Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Fast Dissolution Electrospun Medicated Nanofibers for Effective Delivery of Poorly Water-Soluble Drug

Author(s): Yrysbaeva Aidana, Yibin Wang, Jie Li, Shuyue Chang, Ke Wang* and Deng-Guang Yu*

Volume 19, Issue 4, 2022

Published on: 03 January, 2022

Page: [422 - 435] Pages: 14

DOI: 10.2174/1567201818666210215110359

Price: $65

Abstract

Background: Electrospinning is developing rapidly from an earlier laboratory method into an industrial process. The clinical applications of this technique are approached in various ways through electrospun medicated nanofibers. Fast-dissolving oral drug delivery systems (DDSs) have promising commercial applications in the near future.

Methods: Related papers have been investigated in this study, including the latest research results on electrospun nanofiber-based fast-dissolution DDSs.

Results: The following related topics are concluded: 1) development of electrospinning, ranging from one-fluid blending to multi-fluid process and potential applications in the formation of medicated nanofibers involving poorly water-soluble drugs; 2) selection of appropriate polymer matrices and drug carriers for filament formation; 3) types of poorly water-soluble drugs ideal for fast oral delivery; 4) methods for evaluating fast-dissolving nanofibers; 5) mechanisms that promote the fast dissolution of poorly water-soluble drugs by electrospun nanofibers; 6) and important issues related to further development of electrospun medicated nanofibers as oral fast-dissolving drug delivery systems.

Conclusion and Perspective: Given their unique properties, electrospun-medicated nanofibers can be used as oral fast-dissolving DDSs of poorly water-soluble drugs. However, significant issues, such as scalable productions and solid dosage form conversions, need to be investigated.

Keywords: Electrospinning, electrospun medicated nanofibers, fast-dissolution, drug delivery system, poorly water-soluble drug, amorphous.

Graphical Abstract
[1]
Balusamy, B.; Celebioglu, A.; Senthamizhan, A.; Uyar, T. Progress in the design and development of “fast-dissolving” electrospun nanofibers based drug delivery systems - A systematic review. J. Control. Release, 2020, 326, 482-509.
[http://dx.doi.org/10.1016/j.jconrel.2020.07.038] [PMID: 32721525]
[2]
Vass, P.; Szabó, E.; Domokos, A.; Hirsch, E.; Galata, D.; Farkas, B.; Démuth, B.; Andersen, S.K.; Vigh, T.; Verreck, G.; Marosi, G.; Nagy, Z.K. Scale-up of electrospinning technology: Applications in the pharmaceutical industry. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2020, 12(4), e1611.
[http://dx.doi.org/10.1002/wnan.1611] [PMID: 31863572]
[3]
Nagy, Z.K.; Balogh, A.; Démuth, B.; Pataki, H.; Vigh, T.; Szabó, B.; Molnár, K.; Schmidt, B.T.; Horák, P.; Marosi, G.; Verreck, G.; Van Assche, I.; Brewster, M.E. High speed electrospinning for scaled-up production of amorphous solid dispersion of itraconazole. Int. J. Pharm., 2015, 480(1-2), 137-142.
[http://dx.doi.org/10.1016/j.ijpharm.2015.01.025] [PMID: 25596415]
[4]
Balogh, A.; Horváthová, T.; Fülöp, Z.; Loftsson, T.; Harasztos, A.H.; Marosi, G.; Nagy, Z.K. Electroblowing and electrospinning of fibrous diclofenac sodium-cyclodextrin complex-based reconstitution injection. J. Drug Deliv. Sci. Technol., 2015, 26, 28-34.
[http://dx.doi.org/10.1016/j.jddst.2015.02.003]
[5]
Cilurzo, F.; Musazzi, U.M.; Franzé, S.; Selmin, F.; Minghetti, P. Orodispersible dosage forms: biopharmaceutical improvements and regulatory requirements. Drug Discov. Today, 2018, 23(2), 251-259.
[http://dx.doi.org/10.1016/j.drudis.2017.10.003] [PMID: 29030242]
[6]
Thakkar, S.; More, N.; Sharma, D.; Kapusetti, G.; Kalia, K.; Misra, M. Fast dissolving electrospun polymeric films of anti-diabetic drug repaglinide: formulation and evaluation. Drug Dev. Ind. Pharm., 2019, 45(12), 1921-1930.
[http://dx.doi.org/10.1080/03639045.2019.1680994] [PMID: 31625774]
[7]
Kowalczyk, T. Functional micro- and nanofibers obtained by nonwoven post-modification. Polymers (Basel), 2020, 12(5), 1087.
[http://dx.doi.org/10.3390/polym12051087] [PMID: 32397603]
[8]
My Tran, K.T.; Vo, T.V.; Lee, B.J.; Duan, W.; Ha-Lien Tran, P.; Truong-Dinh Tran, T. Encapsulation of solid dispersion in solid lipid particles for dissolution enhancement of poorly water-soluble drug. Curr. Drug Deliv., 2018, 15(4), 576-584.
[http://dx.doi.org/10.2174/1567201814666170606101138] [PMID: 28595530]
[9]
Tuğcu-Demiröz, F.; Saar, S.; Tort, S.; Acartürk, F. Electrospun metronidazole-loaded nanofibers for vaginal drug delivery. Drug Dev. Ind. Pharm., 2020, 46(6), 1015-1025.
[http://dx.doi.org/10.1080/03639045.2020.1767125] [PMID: 32393132]
[10]
Musazzi, U.M.; Khalid, G.M.; Selmin, F.; Minghetti, P.; Cilurzo, F. Trends in the production methods of orodispersible films. Int. J. Pharm., 2020, 576, 118963.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118963] [PMID: 31857185]
[11]
Kovács, A.; Kazsoki, A.; Démuth, B.; Szirányi, B.; Madarász, J.; Süvegh, K.; Zelkó, R. Influence of aqueous solubility-enhancing excipients on the microstructural characteristics of furosemide-loaded electrospun nanofibers. Pharmaceutics, 2020, 12(4), 385.
[http://dx.doi.org/10.3390/pharmaceutics12040385] [PMID: 32340196]
[12]
Sebe, I.; Szabó, P.; Kállai-Szabó, B.; Zelkó, R. Incorporating small molecules or biologics into nanofibers for optimized drug release: A review. Int. J. Pharm., 2015, 494(1), 516-530.
[http://dx.doi.org/10.1016/j.ijpharm.2015.08.054] [PMID: 26307263]
[13]
Rezaeinia, H.; Ghorani, B.; Emadzadeh, B.; Mohebbi, M. Prolonged-release of menthol through a superhydrophilic multilayered structure of balangu (Lallemantia royleana)-gelatin nanofibers. Mater. Sci. Eng. C, 2020, 115, 111115.
[http://dx.doi.org/10.1016/j.msec.2020.111115] [PMID: 32600715]
[14]
Celebioglu, A.; Uyar, T. Electrospun formulation of acyclovir/cyclodextrin nanofibers for fast-dissolving antiviral drug delivery. Mater. Sci. Eng. C, 2021, 118, 111514.
[http://dx.doi.org/10.1016/j.msec.2020.111514] [PMID: 33255070]
[15]
Hirsch, E.; Vass, P.; Démuth, B.; Pethő, Z.; Bitay, E.; Andersen, S.K.; Vigh, T.; Verreck, G.; Molnár, K.; Nagy, Z.K.; Marosi, G. Electrospinning scale-up and formulation development of PVA nanofibers aiming oral delivery of biopharmaceuticals. Express Polym. Lett., 2019, 13(7), 590-603.
[http://dx.doi.org/10.3144/expresspolymlett.2019.50]
[16]
Yu, D.G.; Li, J.J.; Williams, G.R.; Zhao, M. Electrospun amorphous solid dispersions of poorly water-soluble drugs: A review. J. Control. Release, 2018, 292, 91-110.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.016] [PMID: 30118788]
[17]
Zhao, K.; Kang, S.X.; Yang, Y.Y. Electrospun functional nanofiber membrane for antibiotic removal in water. Polymers (Basel), 2021, 13, 226.
[http://dx.doi.org/10.3390/polym13020226]
[18]
Tapia-Hernández, J.A.; Del-Toro-Sánchez, C.L.; Cinco-Moroyoqui, F.J.; Ruiz-Cruz, S.; Juárez, J.; Castro-Enríquez, D.D.; Barreras-Urbina, C.G.; López-Ahumada, G.A.; Rodríguez-Félix, F. Gallic acid-loaded zein nanoparticles by electrospraying process. J. Food Sci., 2019, 84(4), 818-831.
[http://dx.doi.org/10.1111/1750-3841.14486] [PMID: 30802954]
[19]
Semnani, K.; Shams-Ghahfarokhi, M.; Afrashi, M.; Fakhrali, A.; Semnani, D. Antifungal activity of eugenol loaded electrospun PAN nanofiber mats against Candida albicans. Curr. Drug Deliv., 2018, 15(6), 860-866.
[http://dx.doi.org/10.2174/1567201815666180226120436] [PMID: 29484994]
[20]
Wang, M.; Hou, J.; Yu, D.G.; Li, S.; Zhu, J.; Chen, Z. Electrospun tri-layer nanodepots for sustained release of acyclovir. J. Alloys Compd., 2020, 846, 156471.
[http://dx.doi.org/10.1016/j.jallcom.2020.156471]
[21]
Wang, M.; Li, D.; Li, J.; Li, S.; Chen, Z.; Yu, D.G.; Liu, Z.; Guo, J.Z. Electrospun Janus zein-PVP nanofibers provide a two-stage controlled release of poorly water-soluble drugs. Mater. Des., 2020, 196, 109075.
[http://dx.doi.org/10.1016/j.matdes.2020.109075]
[22]
Wang, M.; Yu, D.G.; Li, X.; Williams, G.R. The development and bio-applications of multifluid electrospinning. Mater. Highlights, 2020, 1, 1-13.
[23]
Chang, S.; Wang, M.; Zhang, F.; Liu, Y.; Liu, X.; Yu, D.G.; Shen, H. Sheath-separate-core nanocomposites fabricated using a trifluid electrospinning. Mater. Des., 2020, 192, 108782.
[http://dx.doi.org/10.1016/j.matdes.2020.108782]
[24]
Yang, Y.; Chang, S.; Bai, Y.; Du, Y.; Yu, D.G. Electrospun triaxial nanofibers with middle blank cellulose acetate layers for accurate dual-stage drug release. Carbohydr. Polym., 2020, 243, 116477.
[http://dx.doi.org/10.1016/j.carbpol.2020.116477] [PMID: 32532400]
[25]
Farkas, B.; Balogh, A.; Farkas, A.; Marosi, G.; Nagy, Z.K. Frequency and waveform dependence of alternating current electrospinning and their uses for drug dissolution enhancement. Int. J. Pharm., 2020, 586, 119593.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119593] [PMID: 32622813]
[26]
Farkas, B.; Balogh, A.; Cselkó, R.; Molnár, K.; Farkas, A.; Borbás, E.; Marosi, G.; Nagy, Z.K. Corona alternating current electrospinning: A combined approach for increasing the productivity of electrospinning. Int. J. Pharm., 2019, 561, 219-227.
[http://dx.doi.org/10.1016/j.ijpharm.2019.03.005] [PMID: 30844423]
[27]
Balogh, A.; Farkas, B.; Pálvölgyi, Á.; Domokos, A.; Démuth, B.; Marosi, G.; Nagy, Z.K. Novel alternating current electrospinning of hydroxypropylmethylcellulose acetate succinate (HPMCAS) nanofibers for dissolution enhancement: the importance of solution conductivity. J. Pharm. Sci., 2017, 106(6), 1634-1643.
[http://dx.doi.org/10.1016/j.xphs.2017.02.021] [PMID: 28257818]
[28]
Li, X.; Su, Y.; Liu, S.; Tan, L.; Mo, X.; Ramakrishna, S. Encapsulation of proteins in poly(L-lactide-co-caprolactone) fibers by emulsion electrospinning. Colloids Surf. B Biointerfaces, 2010, 75(2), 418-424.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.014] [PMID: 19836931]
[29]
Nagy, Z.K.; Balogh, A.; Vajna, B.; Farkas, A.; Patyi, G.; Kramarics, A.; Marosi, G. Comparison of electrospun and extruded Soluplus®-based solid dosage forms of improved dissolution. J. Pharm. Sci., 2012, 101(1), 322-332.
[http://dx.doi.org/10.1002/jps.22731] [PMID: 21918982]
[30]
Ding, Y.; Dou, C.; Chang, S.; Xie, Z.; Yu, D.G.; Liu, Y.; Shao, J. Core-shell Eudragit S100 nanofibers prepared via triaxial electrospinning to provide a colon-targeted extended drug release. Polymers (Basel), 2020, 12(9), 2034.
[http://dx.doi.org/10.3390/polym12092034] [PMID: 32906728]
[31]
Kiss, K.; Vass, P.; Farkas, A.; Hirsch, E.; Szabó, E.; Mező, G.; Nagy, Z.K.; Marosi, G. A solid doxycycline HP-β-CD formulation for reconstitution (i.v. bolus) prepared by scaled-up electrospinning. Int. J. Pharm., 2020, 586, 119539.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119539] [PMID: 32534161]
[32]
Domokos, A.; Nagy, B.; Gyürkés, M.; Farkas, A.; Tacsi, K.; Pataki, H.; Liu, Y.C.; Balogh, A.; Firth, P.; Szilágyi, B.; Marosi, G.; Nagy, Z.K.; Nagy, Z.K. End-to-end continuous manufacturing of conventional compressed tablets: From flow synthesis to tableting through integrated crystallization and filtration. Int. J. Pharm., 2020, 581, 119297.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119297] [PMID: 32243964]
[33]
Peppas, N.A.; Narasimhan, B. Mathematical models in drug delivery: how modeling has shaped the way we design new drug delivery systems. J. Control. Release, 2014, 190, 75-81.
[http://dx.doi.org/10.1016/j.jconrel.2014.06.041] [PMID: 24998939]
[34]
Li, J.J.; Yang, Y.Y.; Yu, D.G.; Du, Q.; Yang, X.L. Fast dissolving drug delivery membrane based on the ultra-thin shell of electrospun core-shell nanofibers. Eur. J. Pharm. Sci., 2018, 122, 195-204.
[http://dx.doi.org/10.1016/j.ejps.2018.07.002] [PMID: 30008429]
[35]
Wu, L.; Gu, Y.; Liu, L.; Tang, J.; Mao, J.; Xi, K.; Jiang, Z.; Zhou, Y.; Xu, Y.; Deng, L.; Chen, L.; Cui, W. Hierarchical micro/nanofibrous membranes of sustained releasing VEGF for periosteal regeneration. Biomaterials, 2020, 227, 119555.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119555] [PMID: 31655445]
[36]
Liu, S.; Wu, F.; Gu, S.; Wu, T.; Chen, S.; Chen, S.; Wang, C.; Huang, G.; Jin, T.; Cui, W.; Sarmento, B.; Deng, L.; Fan, C. Gene silencing via PDA/ERK2-siRNA-mediated electrospun fibers for peritendinous antiadhesion. Adv. Sci. (Weinh.), 2018, 6(2), 1801217.
[http://dx.doi.org/10.1002/advs.201801217] [PMID: 30693181]
[37]
Mehta, P.; Zaman, A.; Smith, A.; Rasekh, M.; Haj-Ahmad, R.; Arshad, M.S.; van der Merwe, S.; Chang, M.W.; Ahmad, Z. Broad scale and structure fabrication of healthcare materials for drug and emerging therapies via electrohydrodynamic techniques. Adv. Ther., 2019, 2, 1800024.
[http://dx.doi.org/10.1002/adtp.201800024]
[38]
Yu, D.G.; Shen, X.X.; Branford-White, C.; White, K.; Zhu, L.M.; Bligh, S.W.A. Oral fast-dissolving drug delivery membranes prepared from electrospun polyvinylpyrrolidone ultrafine fibers. Nanotechnology, 2009, 20(5), 055104.
[http://dx.doi.org/10.1088/0957-4484/20/5/055104] [PMID: 19417335]
[39]
Manasco, J.L.; Tang, C.; Burns, N.A.; Saquing, C.D.; Khan, S.A. Rapidly dissolving poly(vinyl alcohol)/cyclodextrin electrospun nanofibrous membranes. RSC Advances, 2014, 4(26), 13274.
[http://dx.doi.org/10.1039/c3ra43836h]
[40]
Qin, Z.Y.; Jia, X.W.; Liu, Q.; Kong, B.H.; Wang, H. Fast dissolving oral films for drug delivery prepared from chitosan/pullulan electrospinning nanofibers. Int. J. Biol. Macromol., 2019, 137, 224-231.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.06.224] [PMID: 31260763]
[41]
Celebioglu, A.; Uyar, T. Fast dissolving oral drug delivery system based on electrospun nanofibrous webs of Cyclodextrin/Ibuprofen inclusion complex nanofibers. Mol. Pharm., 2019, 16(10), 4387-4398.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00798] [PMID: 31436100]
[42]
Bukhary, H.; Williams, G.R.; Orlu, M. Electrospun fixed dose formulations of amlodipine besylate and valsartan. Int. J. Pharm., 2018, 549(1-2), 446-455.
[http://dx.doi.org/10.1016/j.ijpharm.2018.08.008] [PMID: 30099215]
[43]
Chen, J.; Pan, H.; Yang, Y.; Xiong, S.; Duan, H.; Yang, X.; Pan, W. Self-assembled liposome from multi-layered fibrous mucoadhesive membrane for buccal delivery of drugs having high first- pass metabolism. Int. J. Pharm., 2018, 547(1-2), 303-314.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.062] [PMID: 29803794]
[44]
Adeli, E. Irbesartan-loaded electrospun nanofibers-based PVP K90 for the drug dissolution improvement: Fabrication, in vitro performance assessment, and in vivo evaluation. J. Appl. Polym. Sci., 2015, 132(27), 42212.
[http://dx.doi.org/10.1002/app.42212]
[45]
Vrbata, P.; Berka, P.; Stránská, D.; Doležal, P.; Lázníček, M. Electrospinning of diosmin from aqueous solutions for improved dissolution and oral absorption. Int. J. Pharm., 2014, 473(1-2), 407-413.
[http://dx.doi.org/10.1016/j.ijpharm.2014.07.017] [PMID: 25066074]
[46]
Wang, K.; Liu, X.K.; Chen, X.H.; Yu, D.G.; Yang, Y.Y.; Liu, P. Electrospun hydrophilic Janus nanocomposites for the rapid onset of therapeutic action of helicid. ACS Appl. Mater. Interfaces, 2018, 10(3), 2859-2867.
[http://dx.doi.org/10.1021/acsami.7b17663] [PMID: 29272099]
[47]
Yu, D.G.; Gao, L.D.; White, K.; Branford-White, C.; Lu, W.Y.; Zhu, L.M. Multicomponent amorphous nanofibers electrospun from hot aqueous solutions of a poorly soluble drug. Pharm. Res., 2010, 27(11), 2466-2477.
[http://dx.doi.org/10.1007/s11095-010-0239-y] [PMID: 20721604]
[48]
Borbás, E.; Balogh, A.; Bocz, K.; Müller, J.; Kiserdei, É.; Vigh, T.; Sinkó, B.; Marosi, A.; Halász, A.; Dohányos, Z.; Szente, L.; Balogh, G.T.; Nagy, Z.K. In vitro dissolution-permeation evaluation of an electrospun cyclodextrin-based formulation of aripiprazole using μFlux™. Int. J. Pharm., 2015, 491(1-2), 180-189.
[http://dx.doi.org/10.1016/j.ijpharm.2015.06.019] [PMID: 26117189]
[49]
Illangakoon, U.E.; Gill, H.; Shearman, G.C.; Parhizkar, M.; Mahalingam, S.; Chatterton, N.P.; Williams, G.R. Fast dissolving paracetamol/caffeine nanofibers prepared by electrospinning. Int. J. Pharm., 2014, 477(1-2), 369-379.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.036] [PMID: 25455779]
[50]
Sriyanti, I.; Edikresnha, D.; Rahma, A.; Munir, M.M.; Rachmawati, H.; Khairurrijal, K. Mangosteen pericarp extract embedded in electrospun PVP nanofiber mats: Physicochemical properties and release mechanism of α-mangostin. Int. J. Nanomed., 2018, 13, 4927-4941.
[http://dx.doi.org/10.2147/IJN.S167670] [PMID: 30214198]
[51]
Lee, I.W.; Li, J.; Chen, X.; Park, H.J. Fabrication of electrospun antioxidant nanofibers by rutin-pluronic solid dispersions for enhanced solubility. J. Appl. Polym. Sci., 2017, 134(21), 44859.
[http://dx.doi.org/10.1002/app.44859]
[52]
Nam, S.; Lee, J.J.; Lee, S.Y.; Jeong, J.Y.; Kang, W.S.; Cho, H.J. Angelica gigas Nakai extract-loaded fast-dissolving nanofiber based on poly(vinyl alcohol) and Soluplus for oral cancer therapy. Int. J. Pharm., 2017, 526(1-2), 225-234.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.004] [PMID: 28478278]
[53]
Li, X.Y.; Li, Y.C.; Yu, D.G.; Liao, Y.Z.; Wang, X. Fast disintegrating quercetin-loaded drug delivery systems fabricated using coaxial electrospinning. Int. J. Mol. Sci., 2013, 14(11), 21647-21659.
[http://dx.doi.org/10.3390/ijms141121647] [PMID: 24185912]
[54]
Yan, J.; Wu, Y.H.; Yu, D.G.; Williams, G.R.; Huang, S.M.; Tao, W.; Sun, J.Y. Electrospun acid-base pair solid dispersions of quercetin. RSC Advances, 2014, 4(102), 58265-58271.
[http://dx.doi.org/10.1039/C4RA10221E]
[55]
Yu, D.G.; Zhu, L.M.; Branford-White, C.J.; Yang, J.H.; Wang, X.; Li, Y.; Qian, W. Solid dispersions in the form of electrospun core-sheath nanofibers. Int. J. Nanomed., 2011, 6, 3271-3280.
[http://dx.doi.org/10.2147/IJN.S27468] [PMID: 22228995]
[56]
Démuth, B.; Nagy, Z.K.; Balogh, A.; Vigh, T.; Marosi, G.; Verreck, G.; Van Assche, I.; Brewster, M.E. Downstream processing of polymer-based amorphous solid dispersions to generate tablet formulations. Int. J. Pharm., 2015, 486(1-2), 268-286.
[http://dx.doi.org/10.1016/j.ijpharm.2015.03.053] [PMID: 25827903]
[57]
Shi, Y.; Zhang, J.; Xu, S.; Dong, A. Electrospinning of artemisinin-loaded core-shell fibers for inhibiting drug re-crystallization. J. Biomater. Sci. Polym. Ed., 2013, 24(5), 551-564.
[http://dx.doi.org/10.1080/09205063.2012.698895] [PMID: 23565867]
[58]
Li, X.; Lin, L.; Zhu, Y.; Liu, W.; Yu, T.; Ge, M. Preparation of ultrafine fast-dissolving cholecalciferol-loaded poly (vinyl pyrrolidone) fiber mats via electrospinning. Polym. Compos., 2013, 34(2), 282-287.
[http://dx.doi.org/10.1002/pc.22402]
[59]
Rustemkyzy, C.; Belton, P.; Qi, S. Preparation and characterization of ultrarapidly dissolving orodispersible films for treating and preventing iodine deficiency in the pediatric population. J. Agric. Food Chem., 2015, 63(44), 9831-9838.
[http://dx.doi.org/10.1021/acs.jafc.5b03953] [PMID: 26499787]
[60]
Nagy, Z.K.; Nyul, K.; Wagner, I.; Molnar, K.; Marosi, G. Electrospun water soluble polymer mat for ultrafast release of Donepezil HCl. Express Polym. Lett., 2010, 4(12), 763-772.
[http://dx.doi.org/10.3144/expresspolymlett.2010.92]
[61]
Yildiz, Z.I.; Celebioglu, A.; Uyar, T. Polymer-free electrospun nanofibers from sulfobutyl ether7-beta-cyclodextrin (SBE7-β-CD) inclusion complex with sulfisoxazole: Fast-dissolving and enhanced water-solubility of sulfisoxazole. Int. J. Pharm., 2017, 531(2), 550-558.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.047] [PMID: 28445768]
[62]
Aytac, Z.; Yildiz, Z.I.; Kayaci-Senirmak, F.; Tekinay, T.; Uyar, T. Electrospinning of cyclodextrin/linalool-inclusion complex nanofibers: Fast-dissolving nanofibrous web with prolonged release and antibacterial activity. Food Chem., 2017, 231, 192-201.
[http://dx.doi.org/10.1016/j.foodchem.2017.03.113] [PMID: 28449997]
[63]
Chun, T.; MacCalman, T.; Dinu, V.; Phillips-Jones, S.O.M.K.; Harding, S.E.; Harding, S.E. Hydrodynamic compatibility of hyaluronic acid and tamarind seed polysaccharide as ocular mucin supplements. Polymers (Basel), 2020, 12(10), 2272.
[http://dx.doi.org/10.3390/polym12102272] [PMID: 33023220]
[64]
Vass, P.; Nagy, Z.K.; Kóczián, R.; Fehér, C.; Démuth, B.; Szabó, E.; Andersen, S.K.; Vigh, T.; Verreck, G.; Csontos, I.; Marosi, G.; Hirsch, E. Continuous drying of a protein-type drug using scaled-up fiber formation with HP-β-CD matrix resulting in a directly compressible powder for tableting. Eur. J. Pharm. Sci., 2020, 141, 105089.
[http://dx.doi.org/10.1016/j.ejps.2019.105089] [PMID: 31626967]
[65]
Celebioglu, A.; Uyar, T. Development of ferulic acid/cyclodextrin inclusion complex nanofibers for fast-dissolving drug delivery system. Int. J. Pharm., 2020, 584, 119395.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119395] [PMID: 32407941]
[66]
Fakhrali, A.; Semnani, D.; Salehi, H.; Ghane, M. Electrospun PGS/PCL nanofibers: From straight to sponge and spring-like morphology. Polym. Adv. Technol., 2020, 3, 1-16.
[http://dx.doi.org/10.1002/pat.5038]
[67]
Chen, J.; Pan, H.; Duan, H.; Deng, W.; Zhang, F.; Yang, X.; Pan, W. Self-assembled liposome from core-sheath chitosan-based fibres for buccal delivery of carvedilol: formulation, characterization and in vitro and ex vivo buccal absorption. J. Pharm. Pharmacol., 2020, 72(3), 343-355.
[http://dx.doi.org/10.1111/jphp.13210] [PMID: 31863466]
[68]
Zhou, T.; Wang, Y.; Lei, F.; Yu, J. In-situ electrospinning for intestinal hemostasis. Int. J. Nanomed., 2020, 15, 3869-3875.
[http://dx.doi.org/10.2147/IJN.S241909] [PMID: 32764920]
[69]
Xiao, Q.; Lim, L.T. Pullulan-alginate fibers produced using free surface electrospinning. Int. J. Biol. Macromol., 2018, 112, 809-817.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.02.005] [PMID: 29410269]
[70]
Aytac, Z.; Uyar, T. Core-shell nanofibers of curcumin/cyclodextrin inclusion complex and polylactic acid: Enhanced water solubility and slow release of curcumin. Int. J. Pharm., 2017, 518(1-2), 177-184.
[http://dx.doi.org/10.1016/j.ijpharm.2016.12.061] [PMID: 28057465]
[71]
Sipos, E.; Kósa, N.; Kazsoki, A.; Szabó, Z.I.; Zelkó, R. Formulation and characterization of aceclofenac-loaded nanofiber based orally dissolving webs. Pharmaceutics, 2019, 11(8), 417.
[http://dx.doi.org/10.3390/pharmaceutics11080417] [PMID: 31426548]
[72]
Kovács, A.; Démuth, B.; Meskó, A.; Zelkó, R. Preformulation studies of furosemide-loaded electrospun nanofibrous systems for buccal administration. Polymers (Basel), 2017, 9(12), 643.
[http://dx.doi.org/10.3390/polym9120643] [PMID: 30965943]
[73]
Domokos, A.; Balogh, A.; Dénes, D.; Nyerges, G.; Ződi, L.; Farkas, B.; Marosi, G.; Nagy, Z.K. Continuous manufacturing of orally dissolving webs containing a poorly soluble drug via electrospinning. Eur. J. Pharm. Sci., 2019, 130, 91-99.
[http://dx.doi.org/10.1016/j.ejps.2019.01.026] [PMID: 30684658]
[74]
Abbas, H.A.; Mabrouk, M.; Soliman, A.A.F.; Beherei, H.H. Dual- function membranes based on alginate/methyl cellulose composite for control drug release and proliferation enhancement of fibroblast cells. Int. J. Biol. Macromol., 2020, 164, 2831-2841.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.171] [PMID: 32853615]
[75]
Kyselica, R.; Enikov, E.T.; Anton, R. Method for production of aligned nanofibers and fiber elasticity measurement. J. Mechan. Behavior Biomed. Mater., 2020, 113, 104151.
[76]
Yoon, J.; Yang, H.S.; Lee, B.S.; Yu, W.R. Recent progress in coaxial electrospinning: new parameters, various structures, and wide applications. Adv. Mater., 2018, 30(42), e1704765.
[http://dx.doi.org/10.1002/adma.201704765] [PMID: 30152180]
[77]
Xu, Y.; Li, J.J.; Yu, D.G.; Williams, G.R.; Yang, J.H.; Wang, X. Influence of the drug distribution in electrospun gliadin fibers on drug-release behavior. Eur. J. Pharm. Sci., 2017, 106, 422-430.
[http://dx.doi.org/10.1016/j.ejps.2017.06.017] [PMID: 28614732]
[78]
Gaydhane, M.K.; Kanuganti, J.S.; Sharma, C.S. Honey and curcumin loaded multilayered polyvinylalcohol/cellulose acetate electrospun nanofibrous mat for wound healing. J. Mater. Res., 2020, 35, 600-609.
[http://dx.doi.org/10.1557/jmr.2020.52]
[79]
Allafchian, A.; Hosseini, H.; Ghoreishi, S.M. Electrospinning of PVA-carboxymethyl cellulose nanofibers for flufenamic acid drug delivery. Int. J. Biol. Macromol., 2020, 163, 1780-1786.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.129] [PMID: 32971166]
[80]
Ruhela, A.; Kasinathan, G.N.; Rath, S.N.; Sasikala, M.; Sharma, C.S. Electrospun freestanding hydrophobic fabric as a potential polymer semi-permeable membrane for islet encapsulation. Mater. Sci. Eng. C, 2021, 118, 111409.
[http://dx.doi.org/10.1016/j.msec.2020.111409] [PMID: 33255012]
[81]
Sharifisamani, E.; Mousazadegan, F.; Bagherzadeh, R.; Latifi, M. PEG-PLA-PCL based electrospun yarns with curcumin control release property as suture. Polym. Eng. Sci., 2020, 60(7), 1520-1529.
[http://dx.doi.org/10.1002/pen.25398]
[82]
Vempati, S.; Ranjith, K.S.; Topuz, F.; Biyikli, N.; Uyar, T. Electrospinning combined with atomic layer deposition to generate applied nanomaterials: A review. ACS Appl. Nano Mater., 2020, 3(7), 6186-6209.
[http://dx.doi.org/10.1021/acsanm.0c01120]
[83]
Aytac, Z.; Celebioglu, A.; Yildiz, Z.I.; Uyar, T. Efficient encapsulation of citral in fast-dissolving polymer-free electrospun nanofibers of cyclodextrin inclusion complexes: High thermal stability, longer shelf-life, and enhanced water solubility of citral. Nanomaterials (Basel), 2018, 8(10), 793.
[http://dx.doi.org/10.3390/nano8100793] [PMID: 30301193]
[84]
Yildiz, Z.I.; Kilic, M.E.; Durgun, E.; Uyar, T. Molecular encapsulation of cinnamaldehyde within cyclodextrin inclusion complex electrospun nanofibers: Fast-dissolution, enhanced water solubility, high temperature stability, and antibacterial activity of cinnamaldehyde. J. Agric. Food Chem., 2019, 67(40), 11066-11076.
[http://dx.doi.org/10.1021/acs.jafc.9b02789] [PMID: 31508948]
[85]
Li, D.; Wang, M.; Song, W.L.; Yu, D.G.; Annie-Bligh, S.W. Electrospun Janus beads-on-a-string structures for different types of controlled release profiles of double drugs. Biomolecules, 2020, 11, 635.
[http://dx.doi.org/10.3390/biom11050635]
[86]
Hamed, R.; Omran, H. Development of dual-release pellets of the non-steroidal anti-inflammatory drug celecoxib. J. Drug Deliv. Sci. Technol., 2019, 55, 101419.
[http://dx.doi.org/10.1016/j.jddst.2019.101419]
[87]
Khalf, A.; Madihally, S.V. Recent advances in multiaxial electrospinning for drug delivery. Eur. J. Pharm. Biopharm., 2017, 112, 1-17.
[http://dx.doi.org/10.1016/j.ejpb.2016.11.010] [PMID: 27865991]
[88]
Démuth, B.; Farkas, A.; Pataki, H.; Balogh, A.; Szabó, B.; Borbás, E.; Sóti, P.L.; Vigh, T.; Kiserdei, É.; Farkas, B.; Mensch, J.; Verreck, G.; Van Assche, I.; Marosi, G.; Nagy, Z.K. Detailed stability investigation of amorphous solid dispersions prepared by single-needle and high speed electrospinning. Int. J. Pharm., 2016, 498(1-2), 234-244.
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.029] [PMID: 26705153]
[89]
Kazsoki, A.; Szabó, P.; Süvegh, K.; Vörös, T.; Zelkó, R. Macro- and microstructural tracking of ageing-related changes of papaverine hydrochloride-loaded electrospun nanofibrous buccal sheets. J. Pharm. Biomed. Anal., 2017, 143, 62-67.
[http://dx.doi.org/10.1016/j.jpba.2017.05.035] [PMID: 28577418]
[90]
Brough, C.; Williams, R.O., III Amorphous solid dispersions and nano-crystal technologies for poorly water-soluble drug delivery. Int. J. Pharm., 2013, 453(1), 157-166.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.061] [PMID: 23751341]
[91]
Augustijns, P.; Brewster, M.E. Supersaturating drug delivery systems: fast is not necessarily good enough. J. Pharm. Sci., 2012, 101(1), 7-9.
[http://dx.doi.org/10.1002/jps.22750] [PMID: 21953470]
[92]
Démuth, B.; Galata, D.L.; Balogh, A.; Szabó, E.; Nagy, B.; Farkas, A.; Hirsch, E.; Pataki, H.; Vigh, T.; Mensch, J.; Verreck, G.; Nagy, Z.K.; Marosi, G. Application of hydroxypropyl methylcellulose as a protective agent against magnesium stearate induced crystallization of amorphous itraconazole. Eur. J. Pharm. Sci., 2018, 121, 301-308.
[http://dx.doi.org/10.1016/j.ejps.2018.06.008] [PMID: 29902510]
[93]
Soni, G.; Yadav, K.S.; Gupta, M.K. Design of experiments (DoE) approach to optimize the sustained release microparticles of gefitinib. Curr. Drug Deliv., 2019, 16(4), 364-374.
[http://dx.doi.org/10.2174/1567201816666181227114109] [PMID: 30588883]
[94]
Celebioglu, A.; Uyar, T. Metronidazole/Hydroxypropyl-β-Cyclodextrin inclusion complex nanofibrous webs as fast-dissolving oral drug delivery system. Int. J. Pharm., 2019, 572, 118828.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118828] [PMID: 31715341]
[95]
Ray, S.; Bera, M.; Bhattacharyya, U.K.; Das, S.; Seth, S.; Pal, P.K.; Aziz, A. pH sensitive interpenetrating network bio containers of gum ghatti for sustained release of glipizide. Curr. Drug Deliv., 2019, 16(9), 849-861.
[http://dx.doi.org/10.2174/1567201816666191017154719] [PMID: 31625476]
[96]
Li, X.; Kanjwal, M.A.; Lin, L.; Chronakis, I.S. Electrospun polyvinyl-alcohol nanofibers as oral fast-dissolving delivery system of caffeine and riboflavin. Colloids Surf. B Biointerfaces, 2013, 103, 182-188.
[http://dx.doi.org/10.1016/j.colsurfb.2012.10.016] [PMID: 23201736]
[97]
Abdalkarim, S.Y.H.; Yu, H.; Wang, C.; Chen, Y.; Zou, Z.; Han, L.; Yao, J.; Tam, K.C. Thermo and light-responsive phase change nanofibers with high energy storage efficiency for energy storage and thermally regulated on-off drug release devices. Chem. Eng. J., 2019, 375, 121979.
[http://dx.doi.org/10.1016/j.cej.2019.121979]
[98]
Bai, Y.; Wang, D.; Zhang, Z.; Pan, J.; Cui, Z.; Yu, D.G.; Bligh, S.W.A. Testing of fast dissolution of ibuprofen from its electrospun hydrophilic polymer nanocomposites. Polym. Test., 2020, 93, 106072.
[99]
Chi, Z.; Zhao, S.; Feng, Y.; Yang, L. On-line dissolution analysis of multiple drugs encapsulated in electrospun nanofibers. Int. J. Pharm., 2020, 588, 119800.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119800] [PMID: 32828974]
[100]
Lunni, D.; Giordano, G.; Pignatelli, F.; Filippeschi, C.; Linari, S.; Sinibaldi, E.; Mazzolai, B. Light-assisted electrospinning monitoring for soft polymeric nanofibers. Sci. Rep., 2020, 10(1), 16341.
[http://dx.doi.org/10.1038/s41598-020-73252-4] [PMID: 33004968]
[101]
He, H.; Wang, Y.; Farkas, B.; Nagy, Z.K.; Molnar, K. Analysis and prediction of the diameter and orientation of AC electrospun nanofibers by response surface methodology. Mater. Des., 2020, 194, 108902.
[http://dx.doi.org/10.1016/j.matdes.2020.108902]
[102]
Sofi, H.S.; Abdal-Hay, A.; Ivanovski, S.; Zhang, Y.S.; Sheikh, F.A. Electrospun nanofibers for the delivery of active drugs through nasal, oral and vaginal mucosa: Current status and future perspectives. Mater. Sci. Eng. C, 2020, 111, 110756.
[http://dx.doi.org/10.1016/j.msec.2020.110756] [PMID: 32279775]
[103]
Li, J.; Pan, H.; Ye, Q.; Shi, C.; Zhang, X.; Pan, W. Carvedilol-loaded polyvinylpyrrolidone electrospun nanofiber film for sublingual delivery. J. Drug Deliv. Sci. Technol., 2020, 58, 101726.
[http://dx.doi.org/10.1016/j.jddst.2020.101726]
[104]
Casian, T.; Borbás, E.; Ilyés, K.; Démuth, B.; Farkas, A.; Rapi, Z.; Bogdan, C.; Iurian, S.; Toma, V.; Știufiuc, R.; Farkas, B.; Balogh, A.; Marosi, G.; Tomuță, I.; Nagy, Z.K. Electrospun amorphous solid dispersions of meloxicam: Influence of polymer type and downstream processing to orodispersible dosage forms. Int. J. Pharm., 2019, 569, 118593.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118593] [PMID: 31398371]
[105]
Huang, Y.C.; Li, R.Y.; Chen, J.Y.; Chen, J.K. Biphasic release of gentamicin from chitosan/fucoidan nanoparticles for pulmonary delivery. Carbohydr. Polym., 2016, 138, 114-122.
[http://dx.doi.org/10.1016/j.carbpol.2015.11.072] [PMID: 26794744]
[106]
Xu, H.; Xu, X.; Li, S.; Song, W.L.; Yu, D.G.; Annie Bligh, S.W. The effect of drug heterogeneous distributions within core-sheath nanostructures on its sustained release profiles. Biomolecules, 2021, 11, 1330.
[http://dx.doi.org/10.3390/biom11091330]
[107]
Wang, K.; Wen, H.F.; Yu, D.G.; Yang, Y.Y.; Zhang, D.F. Electrosprayed hydrophilic nanocomposites coated with shellac for colon-specific delayed drug delivery. Mater. Des., 2018, 143, 248-255.
[http://dx.doi.org/10.1016/j.matdes.2018.02.016]
[108]
Yu, D.G. Preface-Bettering drug delivery knowledge from pharmaceutical techniques and excipients. Curr. Drug Deliv., 2021, 18(1), 2-3.
[109]
Phothipanyakun, S.; Suttikornchai, S.; Charoenchaitrakool, M. Dissolution rate enhancement of sulfamethoxazole using the gas anti-solvent (gas) process. Powder Technol., 2013, 250, 84-90.
[http://dx.doi.org/10.1016/j.powtec.2013.10.019]
[110]
Dittanet, P.; Phothipanyakun, S.; Charoenchaitrakool, M. Co-precipitation of mefenamic acidpolyvinylpyrrolidone K30 composites using gas anti-solvent. J. Taiwan Institute Chem. Eng., 2016, 63, 17-24.
[http://dx.doi.org/10.1016/j.jtice.2016.03.010]
[111]
Charoenchaitrakool, M.; Niamnuy, C.; Dittanet, P.; Chantes, O.; Chuangyang, P. Statistical optimization for precipitation of bioactive compounds from extracted centella asiatica using gas anti-solvent technique. J. Food Process Eng., 2020, 43, e13318.
[http://dx.doi.org/10.1111/jfpe.13318]
[112]
Kowalczyk, T.; Kowalczyk, T. Functional micro- and nanofifibers obtained by nonwoven post-modifification. Polymers (Basel), 2020, 12(5), 1087.
[http://dx.doi.org/10.3390/polym12051087] [PMID: 32397603]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy