Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Opinion Article

Systems Cytogenomics: Are We Ready Yet?

Author(s): Ivan Y. Iourov*, Svetlana G. Vorsanova and Yuri B. Yurov

Volume 22, Issue 2, 2021

Published on: 19 February, 2021

Page: [75 - 78] Pages: 4

DOI: 10.2174/1389202922666210219112419

Price: $65

Abstract

With the introduction of systems theory to genetics, numerous opportunities for genomic research have been identified. Consequences of DNA sequence variations are systematically evaluated using the network- or pathway-based analysis, a technological basis of systems biology or, more precisely, systems genomics. Despite comprehensive descriptions of advantages offered by systems genomic approaches, pathway-based analysis is uncommon in cytogenetic (cytogenomic) studies, i.e. genome analysis at the chromosomal level. Here, we would like to express our opinion that current cytogenomics benefits from the application of systems biology methodology. Accordingly, systems cytogenomics appears to be a biomedical area requiring more attention than it actually receives.

Keywords: Cytogenomics, chromosome, systems biology, pathway, genome, DNA sequence.

Graphical Abstract
[1]
Yang, M.Q.; Yoshigoe, K.; Yang, W.; Tong, W.; Qin, X.; Dunker, A.; Chen, Z.; Arbania, H.R.; Liu, J.S.; Niemierko, A.; Yang, J.Y. The emerging genomics and systems biology research lead to systems genomics studies. BMC Genomics, 2014, 15(Suppl. 11), I1.
[http://dx.doi.org/10.1186/1471-2164-15-S11-I1]
[2]
Suravajhala, P. Systems genomics in the age of next generation sequencing (Part I). Curr. Genomics, 2019, 20(7), 468.
[http://dx.doi.org/10.2174/138920292007200101105336] [PMID: 32655285]
[3]
Iourov, I.Y. Cytopostgenomics: What is it and how does it work? Curr. Genomics, 2019, 20(2), 77-78.
[http://dx.doi.org/10.2174/138920292002190422120524] [PMID: 31555057]
[4]
Ideker, T.; Krogan, N.J. Differential network biology. Mol. Syst. Biol., 2012, 8, 565.
[http://dx.doi.org/10.1038/msb.2011.99] [PMID: 22252388]
[5]
Heng, H.H. New data collection priority: focusing on genome-based bioinformation. Res. Results Biomed., 2020, 6(1), 5-8.
[http://dx.doi.org/10.18413/2658-6533-2020-6-1-0-1]
[6]
Kim, S.; Kon, M.; DeLisi, C. Pathway-based classification of cancer subtypes. Biol. Direct, 2012, 7, 21.
[http://dx.doi.org/10.1186/1745-6150-7-21] [PMID: 22759382]
[7]
Iourov, I.Y.; Vorsanova, S.G.; Yurov, Y.B. Pathway-based classification of genetic diseases. Mol. Cytogenet., 2019, 12, 4.
[http://dx.doi.org/10.1186/s13039-019-0418-4] [PMID: 30766616]
[8]
Sharan, R.; Ideker, T. Modeling cellular machinery through biological network comparison. Nat. Biotechnol., 2006, 24(4), 427-433.
[http://dx.doi.org/10.1038/nbt1196] [PMID: 16601728]
[9]
Sahni, N.; Yi, S.; Taipale, M.; Fuxman Bass, J.I.; Coulombe-Huntington, J.; Yang, F.; Peng, J.; Weile, J.; Karras, G.I.; Wang, Y.; Kovács, I.A.; Kamburov, A.; Krykbaeva, I.; Lam, M.H.; Tucker, G.; Khurana, V.; Sharma, A.; Liu, Y.Y.; Yachie, N.; Zhong, Q.; Shen, Y.; Palagi, A.; San-Miguel, A.; Fan, C.; Balcha, D.; Dricot, A.; Jordan, D.M.; Walsh, J.M.; Shah, A.A.; Yang, X.; Stoyanova, A.K.; Leighton, A.; Calderwood, M.A.; Jacob, Y.; Cusick, M.E.; Salehi-Ashtiani, K.; Whitesell, L.J.; Sunyaev, S.; Berger, B.; Barabási, A.L.; Charloteaux, B.; Hill, D.E.; Hao, T.; Roth, F.P.; Xia, Y.; Walhout, A.J.M.; Lindquist, S.; Vidal, M. Widespread macromolecular interaction perturbations in human genetic disorders. Cell, 2015, 161(3), 647-660.
[http://dx.doi.org/10.1016/j.cell.2015.04.013] [PMID: 25910212]
[10]
Iourov, I.Y.; Vorsanova, S.G.; Yurov, Y.B. The variome concept: focus on CNVariome. Mol. Cytogenet., 2019, 12, 52.
[http://dx.doi.org/10.1186/s13039-019-0467-8] [PMID: 31890032]
[11]
Wang, D.; Bodovitz, S. Single cell analysis: the new frontier in ‘omics’. Trends Biotechnol., 2010, 28(6), 281-290.
[http://dx.doi.org/10.1016/j.tibtech.2010.03.002] [PMID: 20434785]
[12]
Iourov, I.Y.; Vorsanova, S.G.; Yurov, Y.B. Single cell genomics of the brain: focus on neuronal diversity and neuropsychiatric diseases. Curr. Genomics, 2012, 13(6), 477-488.
[http://dx.doi.org/10.2174/138920212802510439] [PMID: 23449087]
[13]
The principles of clinical cytogenetics. Gersen, S.L.; Keagle, M.B., Eds.;; Humana Press Inc: Trenton, 2005.
[http://dx.doi.org/10.1385/1592598331]
[14]
Iourov, I.Y.; Vorsanova, S.G.; Yurov, Y.B. Molecular cytogenetics and cytogenomics of brain diseases. Curr. Genomics, 2008, 9(7), 452-465.
[http://dx.doi.org/10.2174/138920208786241216] [PMID: 19506734]
[15]
Wang, T.L.; Maierhofer, C.; Speicher, M.R.; Lengauer, C.; Vogelstein, B.; Kinzler, K.W.; Velculescu, V.E. Digital karyotyping. Proc. Natl. Acad. Sci. USA, 2002, 99(25), 16156-16161.
[http://dx.doi.org/10.1073/pnas.202610899] [PMID: 12461184]
[16]
Martin, C.L.; Warburton, D. Detection of chromosomal aberrations in clinical practice: from karyotype to genome sequence. Annu. Rev. Genomics Hum. Genet., 2015, 16, 309-326.
[http://dx.doi.org/10.1146/annurev-genom-090413-025346] [PMID: 26077817]
[17]
Potapova, T.A.; Unruh, J.R.; Box, A.C.; Bradford, W.D.; Seidel, C.W.; Slaughter, B.D.; Sivagnanam, S.; Wu, Y.; Li, R. Karyotyping human and mouse cells using probes from single-sorted chromosomes and open source software. Biotechniques, 2015, 59(6), 335-336, 338, 340-342 passim.
[http://dx.doi.org/10.2144/000114362] [PMID: 26651513]
[18]
Iourov, I.Y.; Vorsanova, S.G.; Yurov, Y.B. In silico molecular cytogenetics: a bioinformatic approach to prioritization of candidate genes and copy number variations for basic and clinical genome research. Mol. Cytogenet., 2014, 7(1), 98.
[http://dx.doi.org/10.1186/s13039-014-0098-z] [PMID: 25525469]
[19]
Heng, H.H.; Horne, S.D.; Chaudhry, S.; Regan, S.M.; Liu, G.; Abdallah, B.Y.; Ye, C.J. A postgenomic perspective on molecular cytogenetics. Curr. Genomics, 2018, 19(3), 227-239.
[http://dx.doi.org/10.2174/1389202918666170717145716] [PMID: 29606910]
[20]
Rahul, M.R.; Sreeja, A. Analysis of computational gene prioritization approaches. Procedia Comput. Sci., 2018, 143, 395-410.
[http://dx.doi.org/10.1016/j.procs.2018.10.411]
[21]
Gorski, S.; Misteli, T. Systems biology in the cell nucleus. J. Cell Sci., 2005, 118(Pt 18), 4083-4092.
[http://dx.doi.org/10.1242/jcs.02596] [PMID: 16155251]
[22]
Valind, A.; Jin, Y.; Gisselsson, D. Elevated tolerance to aneuploidy in cancer cells: estimating the fitness effects of chromosome number alterations by in silico modelling of somatic genome evolution. PLoS One, 2013, 8(7), e70445.
[http://dx.doi.org/10.1371/journal.pone.0070445] [PMID: 23894657]
[23]
Valente, G.T.; Nakajima, R.T.; Fantinatti, B.E.; Marques, D.F.; Almeida, R.O.; Simões, R.P.; Martins, C. B chromosomes: from cytogenetics to systems biology. Chromosoma, 2017, 126(1), 73-81.
[http://dx.doi.org/10.1007/s00412-016-0613-6] [PMID: 27558128]
[24]
Seeber, A.; Hauer, M.H.; Gasser, S.M. Chromosome dynamics in response to DNA damage. Annu. Rev. Genet., 2018, 52, 295-319.
[http://dx.doi.org/10.1146/annurev-genet-120417-031334] [PMID: 30208290]
[25]
Iourov, I.Y.; Vorsanova, S.G.; Voinova, V.Y.; Yurov, Y.B. 3p22.1p21.31 microdeletion identifies CCK as Asperger syndrome candidate gene and shows the way for therapeutic strategies in chromosome imbalances. Mol. Cytogenet., 2015, 8, 82.
[http://dx.doi.org/10.1186/s13039-015-0185-9] [PMID: 26523151]
[26]
Baronchelli, S.; Bentivegna, A.; Redaelli, S.; Riva, G.; Butta, V.; Paoletta, L.; Isimbaldi, G.; Miozzo, M.; Tabano, S.; Daga, A.; Marubbi, D.; Cattaneo, M.; Biunno, I.; Dalprà, L. Delineating the cytogenomic and epigenomic landscapes of glioma stem cell lines. PLoS One, 2013, 8(2), e57462.
[http://dx.doi.org/10.1371/journal.pone.0057462] [PMID: 23468990]
[27]
Silva, M.; de Leeuw, N.; Mann, K.; Schuring-Blom, H.; Morgan, S.; Giardino, D.; Rack, K.; Hastings, R. European guidelines for constitutional cytogenomic analysis. Eur. J. Hum. Genet., 2019, 27(1), 1-16.
[http://dx.doi.org/10.1038/s41431-018-0244-x] [PMID: 30275486]
[28]
Iourov, I.Y.; Vorsanova, S.G.; Yurov, Y.B. Somatic cell genomics of brain disorders: a new opportunity to clarify genetic-environmental interactions. Cytogenet. Genome Res., 2013, 139(3), 181-188.
[http://dx.doi.org/10.1159/000347053] [PMID: 23428498]
[29]
Macé, A.; Tuke, M.A.; Beckmann, J.S.; Lin, L.; Jacquemont, S.; Weedon, M.N.; Reymond, A.; Kutalik, Z. New quality measure for SNP array based CNV detection. Bioinformatics, 2016, 32(21), 3298-3305.
[http://dx.doi.org/10.1093/bioinformatics/btw477] [PMID: 27402902]
[30]
Liu, Q.; Karolak, J.A.; Grochowski, C.M.; Wilson, T.A.; Rosenfeld, J.A.; Bacino, C.A.; Lalani, S.R.; Patel, A.; Breman, A.; Smith, J.L.; Cheung, S.W.; Lupski, J.R.; Bi, W.; Stankiewicz, P. Parental somatic mosaicism for CNV deletions - A need for more sensitive and precise detection methods in clinical diagnostics settings. Genomics, 2020, 112(5), 2937-2941.
[http://dx.doi.org/10.1016/j.ygeno.2020.05.003] [PMID: 32387503]
[31]
Yurov, Y.B.; Vorsanova, S.G.; Iourov, I.Y. Network-based classification of molecular cytogenetic data. Curr. Bioinform., 2017, 12, 27-33.
[http://dx.doi.org/10.2174/1574893611666160606165119]
[32]
Vorsanova, S.G.; Yurov, Y.B.; Iourov, I.Y. Neurogenomic pathway of autism spectrum disorders: linking germline and somatic mutations to genetic-environmental interactions. Curr. Bioinform., 2017, 12, 19-26.
[http://dx.doi.org/10.2174/1574893611666160606164849]
[33]
Yurov, Y.B.; Vorsanova, S.G.; Iourov, I.Y. Chromosome instability in the neurodegenerating brain. Front. Genet., 2019, 10, 892.
[http://dx.doi.org/10.3389/fgene.2019.00892] [PMID: 31616475]
[34]
Vorsanova, S.G.; Yurov, Y.B.; Iourov, I.Y. Dynamic nature of somatic chromosomal mosaicism, genetic-environmental interactions and therapeutic opportunities in disease and aging. Mol. Cytogenet., 2020, 13, 16.
[http://dx.doi.org/10.1186/s13039-020-00488-0] [PMID: 32411302]
[35]
Benson, M. Clinical implications of omics and systems medicine: focus on predictive and individualized treatment. J. Intern. Med., 2016, 279(3), 229-240.
[http://dx.doi.org/10.1111/joim.12412] [PMID: 26891944]
[36]
Schleidgen, S.; Fernau, S.; Fleischer, H.; Schickhardt, C.; Winkler, E.C. Applying systems biology to biomedical research and health care: a précising definition of systems medicine. BMC Health Serv. Res., 2017, 17(1), 761.
[http://dx.doi.org/10.1186/s12913-017-2688-z] [PMID: 29162092]
[37]
Cheng, X.; Jin, V.X. An introduction to integrative genomics and systems medicine in cancer. Genes (Basel), 2018, 9(1), 37.
[http://dx.doi.org/10.3390/genes9010037] [PMID: 29329216]
[38]
Heng, H.H.Q.; Regan, S. A systems biology perspective on molecular cytogenetics. Curr. Bioinform., 2017, 12(1), 4-10.
[http://dx.doi.org/10.2174/1574893611666160606163419]
[39]
Razin, S.V.; Ulianov, S.V.; Gavrilov, A.A. 3D genomics. Mol. Biol. (Mosk.), 2019, 53(6), 911-923.
[40]
Li, Y.; Tao, T.; Du, L.; Zhu, X. Three-dimensional genome: developmental technologies and applications in precision medicine. J. Hum. Genet., 2020, 65(6), 497-511.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy