Generic placeholder image

Micro and Nanosystems

Editor-in-Chief

ISSN (Print): 1876-4029
ISSN (Online): 1876-4037

Research Article

Sodium Ligninsulfonate-assisted Synthesis of Lithium Bismuthate/bismuth Oxide Microspheres and Solar Light Photocatalytic Performance

Author(s): C.H. Yu, Y.J. Mao, Z.Y. Xue, J.L. Kong, H.Y. Li, L.Z. Pei*, C.G. Fan and S.D Tang*

Volume 14, Issue 1, 2022

Published on: 04 March, 2021

Page: [41 - 49] Pages: 9

DOI: 10.2174/1876402913666210304103951

Price: $65

Abstract

Background: Great attention has been paid to the environmental pollution by organic dyes, which are difficult to be degraded in the natural environment and have been an unavoidable and urgent global problem. It is essential to develop green wastewater treatment technology with high removal efficiency and low-cost for protecting the surrounding and human health.

Objective: The aim of the research is to synthesize lithium bismuthate/bismuth oxide microspheres with good photocatalytic performance for the removal of gentian violet (GV).

Methods: Lithium bismuthate/bismuth oxide microspheres were successfully prepared by a sodium ligninsulfonate-assisted hydrothermal synthesis route. The lithium bismuthate/bismuth oxide microspheres were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform infrared spectroscopy (FTIR), and solid UV-vis diffuse reflectance spectrum.

Results: XRD pattern and SEM observation show that the lithium bismuthate/bismuth oxide microspheres are composed of cubic LiBi12O18.50 and monoclinic Bi2O3 with a diameter of 250 nm-1 μm. Irregular microscale and nanoscale particles are formed under low hydrothermal temperature, low sodium ligninsulfonate concentration, and short duration time. By increasing the sodium ligninsulfonate concentration, hydrothermal temperature, and duration time, irregular particles are transferred into microspheres. Lithium bismuthate/bismuth oxide microspheres possess a band gap energy of 1.85 eV, suggesting good visible light absorption ability. The photocatalytic removal ability for GV is enhanced by prolonging light irradiation time and microspheres dosage. GV solution with the concentration of 10 mg•L-1 is able to be totally degraded by 10 mg lithium bismuthate/bismuth oxide microspheres in 10 mL GV solution under solar light irradiation for 6 h.

Conclusion: The lithium bismuthate/bismuth oxide microspheres show good photocatalytic removal ability toward GV in wastewater under solar light irradiation.

Keywords: Lithium bismuthate/bismuth oxide microspheres, sodium ligninsulfonate, gentian violet, solar light, photocatalysis.

Graphical Abstract
[1]
Bera, K.K.; Majumdar, R.; Chakraborty, M.; Bhattacharya, S.K. Phase control synthesis of α, β and α/β Bi2O3 hetero-junction with enhanced and synergistic photocatalytic activity on degradation of toxic dye, Rhodamine-B under natural sunlight. J. Hazard. Mater., 2018, 352, 182-191.
[http://dx.doi.org/10.1016/j.jhazmat.2018.03.029] [PMID: 29609150]
[2]
Liu, H.; Chen, M.; Zhang, H.; Wang, B.; Peng, J.; Liu, G. One-step synthesis of hierarchical flower-like SnO2/BiOCOOH microspheres with enhanced light response for the removal of pollutants. Langmuir, 2020, 36(30), 9005-9013.
[http://dx.doi.org/10.1021/acs.langmuir.0c00025] [PMID: 32614590]
[3]
Wang, H.; Liao, B.; Lu, T.; Ai, Y.; Liu, G. Enhanced visible-light photocatalytic degradation of tetracycline by a novel hollow BiOCl@CeO2 heterostructured microspheres: Structural characterization and reaction mechanism. J. Hazard. Mater., 2020, 385121552
[http://dx.doi.org/10.1016/j.jhazmat.2019.121552] [PMID: 31733996]
[4]
Huang, Y.J.; Zheng, Y.Q.; Zhu, H.L.; Wang, J.J. Hydrothermal synthesis of bismuth (III) coordination polymer and its transformation to nano α–Bi2O3 for photocatalytic degradation. J. Solid State Chem., 2016, 239, 274-281.
[http://dx.doi.org/10.1016/j.jssc.2016.05.006]
[5]
Ohno, T.; Akiyoshi, M.; Umebayashi, T.; Asai, K.; Mitsui, T.; Matsumura, M. Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl. Catal. A Gen., 2004, 265, 115-121.
[http://dx.doi.org/10.1016/j.apcata.2004.01.007]
[6]
Liu, G.; Wang, L.Z.; Yang, H.G.; Cheng, H.M.; Lu, G.Q. Titania-based photocatalysts-crystal growth, doping and heterostructuring. J. Mater. Chem., 2010, 20, 831-843.
[http://dx.doi.org/10.1039/B909930A]
[7]
He, D.; Wu, X.; Chen, Y.; Situ, Y.; Zhong, L.; Huang, H. In-situ growth of lepidocrocite on Bi2O3 rod: A perfect cycle coupling photocatalysis and heterogeneous fenton-like process by potential-level matching with advanced oxidation. Chemosphere, 2018, 210, 334-340.
[http://dx.doi.org/10.1016/j.chemosphere.2018.06.142] [PMID: 30007187]
[8]
Reddy, I.N.; Reddy, C.V.; Sreedhar, A.; Cho, M.Y.; Kim, D.; Shim, J. Systematic studies of Bi2O3 hierarchical nanostructural and plasmonic effect on photoelectrochemical activity under visible light irradiation. Ceram. Int., 2019, 45, 16784-16791.
[http://dx.doi.org/10.1016/j.ceramint.2019.05.214]
[9]
Li, R.H.; Chen, W.X.; Kobayashi, H.; Ma, C.X. Platinum-nanoparticle-loaded bismuth oxide: an efficient plasmonic photocatalyst active under visible light. Green Chem., 2010, 12, 212-215.
[http://dx.doi.org/10.1039/b917233e]
[10]
Pang, Y.J.; Li, Y.W.; Xu, G.Q.; Hu, Y.T.; Kou, Z.K.; Feng, Q.; Lv, J.; Zhang, Y.; Wang, J.; Wu, Y.C. Z-scheme carbon-brideged Bi2O3/TiO2 nanotube arrays to boost photoelectrochemical detection performance. Appl. Catal. B, 2019, 248, 2550-263.
[http://dx.doi.org/10.1016/j.apcatb.2019.01.077]
[11]
Chen, R.; Shen, Z.R.; Wang, H.; Zhou, H.J.; Liu, Y.P.; Ding, D.T.; Chen, T.H. Fabrication of mesh-like bismuth oxide single crystalline nanoflakes and their visible light photocatalytic activity. J. Alloys Compd., 2011, 509, 2588-2596.
[http://dx.doi.org/10.1016/j.jallcom.2010.11.102]
[12]
Ma, Z.Y.; Hu, L.L.; Li, X.B.; Deng, L.J.; Fan, G.; He, Y.Q. A novel nano-sized MoS2 decorated Bi2O3 heterojunction with enhanced photocatalytic performance for methylene blue and tetracycline degradation. Ceram. Int., 2019, 45, 15824-15833.
[http://dx.doi.org/10.1016/j.ceramint.2019.05.085]
[13]
Liu, X.M.; Deng, H.G.; Yao, W.L.; Jiang, Q.Y.; Shen, J. Preparation and photocatalytic activity of Y-doped Bi2O3. J. Alloys Compd., 2015, 651, 135-142.
[http://dx.doi.org/10.1016/j.jallcom.2015.08.068]
[14]
Chakraborty, A.K.; Ganguli, S.; Bera, S.; Lee, W.I. Preparation of CdS/BiOCl/Bi2O3 double composite system for visible light active photocatalytic applications. J. Photoch. Photobio. A, 2018, 364, 159-168.
[http://dx.doi.org/10.1016/j.jphotochem.2018.05.044]
[15]
Shandilya, P.; Sudhaik, A.; Raizada, P.; Hosseini-Bandegharaei, A.; Singh, P.; Rahmani-Sani, A.; Thakur, V.; Saini, A.K. Synthesis of Eu3+-doped ZnO/Bi2O3 heterojunction photocatalyst on graphene oxide sheets for visible light-assisted degradation of 2,4-dimethyl phenol and bacteria killing. Solid State Sci., 2020, 102, 106164.
[http://dx.doi.org/10.1016/j.solidstatesciences.2020.106164]
[16]
Guler, P.; Bilici, Z.; Ozay, Y.; Yilmaz, S.; Yatmaz, H.G.; Dizge, N. Synthesis and characterization of bismuth oxide ternary compounds for photocatalytic decolorization of BR 18. Mater. Lett., 2020, 275, 128086.
[http://dx.doi.org/10.1016/j.matlet.2020.128086]
[17]
Zhou, G.T.; Huang, Y.L.; Wei, D.L.; Bi, S.L.; Seo, H.J. Hydrothermal growth, electronic structure, optical and photocatalytic properties of LiBiO2 nanosheets. J. Lumin., 2019, 214, 116523.
[http://dx.doi.org/10.1016/j.jlumin.2019.116523]
[18]
Kumada, N.; Takahashi, N.; Kinomura, N. Preparation and crystal structure of a new lithium bismuth oxide: LiBiO3. J. Solid State Chem., 1996, 126, 121-126.
[http://dx.doi.org/10.1006/jssc.1996.0319]
[19]
Wang, Y.; Jung, D.W. Synthesis of novel BiOCl/LiBiO3 p-n heterojunction photocatalysts and their enhanced photocatalytic performance. Solid State Sci., 2019, 91, 42-48.
[http://dx.doi.org/10.1016/j.solidstatesciences.2019.03.013]
[20]
Chen, H.J.; Yu, C.H.; Xue, Z.Y.; Wang, P.X.; Wang, Z.; Cong, Q.M. Pei, L.Z.; Fan, C.G. Synthesis of Li-doped bismuth oxide nanoplates, Co nanoparticles modification and good photocatalytic activity toward organic pollutants. Toxicol. Environ. Chem., 2020, 102, 356-385.
[21]
Hariharan, S.; Udayabhaskar, R.; Ravindran, T.R.; Karthikeyan, B. Surfactant assisted control on optical, fluorescence and phonon lifetime in α-Bi2O3 microrods. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 163, 13-19.
[http://dx.doi.org/10.1016/j.saa.2016.02.045] [PMID: 27031446]
[22]
Zhang, Y.J.; Zeng, W.; Li, Y.Q. Hydrothermal synthesis and controlled growth of hierarchical 3D flower-like MoS2 nanospheres assisted with CTAB and their NO2 gas sensing properties. Appl. Surf. Sci., 2018, 455, 276-282.
[http://dx.doi.org/10.1016/j.apsusc.2018.05.224]
[23]
Pei, L.Z.; Lin, N.; Wei, T.; Yu, H.Y. Synthesis of manganese vanadate nanobelts and their visible light photocatalytic activity for methylene blue. J. Exp. Nanosci., 2016, 11, 197-214.
[http://dx.doi.org/10.1080/17458080.2015.1047418]
[24]
Lu, H.B.; Wang, S.M.; Zhao, L.; Dong, B.H.; Xu, Z.X.; Li, J.C. Surfactant-assisted hydrothermal synthesis of Bi2O3 nano/microstructures with tunable size. RSC Advances, 2012, 2, 3374-3378.
[http://dx.doi.org/10.1039/c2ra01203k]
[25]
Chen, Q.; Ma, S.Y.; Jiao, H.Y.; Wang, B.Q.; Zhang, G.H.; Gengzang, D.J.; Liu, L.W.; Yang, H.M. Sodium alginate assisted hydrothermal method to prepare praseodymium and cerium co-doped ZnSn(OH)6 hollow microspheres and synergistically enhanced ethanol sensing performance. Sens. Actuators B Chem., 2017, 252, 295-305.
[http://dx.doi.org/10.1016/j.snb.2017.06.015]
[26]
Pei, L.Z.; Wang, S.; Liu, H.D.; Lin, N.; Yu, H.Y. Vanadium doped barium germanate microrods and photocatalytic properties under solar light. Solid State Commun., 2015, 202, 35-38.
[http://dx.doi.org/10.1016/j.ssc.2014.10.036]
[27]
Jin, K.C.; Lee, D.K.; Yong, W.K.; Min, B.R.; Kim, J.H. Composite polymer electrolyte membranes comprising triblock copolymer and heteropolyacid for fuel cell applications. J. Polym. Sci, 2008, 46, 691-701.
[http://dx.doi.org/10.1002/polb.21390]
[28]
Akshatha, S.; Sreenivasa, S.; Parashuram, L.; Kumar, V.U.; Sharma, S.C.; Nagabhushana, H. Synergistic effect of hybrid Ce3+/Ce4+ doped Bi2O3 nano-sphere photocatalyst for enhanced photocatalytic degradation of alizarin red S dye and its NUV excited photoluminescence studies. J. Environ. Chem. Eng., 2019, 7, 103053.
[http://dx.doi.org/10.1016/j.jece.2019.103053]
[29]
Deng, H.; Li, X.; Peng, Q.; Wang, X.; Chen, J.; Li, Y. Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed. Engl., 2005, 44(18), 2782-2785.
[http://dx.doi.org/10.1002/anie.200462551] [PMID: 15798982]
[30]
Liu, Y.; Mi, C.H.; Su, L.H.; Zhang, X.G. Hydrothermal synthesis of Co3O4 microspheres as anode material for lithium-ion batteries. Electrochim. Acta, 2008, 53, 2507-2513.
[http://dx.doi.org/10.1016/j.electacta.2007.10.020]
[31]
Yang, H.; Liang, T.; Qi, X.; Jiang, H.; Deng, Y.; Wang, P.; Gao, H. Solvothermal synthesis of hydroxyapatite nanorods with assistance of green polymer. Mater. Sci. Eng. C, 2017, 79, 9-14.
[http://dx.doi.org/10.1016/j.msec.2017.05.007] [PMID: 28629095]
[32]
Chala, S.; Wetchakun, K.; Phanichphant, S.; Inceesungvorn, B.; Wetchakun, N. Enhanced visible-light-response photocatalytic degradation of methylene blue on Fe-loaded BiVO4 photocatalyst. J. Alloys Compd., 2014, 597, 129-135.
[http://dx.doi.org/10.1016/j.jallcom.2014.01.130]
[33]
Pei, L.Z.; Lin, N.; Wei, T.; Liu, H.D.; Yu, H.Y. Zinc vanadate nanorods and their visible light photocatalytic activity. J. Alloys Compd., 2015, 631, 90-98.
[http://dx.doi.org/10.1016/j.jallcom.2015.01.115]
[34]
Yu, J.G.; Xiong, J.F.; Cheng, B.; Liu, S.W. Fabrication and characterization of Ag-TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity. Appl. Catal. B, 2005, 60, 211-221.
[http://dx.doi.org/10.1016/j.apcatb.2005.03.009]
[35]
Mohamed, S.H. EI-Hagary, M.; Althoyai, S. Growth of β-Ga2O3 nanowires and their photocatalytic and optical properties using Pt as a catalyst. J. Alloys Compd., 2012, 537, 291-296.
[http://dx.doi.org/10.1016/j.jallcom.2012.05.048]
[36]
Wu, J.J.; Huang, F.Q.; Lu, X.J. Improved visible-light photocatalysis of nano-Bi2Sn2O7 with dispersed s-bands. J. Mater. Chem., 2011, 21, 3872-3876.
[http://dx.doi.org/10.1039/c0jm03252b]
[37]
Zheng, J.H.; Zhang, L. Incorporation of CoO nanoparticles in 3D marigold flower-like hierarchical architecture MnCo2O4 for highly boosting solar light photo-oxidation and reduction ability. Appl. Catal. B, 2018, 237, 1-8.
[http://dx.doi.org/10.1016/j.apcatb.2018.05.060]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy