant, phenolic compound, gallic acid, hesperetin.

Graphical Abstract
[1]
Hess-Buschmann, S. Native foods – Lemon myrtle.The new crop industry handbook; Salvin, S.; Bourk, M.; Byrne, T., Eds.; , 2008, 4/125, pp. 16-20.
[2]
Lassak, V.E. Revision of Backhousia citriodora Essential Oil Standard R I R D C Publication No 11/37 Union Offset Printing, Canberra, Australian. 2012.
[3]
Mazzorana, G; Mazzorana, M. Cultivation of Lemon Myrtle (Backhousia citriodora). CRC Press Taylor and Francir group, 2016.
[4]
Guo, Y.; Sakulnarmrat, K.; Konczak, I. Anti-inflammatory potential of native Australian herbs polyphenols. Toxicol. Rep., 2014, 1, 385-390.
[http://dx.doi.org/10.1016/j.toxrep.2014.06.011] [PMID: 28962255]
[5]
Sakulnarmrat, K.; Konczak, I. Composition of native Australian herbs polyphenolic-rich fractions and in vitro inhibitory activities against key enzymes relevant to metabolic syndrome. Food Chem., 2012, 134(2), 1011-1019.
[http://dx.doi.org/10.1016/j.foodchem.2012.02.217] [PMID: 23107721]
[6]
Shami, A-M.M.; Philip, K.; Muniandy, S. Synergy of antibacterial and antioxidant activities from crude extracts and peptides of selected plant mixture. BMC Complement. Altern. Med., 2013, 13, 360.
[http://dx.doi.org/10.1186/1472-6882-13-360] [PMID: 24330547]
[7]
Konczak, I.; Zabaras, D.; Dunstan, M.; Aguas, P. Antioxidant capacity and phenolic compounds in commercially grown native Australian herbs and spices. Food Chem., 2010, 122, 260-266.
[http://dx.doi.org/10.1016/j.foodchem.2010.03.004]
[8]
Saifullah, M; McCullum, R; McCluskey, A; Vuong, Q Effects of different drying methods on extractable phenolic compounds and antioxidant properties from lemon myrtle dried leaves. Heliyon, 2019, 5, e03044-e.
[http://dx.doi.org/10.1016/j.heliyon.2019.e03044]
[9]
Sakulnarmrat, K.; Fenech, M.; Thomas, P.; Konczak, I. Cytoprotective and pro-apoptotic activities of native Australian herbs polyphenolic-rich extracts. Food Chem., 2013, 136(1), 9-17.
[http://dx.doi.org/10.1016/j.foodchem.2012.07.089] [PMID: 23017386]
[10]
Lapornik, B.; Prošek, M.; Golc Wondra, A. Comparison of extracts prepared from plant by-products using different solvents and extraction time. J. Food Eng., 2005, 71, 214-222.
[http://dx.doi.org/10.1016/j.jfoodeng.2004.10.036]
[11]
Sasidharan, S.; Chen, Y.; Saravanan, D.; Sundram, K.M.; Yoga Latha, L. Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr. J. Tradit. Complement. Altern. Med., 2011, 8(1), 1-10.
[PMID: 22238476]
[12]
Zhang, H-F.; Yang, X-H.; Wang, Y. Microwave assisted extraction of secondary metabolites from plants: Current status and future directions. Trends Food Sci. Technol., 2011, 22, 672-688.
[http://dx.doi.org/10.1016/j.tifs.2011.07.003]
[13]
Vuong, Q.V.; Hirun, S.; Roach, P.D.; Bowyer, M.C.; Phillips, P.A.; Scarlett, C.J. Effect of extraction conditions on total phenolic compounds and antioxidant activities of Carica papaya leaf aqueous extracts. J. Herb. Med., 2013, 3, 104-111.
[http://dx.doi.org/10.1016/j.hermed.2013.04.004]
[14]
Bhuyan, D.J.; Vuong, Q.V.; Chalmers, A.C.; van Altena, I.A.; Bowyer, M.C.; Scarlett, C.J. Development of the ultrasonic conditions as an advanced technique for extraction of phenolic compounds from Eucalyptus robusta. Sep. Sci. Technol., 2017, 52, 100-112.
[http://dx.doi.org/10.1080/01496395.2016.1250777]
[15]
Saifullah M, McCullum R, McCluskey A, Vuong Q. Comparison of conventional extraction technique with ultrasound assisted extraction on recovery of phenolic compounds from lemon scented tea tree (Leptospermum petersonii) leaves. Heliyon, 2020.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03666]
[16]
Jerman Klen, T.; Mozetič Vodopivec, B. Ultrasonic extraction of phenols from olive mill wastewater: comparison with conventional methods. J. Agric. Food Chem., 2011, 59(24), 12725-12731.
[http://dx.doi.org/10.1021/jf202800n] [PMID: 22053742]
[17]
Wen, L.; Zhang, Z.; Sun, D.W.; Sivagnanam, S.P.; Tiwari, B.K. Combination of emerging technologies for the extraction of bioactive compounds. Crit. Rev. Food Sci. Nutr., 2020, 60(11), 1826-1841.
[http://dx.doi.org/10.1080/10408398.2019.1602823] [PMID: 30990060]
[18]
Horžić, D.; Jambrak, A.R.; Belščak-Cvitanović, A.; Komes, D.; Lelas, V. Comparison of Conventional and Ultrasound Assisted Extraction Techniques of Yellow Tea and Bioactive Composition of Obtained Extracts. Food Bioprocess Technol., 2012, 5, 2858-2870.
[http://dx.doi.org/10.1007/s11947-012-0791-z]
[19]
Kuo, C-H.; Chen, B-Y.; Liu, Y-C.; Chang, C-M.; Deng, T-S.; Chen, J-H.; Shieh, C-J. Optimized ultrasound-assisted extraction of phenolic compounds from Polygonum cuspidatum. Molecules, 2013, 19(1), 67-77.
[http://dx.doi.org/10.3390/molecules19010067] [PMID: 24362626]
[20]
Babazadeh, A.; Taghvimi, A.; Hamishehkar, H.; Tabibiazar, M. Development of new ultrasonic-solvent assisted method for determination of trans-resveratrol from red grapes: Optimization, characterization, and antioxidant activity (ORAC assay). Food Biosci., 2017, 20, 36-42.
[http://dx.doi.org/10.1016/j.fbio.2017.08.003]
[21]
Dahmoune, F.; Boulekbache, L.; Moussi, K.; Aoun, O.; Spigno, G.; Madani, K. Valorization of Citrus limon residues for the recovery of antioxidants: Evaluation and optimization of microwave and ultrasound application to solvent extraction. Ind. Crops Prod., 2013, 50, 77-87.
[http://dx.doi.org/10.1016/j.indcrop.2013.07.013]
[22]
Papoutsis, K.; Pristijono, P.; Golding, J.B.; Stathopoulos, C.E.; Bowyer, M.C.; Scarlett, C.J.; Vuong, Q.V. Screening the effect of four ultrasound-assisted extraction parameters on hesperidin and phenolic acid content of aqueous citrus pomace extracts. Food Biosci., 2018, 21, 20-26.
[http://dx.doi.org/10.1016/j.fbio.2017.11.001]
[23]
Chen, X.X.; Wu, X.B.; Chai, W.M.; Feng, H.L.; Shi, Y.; Zhou, H.T.; Chen, Q.X. Optimization of extraction of phenolics from leaves of Ficus virens. J. Zhejiang Univ. Sci. B, 2013, 14(10), 903-915.
[http://dx.doi.org/10.1631/jzus.B1200365] [PMID: 24101207]
[24]
Zhang, Z-S.; Li, D.; Wang, L-J.; Ozkan, N.; Chen, X.D.; Mao, Z-H.; Yang, H-Z. Optimization of ethanol-water extraction of lignans from flaxseed. Separ. Purif. Tech., 2007, 57, 17-24.
[http://dx.doi.org/10.1016/j.seppur.2007.03.006]
[25]
Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 2008, 76(5), 965-977.
[http://dx.doi.org/10.1016/j.talanta.2008.05.019] [PMID: 18761143]
[26]
Ingawale, A.S.; Sadiq, M.B.; Nguyen, L.T.; Ngan, T.B. Optimization of extraction conditions and assessment of antioxidant, α-glucosidase inhibitory and antimicrobial activities of Xanthium strumarium L. fruits. Biocatal. Agric. Biotechnol., 2018, 14, 40-47.
[http://dx.doi.org/10.1016/j.bcab.2018.02.004]
[27]
Lee, C-J.; Chen, L-W.; Chen, L-G.; Chang, T-L.; Huang, C-W.; Huang, M-C.; Wang, C-C. Correlations of the components of tea tree oil with its antibacterial effects and skin irritation. J Food Drug Anal., 2013, 21(2), 169-176.
[http://dx.doi.org/10.1016/j.jfda.2013.05.007]
[28]
Singh, B.; Sharma, H.K.; Sarkar, B.C. Optimization of extraction of antioxidants from wheat bran (Triticum spp.) using response surface methodology. J. Food Sci. Technol., 2012, 49(3), 294-308.
[http://dx.doi.org/10.1007/s13197-011-0276-5] [PMID: 23729849]
[29]
Heydari Majd, M.; Rajaei, A.; Salar Bashi, D.; Mortazavi, S.A.; Bolourian, S. Optimization of ultrasonic-assisted extraction of phenolic compounds from bovine pennyroyal (Phlomidoschema parviflorum) leaves using response surface methodology. Ind. Crops Prod., 2014, 57, 195-202.
[http://dx.doi.org/10.1016/j.indcrop.2014.03.031]
[30]
Pham, H.N.T.; Vuong, Q.V.; Bowyer, M.C.; Scarlett, C.J. Optimization of ultrasound-assisted extraction of Helicteres hirsuta Lour. for enhanced total phenolic compound and antioxidant yield. Journal of Applied Research on Medicinal and Aromatic Plants, 2017, 7, 113-123.
[http://dx.doi.org/10.1016/j.jarmap.2017.07.002]
[31]
Škerget, M.; Kotnik, P.; Hadolin, M.; Hraš, A.R.; Simonič, M.; Knez, Ž. Phenols, proanthocyanidins, flavones and flavonols in some plant materials and their antioxidant activities. Food Chem., 2005, 89, 191-198.
[http://dx.doi.org/10.1016/j.foodchem.2004.02.025]
[32]
Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem., 1999, 64, 555-559.
[http://dx.doi.org/10.1016/S0308-8146(98)00102-2]
[33]
Li, Y.; Guo, C.; Yang, J.; Wei, J.; Xu, J.; Cheng, S. Evaluation of antioxidant properties of pomegranate peel extract in comparison with pomegranate pulp extract. Food Chem., 2006, 96, 254-260.
[http://dx.doi.org/10.1016/j.foodchem.2005.02.033]
[34]
Thaipong, K.; Boonprakob, U.; Crosby, K.; Cisneros-Zevallos, L.; Hawkins Byrne, D. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal., 2006, 19, 669-675.
[http://dx.doi.org/10.1016/j.jfca.2006.01.003]
[35]
Apak, R.; Güçlü, K.; Ozyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem., 2004, 52(26), 7970-7981.
[http://dx.doi.org/10.1021/jf048741x] [PMID: 15612784]
[36]
Do, Q.D.; Angkawijaya, A.E.; Tran-Nguyen, P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadji, S.; Ju, Y-H. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J Food Drug Anal., 2014, 22(3), 296-302.
[http://dx.doi.org/10.1016/j.jfda.2013.11.001] [PMID: 28911418]
[37]
Safdar, M.N.; Kausar, T.; Jabbar, S.; Mumtaz, A.; Ahad, K.; Saddozai, A.A. Extraction and quantification of polyphenols from kinnow (Citrus reticulate L.) peel using ultrasound and maceration techniques. J Food Drug Anal., 2017, 25(3), 488-500.
[http://dx.doi.org/10.1016/j.jfda.2016.07.010] [PMID: 28911634]
[38]
Wissam, Z.; Ghada, B.; Wassim, A.; Warid, K. Effective extraction of polyphenols and proanthocyanidins from Pomegranate’s peel. Int. J. Pharm. Pharm. Sci., 2012, 4, 675-682.
[39]
Irakli, M.; Chatzopoulou, P.; Ekateriniadou, L. Optimization of ultrasound-assisted extraction of phenolic compounds: Oleuropein, phenolic acids, phenolic alcohols and flavonoids from olive leaves and evaluation of its antioxidant activities. Ind. Crops Prod., 2018, 124, 382-388.
[http://dx.doi.org/10.1016/j.indcrop.2018.07.070]
[40]
Ferreira, O.; Pinho, S.P. Solubility of Flavonoids in Pure Solvents. Ind. Eng. Chem. Res., 2012, 51, 6586-6590.
[http://dx.doi.org/10.1021/ie300211e]
[41]
Mendoza, N. uacute, ntilde, ez V, iacute, ctor M, Ruiz-Ramos M, aacute, nchez R, iacute, guez MA, Retana-Ugalde R, Mu, ntilde, oz S, aacute, nchez J, eacute, Luis. Aging-Related Oxidative Stress in Healthy Humans. Tohoku J. Exp. Med., 2007, 213, 261-268.
[42]
Le Man, H.; Behera, S.K.; Park, H.S. Optimization of operational parameters for ethanol production from Korean food waste leachate. Int. J. Environ. Sci. Technol., 2010, 7, 157-164.
[http://dx.doi.org/10.1007/BF03326127]
[43]
Wang, L.; Wang, Z.; Li, X. Optimization of ultrasonic-assisted extraction of phenolic antioxidants from Malus baccata (Linn.) Borkh. using response surface methodology. J. Sep. Sci., 2013, 36(9-10), 1652-1658.
[http://dx.doi.org/10.1002/jssc.201300062] [PMID: 23436450]
[44]
Zhang, Q-A.; Zhang, Z-Q.; Yue, X-F.; Fan, X-H.; Li, T.; Chen, S-F. Response surface optimization of ultrasound-assisted oil extraction from autoclaved almond powder. Food Chem., 2009, 116, 513-518.
[http://dx.doi.org/10.1016/j.foodchem.2009.02.071]
[45]
Mota, I.; Rodrigues Pinto, P.C.; Novo, C.; Sousa, G.; Guerreiro, O.; Guerra, Â.R.; Duarte, M.F.; Rodrigues, A.E. Extraction of polyphenolic compounds from eucalyptus globulus bark: Process optimization and screening for biological activity. Ind. Eng. Chem. Res., 2012, 51, 6991-7000.
[http://dx.doi.org/10.1021/ie300103z]
[46]
Dai, J.; Mumper, R.J. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 2010, 15(10), 7313-7352.
[http://dx.doi.org/10.3390/molecules15107313] [PMID: 20966876]
[47]
Al-Farsi, M.A.; Lee, C.Y. Optimization of phenolics and dietary fibre extraction from date seeds. Food Chem., 2008, 108(3), 977-985.
[http://dx.doi.org/10.1016/j.foodchem.2007.12.009] [PMID: 26065761]
[48]
Spigno, G.; Tramelli, L.; De Faveri, D.M. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J. Food Eng., 2007, 81, 200-208.
[http://dx.doi.org/10.1016/j.jfoodeng.2006.10.021]
[49]
Ma, Y-Q.; Ye, X-Q.; Fang, Z-X.; Chen, J-C.; Xu, G-H.; Liu, D-H. Phenolic compounds and antioxidant activity of extracts from ultrasonic treatment of Satsuma Mandarin (Citrus unshiu Marc.) peels. J. Agric. Food Chem., 2008, 56(14), 5682-5690.
[http://dx.doi.org/10.1021/jf072474o] [PMID: 18572916]
[50]
Nakilcioglu-Taş, E.; Otleş, S. Degradation kinetics of bioactive compounds and antioxidant capacity of Brussels sprouts during microwave processing. Int. J. Food Prop., 2017, 20, S2798-S809.
[http://dx.doi.org/10.1080/10942912.2017.1375944]
[51]
Vuong, Q.V.; Goldsmith, C.D.; Dang, T.T.; Nguyen, V.T.; Bhuyan, D.J.; Sadeqzadeh, E.; Scarlett, C.J.; Bowyer, M.C. Optimisation of ultrasound-assisted extraction conditions for phenolic content and antioxidant capacity from euphorbia tirucalli using response surface methodology. Antioxidants, 2014, 3(3), 604-617.
[http://dx.doi.org/10.3390/antiox3030604] [PMID: 26785074]
[52]
Ghasemzadeh, A.; Jaafar, H.Z.E.; Karimi, E.; Rahmat, A. Optimization of ultrasound-assisted extraction of flavonoid compounds and their pharmaceutical activity from curry leaf (Murraya koenigii L.) using response surface methodology. BMC Complement. Altern. Med., 2014, 14, 318.
[http://dx.doi.org/10.1186/1472-6882-14-318] [PMID: 25169626]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy