Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Research Article

Antidyslipidemic Capacity of Cleome arabica (L.) in Streptozotocin-Induced Diabetic Rats

Author(s): Ayoub Amssayef and Mohamed Eddouks*

Volume 20, Issue 1, 2022

Published on: 19 February, 2021

Page: [52 - 59] Pages: 8

DOI: 10.2174/1871525719666210219141618

Price: $65

Abstract

Aims: The aim of the study was to assess the effect of Cleome arabica on lipid metabolism.

Background: Cleome arabica (L.) is a medicinal plant used traditionally by the population of North Africa for managing diabetes mellitus.

Objective: This study was designed to evaluate the antidyslipidemic and antiatherogenic capacities of Cleome arabica (L.) in normal and streptozotocin(STZ)-induced diabetic rats.

Methods: The hypolipidemic, antihyperglycemic and antiatherogenic effects of oral administration of the aqueous extract of Cleome arabica (CAAE) (100 mg/kg) were evaluated in normal and diabetic rats. In addition, the quantification of polyphenols, flavonoids and tannins as well as the antioxidant activity were performed.

Results: The results showed that the extract (CAAE) revealed an antidyslipidemic action by attenuating plasma levels of Total Cholesterol (TC), Triglycerides (TGs), Low-Density Lipoprotein cholesterol (LDL-c), Very low-density lipoprotein cholesterol (VLDL-c) and glucose. Additionally, CAAE exhibited a potent antiatherogenic activity by reducing Atherogenic Coefficient (AC), Castelli’s Risk index-I (cri-I), and Castelli’s Risk Index-II (CRI-II). Furthermore, the findings indicated that CAAE is abundant with polyphenols, flavonoids and tannins, and exhibited an important antioxidant capacity.

Conclusion: The study demonstrates that aqueous Cleome arabica extract was able to ameliorate lipid abnormalities associated with diabetes mellitus. This pharmacological activity might be due to the antioxidant capacities of phytochemical compounds.

Keywords: Antidyslipidemic, antiatherogenic, Cleome arabica, lipid abnormalities, phytochemical compounds, medicinal plant.

Graphical Abstract
[1]
Eddouks, M.; Ajebli, M.; Hebi, M. Ethnopharmacological survey of medicinal plants used in Daraa-Tafilalet region (Province of Errachidia), Morocco. J. Ethnopharmacol., 2017, 198, 516-530.
[http://dx.doi.org/10.1016/j.jep.2016.12.017] [PMID: 28003130]
[2]
Ji, X.; Shi, S.; Liu, B.; Shan, M.; Tang, D.; Zhang, W.; Zhang, Y.; Zhang, L.; Zhang, H.; Lu, C.; Wang, Y. Bioactive compounds from herbal medicines to manage dyslipidemia. Biomed. Pharmacother., 2019, 118, 109338.
[http://dx.doi.org/10.1016/j.biopha.2019.109338] [PMID: 31545238]
[3]
Hamza, N.; Berke, B.; Umar, A.; Cheze, C.; Gin, H.; Moore, N. A review of Algerian medicinal plants used in the treatment of diabetes. J. Ethnopharmacol., 2019, 238, 111841.
[http://dx.doi.org/10.1016/j.jep.2019.111841] [PMID: 30959140]
[4]
Bouriche, H.; Arnhold, J. Effect of Cleome arabica leaf extract treated by naringinase on human neutrophil chemotaxis. Nat. Prod. Commun., 2010, 5(3), 415-418.
[http://dx.doi.org/10.1177/1934578X1000500315] [PMID: 20420319]
[5]
Tigrine, C.; Bulzomi, P.; Leone, S.; Bouriche, H.; Kameli, A.; Marino, M. Cleome arabica leaf extract has anticancer properties in human cancer cells. Pharm. Biol., 2013, 51(12), 1508-1514.
[http://dx.doi.org/10.3109/13880209.2013.796563] [PMID: 23862683]
[6]
Takhi, D.; Ouinten, M.; Yousfi, M. Study of antimicrobial activity of secondary metabolites extracted from spontaneous plants from the area of Laghouat, Algeria. Adv. Environ. Biol., 2011, 469-477.
[7]
Samout, N.; Bouzenna, H.; Ettaya, A.; Elfeki, A.; Hfaiedh, N. Antihypercholesterolemic effect of Cleome arabica L. on high cholesterol diet induced damage in rats. EXCLI J., 2015, 14, 791-800.
[PMID: 26648825]
[8]
Amssayef, A.; Eddouks, M. Antihyperglycemic, Antihyperlipidemic and Antioxidant Effects of Cotula cinerea (Del) in Normal and Streptozotocin-Induced Diabetic Rats. Endocr. Metab. Immune Disord. Drug Targets, 2020, 20(9), 1504-1513.
[http://dx.doi.org/10.2174/1871530320666200513081312] [PMID: 32400337]
[9]
Amssayef, A.; Lahrach, N.; Eddouks, M. Potent antihyperglycemic effects of an endemic plant from morocco (Matthiola maroccana coss.) in normal and streptozotocin-induced diabetic rats. Endocr. Metab. Immune Disord. Drug Targets, 2020, 21(3), 434-40.
[PMID: 32433012]
[10]
Amssayef, A.; Azzaoui, B.; Ajebli, M.; Eddouks, M. Antidyslipidemic and antioxidant activities of matricaria pubescens (desf.) shultz.in streptozotocin-induced diabetic rats. Cardiovasc. Hematol. Agents Med. Chem., 2020, 19(1), 62-71.
[http://dx.doi.org/10.2174/1871525718666200506100139] [PMID: 32370726]
[11]
Kim, D.O.; Jeong, S.W.; Lee, C.Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem., 2003, 81(3), 321-326.
[http://dx.doi.org/10.1016/S0308-8146(02)00423-5]
[12]
Broadhurst, R.B.; Jones, W.T. Analysis of condensed tannins using acidified vanillin. ‎. J. Sci. Food Agric., 1978, 48(3), 788-794.
[http://dx.doi.org/10.1002/jsfa.2740290908]
[13]
Benzie, I.F.; Strain, J.J. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol., 1999, 299, 15-27.
[http://dx.doi.org/10.1016/S0076-6879(99)99005-5] [PMID: 9916193]
[14]
Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal. Biochem., 1999, 269(2), 337-341.
[http://dx.doi.org/10.1006/abio.1999.4019] [PMID: 10222007]
[15]
Amssayef, A.; Ajebli, M.; Eddouks, M. Antihyperglycemic potential of matricaria pubescens (desf.) schultz. in streptozotocin-induced diabetic rats. Cardiovasc Hemato Agents Med Chem, 2020, 20(4), 297-304.
[http://dx.doi.org/10.2174/1871529X20666200630112610]
[16]
Amssayef, A.; Eddouks, M. Antihyperglycemic effect of the moroccan collard green (brassica oleracea var. viridis) in streptozotocin-induced diabetic rats. Endocr. Metab. Immune Disord. Drug Targets, 2020, 21(6), 1043-52.
[http://dx.doi.org/10.2174/1871530320666200929141140] [PMID: 32990547]
[17]
Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem., 1972, 18(6), 499-502.
[http://dx.doi.org/10.1093/clinchem/18.6.499] [PMID: 4337382]
[18]
Ikewuchi, J.C.; Ikewuchi, C.C.; Ifeanacho, M.O. Attenuation of salt-loadinginduced cardiomegalyand dyslipidemia in Wistar rats by aqueous leaf extract of Chromolaena odorata. Pharmacol. Pharm., 2014, 5, 160-170.
[http://dx.doi.org/10.4236/pp.2014.52022]
[19]
Dobiásová, M.; Frohlich, J.; Sedová, M.; Cheung, M.C.; Brown, B.G. Cholesterol esterification and atherogenic index of plasma correlate with lipoprotein size and findings on coronary angiography. J. Lipid Res., 2011, 52(3), 566-571.
[http://dx.doi.org/10.1194/jlr.P011668] [PMID: 21224290]
[20]
Ikewuchi, C.C.; Ikewuchi, J.C.; Ezeka, U.K.; Ifeanacho, M.O. Effect of “edible clay” (takere) suspension on serum lipid profiles and atherogenic indices of normal Wistar rats. Food Sci. Nutr., 2019, 7(3), 977-986.
[http://dx.doi.org/10.1002/fsn3.910] [PMID: 30918640]
[21]
Ojiako, O.A.; Nwanjo, H.U. Effects of pioglitazone on atherogenic risk predictor indices of alloxan-induced diabetic rabbits. Biokemistri, 2005, 17, 179-184.
[22]
La Sala, L.; Prattichizzo, F.; Ceriello, A. The link between diabetes and atherosclerosis. Eur. J. Prev. Cardiol., 2019, 26(2_suppl), 15-24.
[http://dx.doi.org/10.1177/2047487319878373] [PMID: 31722564]
[23]
McBride, P. Triglycerides and risk for coronary artery disease. Curr. Atheroscler. Rep., 2008, 10(5), 386-390.
[http://dx.doi.org/10.1007/s11883-008-0060-9] [PMID: 18706279]
[24]
Hirano, T. Pathophysiology of Diabetic Dyslipidemia. J. Atheroscler. Thromb., 2018, 25(9), 771-782.
[http://dx.doi.org/10.5551/jat.RV17023] [PMID: 29998913]
[25]
Shen, G.X. Lipid disorders in diabetes mellitus and current management. Curr. Pharm. Anal., 2007, 3(1), 17-24.
[http://dx.doi.org/10.2174/157341207779802386]
[26]
Hermans, M.P.; Sacks, F.M.; Ahn, S.A.; Rousseau, M.F. Non-HDL-cholesterol as valid surrogate to apolipoprotein B100 measurement in diabetes: Discriminant Ratio and unbiased equivalence. Cardiovasc. Diabetol., 2011, 10, 20.
[http://dx.doi.org/10.1186/1475-2840-10-20] [PMID: 21356116]
[27]
Essiarab, F.; Taki, H.; Lebrazi, H.; Sabri, M.; Saïle, R. Usefulness of lipid ratios and atherogenic index of plasma in obese Moroccan women with or without metabolic syndrome. Ethn. Dis., 2014, 24(2), 207-212.
[PMID: 24804368]
[28]
Ranjit, P.M.; Guntuku, G.; Pothineni, R.B. New atherogenic indices: Assessment of cardio vascular risk in postmenopausal dyslipidemia. Asian J. Med. Sci., 2015, 6, 25-32.
[http://dx.doi.org/10.3126/ajms.v6i6.12209]
[29]
Sarfraz, M.; Sajid, S.; Ashraf, M.A. Prevalence and pattern of dyslipidemia in hyperglycemic patients and its associated factors among Pakistani population. Saudi J. Biol. Sci., 2016, 23(6), 761-766.
[http://dx.doi.org/10.1016/j.sjbs.2016.03.001] [PMID: 27872574]
[30]
Yan, X.; Qin, C.; Deng, D.; Yang, G.; Feng, J.; Lu, R.; Wang, G.; Nie, G. Regulation of glucose andlipid metabolism by insulin and glucagon in vivo and in vitro in common carp Cyprinuscarpio L. Aquacult. Rep., 2020, 1(18), 100427.
[http://dx.doi.org/10.1016/j.aqrep.2020.100427]
[31]
Asmat, U.; Abad, K.; Ismail, K. Diabetes mellitus and oxidative stress-A concise review. Saudi Pharm. J., 2016, 24(5), 547-553.
[http://dx.doi.org/10.1016/j.jsps.2015.03.013] [PMID: 27752226]
[32]
Forni, C.; Facchiano, F.; Bartoli, M.; Pieretti, S.; Facchiano, A.; D’Arcangelo, D.; Norelli, S.; Valle, G.; Nisini, R.; Beninati, S.; Tabolacci, C.; Jadeja, R.N. Beneficial role of phytochemicals on oxidative stress and age-related diseases. BioMed Res. Int., 2019, 2019, 8748253.
[http://dx.doi.org/10.1155/2019/8748253] [PMID: 31080832]
[33]
Lee, M.T.; Lin, W.C.; Yu, B.; Lee, T.T. Antioxidant capacity of phytochemicals and their potential effects on oxidative status in animals - A review. Asian-Australas. J. Anim. Sci., 2017, 30(3), 299-308.
[http://dx.doi.org/10.5713/ajas.16.0438] [PMID: 27660026]
[34]
Ajebli, M.; Eddouks, M. Flavonoid-Enriched Extract from Desert Plant Warionia saharae Improves Glucose and Cholesterol Levels in Diabetic Rats. Cardiovasc. Hematol. Agents Med. Chem., 2019, 17(1), 28-39.
[http://dx.doi.org/10.2174/1871525717666190121143934] [PMID: 30666919]
[35]
Ajebli, M.; El Ouady, F.; Eddouks, M. Study of antihyperglycemic, antihyperlipidemic and antioxidant activities of tannins extracted from Warionia saharae Benth. & Coss. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(2), 189-198.
[http://dx.doi.org/10.2174/1871530318666181029160539] [PMID: 30370866]
[36]
Wahyuni, W.; Fristiohady, A.; Malaka, M.H.; Malik, F.; Yusuf, M.I.; Leorita, M.; Sadarun, B.; Saleh, A.; Musnina, W.O.; Sabandar, C.W.; Sahidin, I. Effects of Indonesian marine sponges ethanol extracts on the lipid profile of hyperlipidemic rats. J. Appl. Pharm., 2019, 9(10), 001-8.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy