Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Research Article

Fabrication of Electrochemical Sensor for Epinine Determination Amplified with MgO/CNTs Nanocomposite and Ionic Liquid

Author(s): Shirin Shahraki, Mahboubeh Masrournia* and Hassan Karimi-Maleh

Volume 18, Issue 1, 2022

Published on: 03 March, 2021

Page: [125 - 132] Pages: 8

DOI: 10.2174/1573411017666210303091301

Price: $65

Abstract

Background: Catecholamines are a large group of pharmacological and biological compounds that are widely used in biological systems. These compounds are prepared both naturally and synthetically with many key roles in the human body and its activities. Therefore, many researchers focused on the identification and determination of catecholamines in biological samples.

Methods: MgO/SWCNTs were synthesized through the chemical precipitation method. In addition, cyclic voltammetry, differential pulse voltammetry, and chronoamperometric methods were used for the electro-oxidation reaction study of epinine at the surface of the modified electrode.

Results: Carbon paste electrode (CPE) modified with MgO/SWCNTs nanocomposite and 1-butyl- 3-methylimidazolium methanesulfonate (BMMS) was used as an electrochemical sensor for the determination of epinine. The results showed a linear dynamic range of 5.0 nM-250 μM with a detection limit of 0.1 nM for epinine determination using MgO/SWCNTs/BMMS/CPE as a sensor.

Conclusion: In the present study, a highly sensitive electrochemical sensor was designed and fabricated as an analytical tool for the determination of epinine. MgO/SWCNTs/BMMS/CPE was successfully used for the determination of epinine in water and dextrose saline with an acceptable recovery range of 98.7%-102.72%.

Keywords: Epinine, MgO/SWCNTs, electrochemical sensor, ionic liquid, drug analysis, catecholamines.

Graphical Abstract
[1]
Axelrod, J.; Weinshilboum, R. Catecholamines. N. Engl. J. Med., 1972, 287(5), 237-242.
[http://dx.doi.org/10.1056/NEJM197208032870508] [PMID: 4402575]
[2]
Langer, S.Z. Presynaptic regulation of the release of catecholamines. Pharmacol. Rev., 1980, 32(4), 337-362.
[PMID: 6267618]
[3]
Coyle, J.T.; Henry, D. Catecholamines in fetal and newborn rat brain. J. Neurochem., 1973, 21(1), 61-67.
[http://dx.doi.org/10.1111/j.1471-4159.1973.tb04225.x] [PMID: 4146461]
[4]
Frankenhaeuser, M. Behavior and circulating catecholamines. Brain Res., 1971, 31(2), 241-262.
[http://dx.doi.org/10.1016/0006-8993(71)90180-6] [PMID: 5569149]
[5]
Wurtman, R.J. Catecholamines. N. Engl. J. Med., 1965, 273(13), 693-700.
[http://dx.doi.org/10.1056/NEJM196509232731306] [PMID: 5318213]
[6]
Kågedal, B.; Goldstein, D.S. Catecholamines and their metabolites. J. Chromatogr. A, 1988, 429, 177-233.
[http://dx.doi.org/10.1016/S0378-4347(00)83871-2] [PMID: 3062018]
[7]
Wilmore, D.W.; Long, J.M.; Mason, A.D., Jr; Skreen, R.W.; Pruitt, B.A. Jr Catecholamines: Mediator of the hypermetabolic response to thermal injury. Ann. Surg., 1974, 180(4), 653-669.
[http://dx.doi.org/10.1097/00000658-197410000-00031] [PMID: 4412350]
[8]
Robbins, T.W.; Everitt, B.J. Functional studies of the central catecholamines. Int. Rev. Neurobiol., 1982, 23, 303-365.
[http://dx.doi.org/10.1016/S0074-7742(08)60628-5] [PMID: 6749738]
[9]
Haft, J.I. Cardiovascular injury induced by sympathetic catecholamines. Prog. Cardiovasc. Dis., 1974, 17(1), 73-86.
[http://dx.doi.org/10.1016/0033-0620(74)90039-5] [PMID: 4599470]
[10]
Tse, D.C.S.; McCreery, R.L.; Adams, R.N. Potential oxidative pathways of brain catecholamines. J. Med. Chem., 1976, 19(1), 37-40.
[http://dx.doi.org/10.1021/jm00223a008] [PMID: 1246050]
[11]
Laduron, P. N-methylation of dopamine to epinine in brain tissue using N-methyltetrahydrofolic acid as the methyl donor. Nat. New Biol., 1972, 238(85), 212-213.
[http://dx.doi.org/10.1038/newbio238212a0] [PMID: 4506203]
[12]
Baghayeri, M.; Ansari, R.; Nodehi, M.; Razavipanah, I.; Veisi, H. Voltammetric aptasensor for bisphenol A based on the use of a MWCNT/Fe3O4@gold nanocomposite. Mikrochim. Acta, 2018, 185(7), 320.
[http://dx.doi.org/10.1007/s00604-018-2838-y] [PMID: 29881880]
[13]
Foppen, F.H.; Liuzzi, A.; Kopin, I.J. Gas chromatographic-mass spectrometric identification of epinine in rat superior cervical ganglia and formation in vivo. Experientia, 1977, 33(5), 596-598.
[http://dx.doi.org/10.1007/BF01946518] [PMID: 862780]
[14]
He, H.; Stein, C.M.; Christman, B.; Wood, A.J.J. Determination of catecholamines in sheep plasma by high-performance liquid chromatography with electrochemical detection: comparison of deoxyepinephrine and 3,4-dihydroxybenzylamine as internal standard. J. Chromatogr. B Biomed. Sci. Appl., 1997, 701(1), 115-119.
[http://dx.doi.org/10.1016/S0378-4347(97)00343-5] [PMID: 9389345]
[15]
Hua, C.; Lee, H.K.; Hsieh, A.K. Determination of epinine in human urine by high‐performance liquid chromatography coupled with electrochemical detection using carbon fiber microelectrodes. Electroanalysis, 1994, 6, 1147-1149.
[http://dx.doi.org/10.1002/elan.1140061139]
[16]
Beitollahi, H.; Safaei, M.; Tajik, S. Different electrochemical sensors for determination of dopamine as neurotransmitter in mixed and clinical samples: A review. Anal. Bioanal. Chem. Res., 2019, 6, 81-96.
[17]
Beitollahi, H.; Mahmoudi Moghaddam, H.; Tajik, S. Voltammetric determination of Bisphenol A in water and juice using a lanthanum (III)-Doped cobalt (II, III) nanocube modified carbon screen-printed electrode. Anal. Lett., 2019, 52, 1432-1444.
[http://dx.doi.org/10.1080/00032719.2018.1545132]
[18]
Mahmoudi-Moghaddam, H.; Tajik, S.; Beitollahi, H. A new electrochemical DNA biosensor based on modified carbon paste electrode using graphene quantum dots and ionic liquid for determination of topotecan. Microchem. J., 2019, 150104085
[http://dx.doi.org/10.1016/j.microc.2019.104085]
[19]
Tajik, S.; Mahmoudi-Moghaddam, H.; Beitollahi, H. Screen-Printed electrode modified with La3+-Doped Co3O4 nanocubes for electrochemical determination of hydroxylamine. J. Electrochem. Soc., 2019, 166, B402.
[http://dx.doi.org/10.1149/2.0491906jes]
[20]
Nodehi, M.; Baghayeri, M.; Behazin, R.; Veisi, H. Electrochemical aptasensor of bisphenol A constructed based on 3D mesoporous structural SBA-15-Met with a thin layer of gold nanoparticles. Microchem. J., 2021, 162105825
[http://dx.doi.org/10.1016/j.microc.2020.105825]
[21]
Ghanei-Motlagh, M.; Taher, M.A.; Fayazi, M.; Baghayeri, M.; Hosseinifar, A. Non-enzymatic amperometric sensing of hydrogen peroxide based on vanadium pentoxide nanostructures. J. Electrochem. Soc., 2019, 166, B367-B372.
[http://dx.doi.org/10.1149/2.0521906jes]
[22]
Karimi-Maleh, H.; Karimi, F.; Alizadeh, M.; Sanati, A.L. Electrochemical sensors, a bright future in the fabrication of portable kits in analytical systems. Chem. Rec., 2020, 20(7), 682-692.
[http://dx.doi.org/10.1002/tcr.201900092] [PMID: 31845511]
[23]
Baghayeri, M.; Alinezhad, H.; Tarahomi, M.; Fayazi, M.; Ghanei-Motlagh, M.; Maleki, B. A non-enzymatic hydrogen peroxide sensor based on dendrimer functionalized magnetic graphene oxide decorated with palladium nanoparticles. Appl. Surf. Sci., 2019, 478, 87-93.
[http://dx.doi.org/10.1016/j.apsusc.2019.01.201]
[24]
Karimi-Maleh, H.; Karimi, F.; Orooji, Y.; Mansouri, G.; Razmjou, A.; Aygun, A.; Sen, F. A new nickel-based co-crystal complex electrocatalyst amplified by NiO dope Pt nanostructure hybrid; a highly sensitive approach for determination of cysteamine in the presence of serotonin. Sci. Rep., 2020, 10(1), 11699.
[http://dx.doi.org/10.1038/s41598-020-68663-2] [PMID: 32678156]
[25]
Veisi, H.; Baghayeri, M.; Kazemi, S. Biosynthesis of silver nanoparticles using Oak leaf extract and their application for electrochemical sensing of hydrogen peroxide. Appl. Organomet. Chem., 2018, 32e4537
[http://dx.doi.org/10.1002/aoc.4537]
[26]
Eren, T.; Atar, N.; Yola, M.L.; Karimi-Maleh, H. A sensitive molecularly imprinted polymer based quartz crystal microbalance nanosensor for selective determination of lovastatin in red yeast rice. Food Chem., 2015, 185, 430-436.
[http://dx.doi.org/10.1016/j.foodchem.2015.03.153] [PMID: 25952889]
[27]
Baghayeri, M. Pt nanoparticles/reduced graphene oxide nanosheets as a sensing platform: Application to determination of droxidopa in presence of phenobarbital. Sens. Actuators B Chem., 2017, 240, 255-263.
[http://dx.doi.org/10.1016/j.snb.2016.08.161]
[28]
Baghayeri, M.; Ansari, R.; Nodehi, M.; Veisi, H. Designing and fabrication of a novel gold nanocomposite structure: Application in electrochemical sensing of bisphenol A. Int. J. Environ. Anal. Chem., 2018, 98(9), 874-888.
[http://dx.doi.org/10.1080/03067319.2018.1512595]
[29]
Tajik, S.; Beitollahi, H.; Garkani Nejad, F.; Kirlikovali, K.O.; Van Le, Q.; Jang, H.W.; Varma, R.S.; Farha, O.K.; Shokouhimeh, M. Recent electrochemical applications of metal-organic framework-based materials. Ind. Eng. Chem. Res., 2020, 59, 4219-4228.
[30]
Karimi-Maleh, H.; Karimi, F.; Malekmohammadi, S.; Zakariae, N.; Esmaeili, R.; Rostamnia, S.; Yola, M.L.; Atar, N.; Movagharnezhad, S.; Rajendran, S.; Razmjou, A.; Orooji, Y.; Agarwal, S.; Gupta, V.K. An amplified voltammetric sensor based on platinum nanoparticle/polyoxometalate/two-dimensional hexagonal boron nitride nanosheets composite and ionic liquid for determination of N-hydroxysuccinimide in water samples. J. Mol. Liq., 2020, 310113185
[31]
Lin, T.W.; Kekuda, D.; Chu, C.W. Label-free detection of DNA using novel organic-based electrolyte-insulator-semiconductor. Biosens. Bioelectron., 2010, 25(12), 2706-2710.
[http://dx.doi.org/10.1016/j.bios.2010.04.041] [PMID: 20483584]
[32]
Fu, D.; Xu, Y.; Li, L.J.; Chen, Y.; Mhaisalkar, S.G.; Boey, F.Y.C.; Lin, T.W.; Moochhala, S. Electrical detection of nitric oxide using single-walled carbon nanotube network devices. Carbon, 2007, 45, 1911-1914.
[http://dx.doi.org/10.1016/j.carbon.2007.05.008]
[33]
Wu, M.H.; Lin, T.W.; Huang, M.D.; Wang, H.Y.; Pan, T.M. Label-free detection of serum uric acid using novel high-k Sm2TiO5 membrane-based electrolyte–insulator–semiconductor. Sens. Actuators B Chem., 2010, 146, 342-348.
[http://dx.doi.org/10.1016/j.snb.2010.02.035]
[34]
Orooji, Y.; Liang, F.; Razmjou, A.; Liu, G.; Jin, W. Preparation of anti-adhesion and bacterial destructive polymeric ultrafiltration membranes using modified mesoporous carbon. Separ. Purif. Tech., 2018, 205, 273-283.
[http://dx.doi.org/10.1016/j.seppur.2018.05.006]
[35]
Orooji, Y.; Mortazavi-Derazkola, S.; Ghoreishi, S.M.; Amiri, M.; Salavati-Niasari, M. Mesopourous Fe3O4@SiO2-hydroxyapatite nanocomposite: Green sonochemical synthesis using strawberry fruit extract as a capping agent, characterization and their application in sulfasalazine delivery and cytotoxicity. J. Hazard. Mater., 2020, 400123140
[http://dx.doi.org/10.1016/j.jhazmat.2020.123140] [PMID: 32563904]
[36]
Naderi Asrami, P.; Aberoomand Azar, P.; Saber Tehrani, M.; Mozaffari, S.A. Glucose Oxidase/Nano-ZnO/Thin film deposit FTO as an Innovative clinical transducer: A sensitive glucose biosensor. Front Chem., 2020, 8, 503.
[http://dx.doi.org/10.3389/fchem.2020.00503] [PMID: 32760694]
[37]
Karimi, F.; Zakariae, N.; Esmaeili, R.; Alizadeh, M.; Tamadon, A.M. Carbon nanotubes for amplification of electrochemical signal in drug and food analysis; A mini review. Curr. Biochem. Eng., 2020, 6, 114-119.
[http://dx.doi.org/10.2174/2212711906666200224110404]
[38]
Karimi-Maleh, H.; Ranjbari, S.; Tanhaei, B.; Ayati, A.; Orooji, Y.; Alizadeh, M.; Karimi, F.; Salmanpour, S.; Rouhi, J.; Sillanpää, M.; Sen, F. Novel 1-butyl-3-methylimidazolium bromide impregnated chitosan hydrogel beads nanostructure as an efficient nanobio-adsorbent for cationic dye removal: Kinetic study. Environ. Res., 2021, 195110809
[http://dx.doi.org/10.1016/j.envres.2021.110809] [PMID: 33515581]
[39]
Karimi-Maleh, H.; Orooji, Y.; Ayati, A.; Qanbari, S.; Tanhaei, B.; Karimi, F.; Alizadeh, M.; Rouhi, J.; Fu, L.; Sillanpää, M. Recent advances in removal techniques of Cr(VI) toxic ion from aqueous solution: A comprehensive review. J. Mol. Liq., 2020.115062
[http://dx.doi.org/10.1016/j.molliq.2020.115062]
[40]
Suganya, S.; Kumar, P.S.; Saravanan, A. Construction of active bio-nanocomposite by inseminated metal nanoparticles onto activated carbon: Probing to antimicrobial activity. IET Nanobiotechnol., 2017, 11(6), 746-753.
[http://dx.doi.org/10.1049/iet-nbt.2016.0234]
[41]
Karimi-Maleh, H.; Kumar, B.G.; Rajendran, S.; Qin, J.; Vadivel, S.S.; Durgalakshmi, S.; Gracia, F.; Soto-Moscoso, M.; Orooji, Y.; Karimi, F. Tuning of metal oxides photocatalytic performance using Ag nanoparticles integration. J. Mol. Liq., 2020, 341113588
[http://dx.doi.org/10.1016/j.molliq.2020.113588]
[42]
Gunasundari, E.; Kumar, P.S.; Christopher, F.C.; Arumugam, T.; Saravanan, A. Green synthesis of metal nanoparticles loaded ultrasonic-assisted Spirulina platensis using algal extract and their antimicrobial activity. IET Nanobiotechnol., 2017, 11(6), 754-758.
[http://dx.doi.org/10.1049/iet-nbt.2016.0223]
[43]
Kumar, P.S.; Nair, A.S.; Ramaswamy, A.; Saravanan, A. Nano-zero valent iron impregnated cashew nut shell: a solution to heavy metal contaminated water/wastewater. IET Nanobiotechnol., 2018, 12(5), 591-599.
[44]
Saravanan, A.; Kumar, P.S.; Karishma, S.; Vo, D.N.; Jeevanantham, S.; Yaashikaa, P.R.; George, C.S. A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere, 2021, 264(Pt 2)128580
[http://dx.doi.org/10.1016/j.chemosphere.2020.128580] [PMID: 33059285]
[45]
Saravanan, A.; Kumar, P.S.; Karthiga Devi, G.; Arumugam, T. Synthesis and characterization of metallic nanoparticles impregnated onto activated carbon using leaf extract of Mukia maderasapatna: Evaluation of antimicrobial activities. Microb. Pathog., 2016, 97, 198-203.
[http://dx.doi.org/10.1016/j.micpath.2016.06.019] [PMID: 27317855]
[46]
Gayathri, R.; Kumar, P.S. Recovery and reuse of hexavalent chromium from aqueous solutions by a hybrid technique of electrodialysis and ion exchange. Braz. J. Chem. Eng., 2010, 27(1), 71-78.
[http://dx.doi.org/10.1590/S0104-66322010000100006]
[47]
Nithya, K.; Sathish, A.; Kumar, P.S.; Ramachandran, T. Fast kinetics and high adsorption capacity of green extract capped superparamagnetic iron oxide nanoparticles for the adsorption of Ni (II) ions. J. Ind. Eng. Chem., 2018, 59, 230-241.
[http://dx.doi.org/10.1016/j.jiec.2017.10.028]
[48]
Gerard, N.; Krishnan, R.S.; Kumar, P.S.; Cabana, H.; Vaidyanathan, V.K. Adsorptive potential of dispersible chitosan coated iron-oxide nanocomposites toward the elimination of arsenic from aqueous solution. Process Saf. Environ. Prot., 2016, 104, 185-195.
[http://dx.doi.org/10.1016/j.psep.2016.09.006]
[49]
Senthil Kumar, P.; Varjani, S.J.; Suganya, S. Treatment of dye wastewater using an ultrasonic aided nanoparticle stacked activated carbon: Kinetic and isotherm modelling. Bioresour. Technol., 2018, 250, 716-722.
[http://dx.doi.org/10.1016/j.biortech.2017.11.097] [PMID: 29223092]
[50]
Kumar, P.S.; Vincent, C.; Kirthika, K.; Kumar, K.S. Kinetics and equilibrium studies of Pb2+ in removal from aqueous solutions by use of nano-silversol-coated activated carbon. Braz. J. Chem. Eng., 2010, 27(2), 339-346.
[http://dx.doi.org/10.1590/S0104-66322010000200012]
[51]
Neeraj, G.; Krishnan, S.; Kumar, P.S.; Shriaishvarya, K.R.; Kumar, V.V. Performance study on sequestration of copper ions from contaminated water using newly synthesized high effective chitosan coated magnetic nanoparticles. J. Mol. Liq., 2016, 214, 335-346.
[http://dx.doi.org/10.1016/j.molliq.2015.11.051]
[52]
Yu, Z.; Luan, Y.; Li, H.; Wang, W.; Wang, X.; Zhang, Q. A disposable electrochemical aptasensor using single-stranded DNA–methylene blue complex as signal-amplification platform for sensitive sensing of bisphenol A. Sens. Actuators B Chem., 2019, 284, 73-80.
[http://dx.doi.org/10.1016/j.snb.2018.12.126]
[53]
Devaraj, M.; Saravanan, R.; Deivasigamani, R.; Gupta, V.K.; Gracia, F.; Jayadevan, S. Fabrication of novel shape Cu and Cu/Cu2O nanoparticles modified electrode for the determination of dopamine and paracetamol. J. Mol. Liq., 2016, 221, 930-941.
[http://dx.doi.org/10.1016/j.molliq.2016.06.028]
[54]
Karimi-Maleh, H.; Cellat, K.; Arıkan, K.; Savk, A.; Karimi, F.; Şen, F. Palladium–Nickel nanoparticles decorated on Functionalized-MWCNT for high precision non-enzymatic glucose sensing. Mater. Chem. Phys., 2020, 250123042
[http://dx.doi.org/10.1016/j.matchemphys.2020.123042]
[55]
Karimi-Maleh, H.; Alizadeh, M.; Orooji, Y.; Karimi, F.; Baghayeri, M.; Rouhi, J.; Tajik, S.; Beitollahi, H.; Agarwal, S.; Gupta, V.K.; Rajendran, S.; Rostamnia, S.; Fu, L.; Saberi-Movahed, F.; Malekmohammadi, S. Guanine-Based DNA biosensor amplified with Pt/SWCNTs nanocomposite as analytical tool for nanomolar determination of daunorubicin as an anticancer drug: A docking/experimental investigation. Ind. Eng. Chem. Res., 2021, 60(2), 816-823.
[http://dx.doi.org/10.1021/acs.iecr.0c04698]
[56]
Sanati, A.L.; Faridbod, F. Electrochemical determination of methyldopa by graphene quantum dot/1-butyl-3-methylimidazolium hexafluoro phosphate nanocomposite electrode. Int. J. Electrochem. Sci., 2017, 12(9), 7997-8005.
[http://dx.doi.org/10.20964/2017.09.71]
[57]
Alavi-Tabari, S.A.R.; Khalilzadeh, M.A.; Karimi-Maleh, H. Simultaneous determination of doxorubicin and dasatinib as two breast anticancer drugs uses an amplified sensor with ionic liquid and ZnO nanoparticle. J. Electroanal. Chem. , 2018, 811, 84-88.
[http://dx.doi.org/10.1016/j.jelechem.2018.01.034]
[58]
Arabali, V.; Malekmohammadi, S.; Karimi, F. Surface amplification of pencil graphite electrode using CuO nanoparticle/polypyrrole nanocomposite; A powerful electrochemical strategy for determination of tramadol. Microchem. J., 2020, 158105179
[http://dx.doi.org/10.1016/j.microc.2020.105179]
[59]
Baghayeri, M.; Sedrpoushan, A.; Mohammadi, A.; Heidari, M. A non-enzymatic glucose sensor based on NiO nanoparticles/functionalized SBA 15/MWCNT-modified carbon paste electrode. Ionics, 2017, 23, 1553-1562.
[http://dx.doi.org/10.1007/s11581-016-1964-y]
[60]
Veisi, H.; Eshbala, F.H.; Hemmati, S.; Baghayeri, M. Selective hydrogen peroxide oxidation of sulfides to sulfones with carboxylated multi-walled carbon nano tubes (MWCNTs-COOH) as heterogeneous and recyclable nanocatalysts under organic solvent-free conditions. RSC Advances, 2015, 5, 10152-10158.
[http://dx.doi.org/10.1039/C4RA14964E]
[61]
Fouladgar, M. CuO-CNT nanocomposite/ionic liquid modified sensor as new breast anticancer approach for determination of doxorubicin and 5-fluorouracil drugs. J. Electrochem. Soc., 2018, 165(13), B559.
[http://dx.doi.org/10.1149/2.1001811jes]
[62]
Negahban, S.; Fouladgar, M.; Amiri, G. Improve the performance of carbon paste electrodes for determination of dobutamine using MnZnFe2O4 nanoparticles and ionic liquid. J. Taiwan Institute Chem. Eng., 2017, 78, 51-55.
[http://dx.doi.org/10.1016/j.jtice.2017.05.032]
[63]
Fouladgar, M. Nanostructured sensor for simultaneous determination of trace amounts of bisphenol A and vitamin B6 in food samples. Food Anal. Methods, 2017, 10(5), 1507-1514.
[http://dx.doi.org/10.1007/s12161-016-0683-3]
[64]
Kamran, S.; Amiri Shiri, N. A comparative study for adsorption of alizarin red s from aqueous samples by magnetic nanoparticles of Fe3O4, CoFe2O4 and ionic liquid-modified Fe3O4. Chem. Methodol, 2018, 2, 23-38.
[65]
Sun, W.; Yang, M.X.; Jiang, Q.; Jiao, K. Direct electrocatalytic reduction of p-nitrophenol at room temperature ionic liquid modified electrode. Chin. Chem. Lett., 2008, 19, 1156-1158.
[http://dx.doi.org/10.1016/j.cclet.2008.07.011]
[66]
Chandrashekar, B.N.; Swamy, B.E.K.; Ashoka, N.B.; Pandurangachar, M. Simultaneous electrochemical determination of epinephrine and uric acid at 1-butyl-4-methyl-pyridinium tetrafluroborate ionic liquid modified carbon paste electrode: A voltammetric study. J. Mol. Liq., 2012, 165, 168-172.
[http://dx.doi.org/10.1016/j.molliq.2011.11.005]
[67]
Raoof, J.B.; Ojani, R.; Baghayeri, M.; Amiri-Aref, M. Application of a glassy carbon electrode modified with functionalized multi-walled carbon nanotubes as a sensor device for simultaneous determination of acetaminophen and tyramine. Anal. Methods, 2012, 4(6), 1579-1587.
[http://dx.doi.org/10.1039/c2ay05494a]
[68]
Bijad, M.; Karimi-Maleh, H.; Farsi, M.; Shahidi, S.A. An electrochemical-amplified-platform based on the nanostructure voltammetric sensor for the determination of carmoisine in the presence of tartrazine in dried fruit and soft drink samples. J. Food Meas. Charact., 2018, 12, 634-640.
[http://dx.doi.org/10.1007/s11694-017-9676-1]
[69]
Bijad, M.; Karimi-Maleh, H.; Khalilzadeh, M.A. Application of ZnO/CNTs nanocomposite ionic liquid paste electrode as a sensitive voltammetric sensor for determination of ascorbic acid in food samples. Food Anal. Methods, 2013, 6, 1639-1647.
[http://dx.doi.org/10.1007/s12161-013-9585-9]
[70]
Baghizadeh, A.; Karimi-Maleh, H.; Khoshnama, Z.; Hassankhani, A.; Abbasghorbani, M. A voltammetric sensor for simultaneous determination of vitamin C and vitamin B6 in food samples using ZrO2 nanoparticle/ionic liquids carbon paste electrode. Food Anal. Methods, 2015, 8, 549-557.
[http://dx.doi.org/10.1007/s12161-014-9926-3]
[71]
Mehri-Talarposhti, F.; Ghorbani-Hasan Saraei, A.; Golestan, L.; Shahidi, A.S. Electrochemical determination of Vitamin B6 in fruit juices using a new nanostructure voltammetric sensor. Asian J. Nanosci. Mat., 2020, 3, 313-320.
[72]
Vahedi, J.; Karimi-Maleh, H.; Baghayeri, M.; Sanati, A.F.; Khalilzadeh, M.A.; Bahrami, M. A fast and sensitive nanosensor based on MgO nanoparticle room-temperature ionic liquid carbon paste electrode for determination of methyldopa in pharmaceutical and patient human urine samples. Ionics, 2013, 19, 1907-1914.
[http://dx.doi.org/10.1007/s11581-013-0940-z]
[73]
Tahernejad-Javazmi, F.; Shabani-Nooshabadi, M.; Karimi-Maleh, H. Analysis of glutathione in the presence of acetaminophen and tyrosine via an amplified electrode with MgO/SWCNTs as a sensor in the hemolyzed erythrocyte. Talanta, 2018, 176, 208-213.
[74]
Foroughi, M.M.; Beitollahi, H.; Tajik, S.; Akbari, A.; Hosseinzadeh, R. Electrochemical determination of N-acetylcysteine and folic acid in pharmaceutical and biological samples using a modified carbon nanotube paste electrode. Int. J. Electrochem. Sci., 2014, 9, 8407.
[75]
Tajik, S.; Beitollahi, H. A sensitive chlorpromazine voltammetric sensor based on graphene oxide modified glassy carbon electrode. Anal. Bioanal. Chem. Res., 2019, 6, 171-182.
[76]
Tajik, S.; Beitollahi, H.; Biparva, P. Methyldopa electrochemical sensor based on a glassy carbon electrode modified with Cu/TiO2 nanocomposite. J. Serb. Chem. Soc., 2018, 83, 863-874.
[http://dx.doi.org/10.2298/JSC170930024T]
[77]
Ganjali, M.R.; Salimi, H.; Tajik, S.; Beitollahi, H.; Rezapour, M.; Larijani, B. Application of Fe3O4@ SiO2/MWCNT film on glassy carbon electrode for the sensitive electroanalysis of levodopa. Int. J. Electrochem. Sci., 2017, 12, 5243-5253.
[http://dx.doi.org/10.20964/2017.06.88]
[78]
Baghbamidi, S.E.; Beitollahi, H.; Tajik, S.; Hosseinzadeh, R. Voltammetric sensor based on 1-Benzyl-4-ferrocenyl-1H-[1,2,3]-triazole/carbon nanotube modified glassy carbon electrode; Detection of hydrochlorothiazide in the presence of propranolol. Int. J. Electrochem. Sci., 2016, 11, 10874-10883.
[http://dx.doi.org/10.20964/2016.12.92]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy