Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Role of Calcium Homeostasis in Ischemic Stroke: A Review

Author(s): Abhilash Ludhiadch, Rashmi Sharma, Aishwarya Muriki and Anjana Munshi*

Volume 21, Issue 1, 2022

Published on: 12 February, 2021

Page: [52 - 61] Pages: 10

DOI: 10.2174/1871527320666210212141232

Price: $65

Abstract

Stroke is the second most common cause of death worldwide. It occurs due to the insufficient supply of oxygen-rich blood to the brain. It is a complex disease with multiple associated risk factors, including smoking, alcoholism, age, sex, ethnicity, etc. Calcium ions are known to play a vital role in cell death pathways, which is a ubiquitous intracellular messenger during and immediately after an ischemic period. Disruption in normal calcium homeostasis is known to be a major initiator and activator of the ischemic cell death pathway. Under ischemic stroke conditions, glutamate is released from the neurons and glia, which further activates the N-methyl-D-aspartate (NMDA) receptor and triggers the rapid translocation of Ca2+ from extracellular to intracellular spaces in cerebral tissues and vice versa. Various studies indicated that Ca2+ could have harmful effects on neurons under acute ischemic conditions. Mitochondrial dysfunction also contributes to delayed neuronal death, and it was established decades ago that massive calcium accumulation triggers mitochondrial damage. Elevated Ca2+ levels cause mitochondria to swell and release their contents. As a result, oxidative stress and mitochondrial calcium accumulation activate mitochondrial permeability transition and lead to depolarization-coupled production of reactive oxygen species. This association between calcium levels and mitochondrial death suggests that elevated calcium levels might have a role in the neurological outcome in ischemic stroke. Previous studies have also reported that elevated Ca2+ levels play a role in the determination of infarct size, outcome, and recurrence of ischemic stroke. The current review has been compiled to understand the multidimensional role of altered Ca2+ levels in the initiation and alteration of neuronal death after an ischemic attack. The underlying mechanisms understood to date have also been discussed.

Keywords: Cerebral ischemia, calcium homeostasis, excitotoxicity, reactive oxygen species, stroke, death

Graphical Abstract
[1]
Goldberg WJ, Kadingo RM, Barrett JN. Effects of ischemia-like conditions on cultured neurons: protection by low Na+, low Ca2+ solutions. J Neurosci 1986; 6(11): 3144-51.
[http://dx.doi.org/10.1523/JNEUROSCI.06-11-03144.1986] [PMID: 3772425]
[2]
Khoshnam SE, Winlow W, Farzaneh M, Farbood Y, Moghaddam HF. Pathogenic mechanisms following ischemic stroke. Neurol Sci 2017; 38(7): 1167-86.
[http://dx.doi.org/10.1007/s10072-017-2938-1] [PMID: 28417216]
[3]
Mattson MP, Duan W, Pedersen WA, Culmsee C. Neurodegenerative disorders and ischemic brain diseases. Apoptosis 2001; 6(1-2): 69-81.
[http://dx.doi.org/10.1023/A:1009676112184] [PMID: 11321043]
[4]
Mehta SL, Manhas N, Raghubir R. Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Brain Res Rev 2007; 54(1): 34-66.
[http://dx.doi.org/10.1016/j.brainresrev.2006.11.003] [PMID: 17222914]
[5]
Südhof TC. Calcium control of neurotransmitter release. Cold Spring Harb Perspect Biol 2012; 4(1): a011353.
[http://dx.doi.org/10.1101/cshperspect.a011353] [PMID: 22068972]
[6]
Nikoletopoulou V, Tavernarakis N. Calcium homeostasis in aging neurons. Front Genet 2012; 3: 200.
[http://dx.doi.org/10.3389/fgene.2012.00200] [PMID: 23060904]
[7]
Tymianski M, Tator CH. Normal and abnormal calcium homeostasis in neurons: a basis for the pathophysiology of traumatic and ischemic central nervous system injury. Neurosurgery 1996; 38(6): 1176-95.
[PMID: 8727150]
[8]
Hu HJ, Song M. Disrupted ionic homeostasis in ischemic stroke and new therapeutic targets. J Stroke Cerebrovasc Dis 2017; 26(12): 2706-19.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2017.09.011] [PMID: 29054733]
[9]
Woodruff TM, Thundyil J, Tang SC, Sobey CG, Taylor SM, Arumugam TV. Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener 2011; 6(1): 11.
[http://dx.doi.org/10.1186/1750-1326-6-11] [PMID: 21266064]
[10]
Pravina P, Sayaji D, Avinash M. Calcium and its role in human body. Int J Res Pharm Biomed Sci 2013; 4(2): 659-68.
[11]
Chi H, Chang HY, Sang TK. Neuronal cell death mechanisms in major neurodegenerative diseases. Int J Mol Sci 2018; 19(10): 3082.
[http://dx.doi.org/10.3390/ijms19103082] [PMID: 30304824]
[12]
Singh V, Mishra VN, Chaurasia RN, Joshi D, Pandey V. Modes of calcium regulation in ischemic neuron. Indian J Clin Biochem 2019; 34(3): 246-53.
[http://dx.doi.org/10.1007/s12291-019-00838-9] [PMID: 31391713]
[13]
Bano D, Ankarcrona M. Beyond the critical point: an overview of excitotoxicity, calcium overload and the downstream consequences. Neurosci Lett 2018; 663: 79-85.
[http://dx.doi.org/10.1016/j.neulet.2017.08.048] [PMID: 28843346]
[14]
Vasudeva K, Munshi A. Genetics of platelet traits in ischaemic stroke: focus on mean platelet volume and platelet count. Int J Neurosci 2019; 129(5): 511-22.
[http://dx.doi.org/10.1080/00207454.2018.1538991] [PMID: 30371123]
[15]
Olney JW. Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science 1969; 164(3880): 719-21.
[http://dx.doi.org/10.1126/science.164.3880.719] [PMID: 5778021]
[16]
Ankarcrona M, Dypbukt JM, Bonfoco E, et al. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 1995; 15(4): 961-73.
[http://dx.doi.org/10.1016/0896-6273(95)90186-8] [PMID: 7576644]
[17]
Maher P, van Leyen K, Dey PN, Honrath B, Dolga A, Methner A. The role of Ca2+ in cell death caused by oxidative glutamate toxicity and ferroptosis. Cell Calcium 2018; 70: 47-55.
[http://dx.doi.org/10.1016/j.ceca.2017.05.007] [PMID: 28545724]
[18]
Franklin JL. Redox regulation of the intrinsic pathway in neuronal apoptosis. Antioxidants & redox signaling 2011; 14(8): 1437-48.
[http://dx.doi.org/10.1089/ars.2010.3596]
[19]
Görlach A, Bertram K, Hudecova S, Krizanova O. Calcium and ROS: a mutual interplay. Redox Biol 2015; 6: 260-71.
[http://dx.doi.org/10.1016/j.redox.2015.08.010] [PMID: 26296072]
[20]
Niizuma K, Yoshioka H, Chen H, et al. Mitochondrial and apoptotic neuronal death signaling pathways in cerebral ischemia. Biochim Biophys Acta 2010; 1802(1): 92-9.
[http://dx.doi.org/10.1016/j.bbadis.2009.09.002] [PMID: 19751828]
[21]
Cadenas E, Davies KJ. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic Biol Med 2000; 29(3-4): 222-30.
[http://dx.doi.org/10.1016/S0891-5849(00)00317-8] [PMID: 11035250]
[22]
Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007; 39(1): 44-84.
[http://dx.doi.org/10.1016/j.biocel.2006.07.001] [PMID: 16978905]
[23]
Beckhauser TF, Francis-Oliveira J, De Pasquale R. Reactive oxygen species: physiological and physiopathological effects on synaptic plasticity: supplementary issue: brain plasticity and repair. J Exper Neurosci 2016; 10(Suppl 1): 23-48.
[http://dx.doi.org/10.4137/JEN.S39887]
[24]
Buck BH, Liebeskind DS, Saver JL, et al. Association of higher serum calcium levels with smaller infarct volumes in acute ischemic stroke. Arch Neurol 2007; 64(9): 1287-91.
[http://dx.doi.org/10.1001/archneur.64.9.1287] [PMID: 17846267]
[25]
Ovbiagele B, Starkman S, Teal P, et al. Serum calcium as prognosticator in ischemic stroke. Stroke 2008; 39(8): 2231-6.
[http://dx.doi.org/10.1161/STROKEAHA.107.513499] [PMID: 18583560]
[26]
Chung JW, Ryu WS, Kim BJ, Yoon BW. Elevated calcium after acute ischemic stroke: association with a poor short-term outcome and long-term mortality. J Stroke 2015; 17(1): 54-9.
[http://dx.doi.org/10.5853/jos.2015.17.1.54] [PMID: 25692107]
[27]
Borah M, Dhar S, Gogoi DM, Ruram AA. Association of serum calcium levels with infarct size in acute ischemic stroke: Observations from Northeast India. J Neurosci Rural Pract 2016; 7(Suppl. 1): S41-5.
[http://dx.doi.org/10.4103/0976-3147.196461] [PMID: 28163502]
[28]
Larsson SC, Traylor M, Burgess S, et al. Serum magnesium and calcium levels in relation to ischemic stroke: mendelian randomization study. Neurology 2019; 92(9): e944-50.
[http://dx.doi.org/10.1212/WNL.0000000000007001] [PMID: 30804065]
[29]
Ding S. Ca2+ signaling in astrocytes and its role in ischemic stroke. In: Glutamate and ATP at the Interface of Metabolism and Signaling in the Brain. Cham: Springer 2014; pp. 189-211.
[30]
Choi DW. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1988; 1(8): 623-34.
[http://dx.doi.org/10.1016/0896-6273(88)90162-6] [PMID: 2908446]
[31]
Medvedeva YV, Lin B, Shuttleworth CW, Weiss JH. Intracellular Zn2+ accumulation contributes to synaptic failure, mitochondrial depolarization, and cell death in an acute slice oxygen-glucose deprivation model of ischemia. J Neurosci 2009; 29(4): 1105-14.
[http://dx.doi.org/10.1523/JNEUROSCI.4604-08.2009] [PMID: 19176819]
[32]
Amantea D, Bagetta G. Excitatory and inhibitory amino acid neurotransmitters in stroke: from neurotoxicity to ischemic tolerance. Curr Opin Pharmacol 2017; 35: 111-9.
[http://dx.doi.org/10.1016/j.coph.2017.07.014] [PMID: 28826602]
[33]
Malik AR, Willnow TE. Excitatory amino acid transporters in physiology and disorders of the central nervous system. Int J Mol Sci 2019; 20(22): 5671.
[http://dx.doi.org/10.3390/ijms20225671] [PMID: 31726793]
[34]
Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci 2003; 4(5): 399-415.
[http://dx.doi.org/10.1038/nrn1106] [PMID: 12728267]
[35]
Choi DW. Calcium: still center-stage in hypoxic-ischemic neuronal death. Trends Neurosci 1995; 18(2): 58-60.
[http://dx.doi.org/10.1016/0166-2236(95)80018-W] [PMID: 7537408]
[36]
Budd SL, Nicholls DG. Mitochondria, calcium regulation, and acute glutamate excitotoxicity in cultured cerebellar granule cells. J Neurochem 1996; 67(6): 2282-91.
[http://dx.doi.org/10.1046/j.1471-4159.1996.67062282.x] [PMID: 8931459]
[37]
Zhang L, Rzigalinski BA, Ellis EF, Satin LS. Reduction of voltage-dependent Mg2+ blockade of NMDA current in mechanically injured neurons. Science 1996; 274(5294): 1921-3.
[http://dx.doi.org/10.1126/science.274.5294.1921] [PMID: 8943207]
[38]
Goforth PB, Ellis EF, Satin LS. Enhancement of AMPA-mediated current after traumatic injury in cortical neurons. J Neurosci 1999; 19(17): 7367-74.
[http://dx.doi.org/10.1523/JNEUROSCI.19-17-07367.1999] [PMID: 10460243]
[39]
Stanika RI, Winters CA, Pivovarova NB, Andrews SB. Differential NMDA receptor-dependent calcium loading and mitochondrial dysfunction in CA1 vs. CA3 hippocampal neurons. Neurobiol Dis 2010; 37(2): 403-11.
[http://dx.doi.org/10.1016/j.nbd.2009.10.020] [PMID: 19879359]
[40]
Zhang T, Wu C, Yang X, et al. Pseudoginsenoside-F11 protects against transient cerebral ischemia injury in rats involving repressing calcium overload. Neuroscience 2019; 411: 86-104.
[http://dx.doi.org/10.1016/j.neuroscience.2019.05.030] [PMID: 31129202]
[41]
Choi DW. Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 1988; 11(10): 465-9.
[http://dx.doi.org/10.1016/0166-2236(88)90200-7] [PMID: 2469166]
[42]
Arundine M, Tymianski M. Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci 2004; 61(6): 657-68.
[http://dx.doi.org/10.1007/s00018-003-3319-x] [PMID: 15052409]
[43]
Lees KR. Does neuroprotection improve stroke outcome? Lancet 1998; 351(9114): 1447-8.
[http://dx.doi.org/10.1016/S0140-6736(05)78865-6] [PMID: 9605797]
[44]
Hansen KB, Yi F, Perszyk RE, et al. Structure, function, and allosteric modulation of NMDA receptors. J Gen Physiol 2018; 150(8): 1081-105.
[http://dx.doi.org/10.1085/jgp.201812032] [PMID: 30037851]
[45]
Wu QJ, Tymianski M. Targeting NMDA receptors in stroke: new hope in neuroprotection. Mol Brain 2018; 11(1): 15.
[http://dx.doi.org/10.1186/s13041-018-0357-8] [PMID: 29534733]
[46]
Bock FJ, Tait SW. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol 2020; 21(2): 85-100.
[PMID: 31636403]
[47]
Vergun O, Keelan J, Khodorov BI, Duchen MR. Glutamate-induced mitochondrial depolarisation and perturbation of calcium homeostasis in cultured rat hippocampal neurones. J Physiol 1999; 519(Pt 2): 451-66.
[http://dx.doi.org/10.1111/j.1469-7793.1999.0451m.x] [PMID: 10457062]
[48]
Nicholls DG, Ward MW. Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. Trends Neurosci 2000; 23(4): 166-74.
[http://dx.doi.org/10.1016/S0166-2236(99)01534-9] [PMID: 10717676]
[49]
Chen SD, Wu HY, Yang DI, et al. Effects of rosiglitazone on global ischemia-induced hippocampal injury and expression of mitochondrial uncoupling protein 2. Biochem Biophys Res Commun 2006; 351(1): 198-203.
[http://dx.doi.org/10.1016/j.bbrc.2006.10.017] [PMID: 17052689]
[50]
Novo E, Parola M. Redox mechanisms in hepatic chronic wound healing and fibrogenesis. Fibrogenesis Tissue Repair 2008; 1(1): 5.
[http://dx.doi.org/10.1186/1755-1536-1-5] [PMID: 19014652]
[51]
Esterberg R, Linbo T, Pickett SB, et al. Mitochondrial calcium uptake underlies ROS generation during aminoglycoside-induced hair cell death. J Clin Invest 2016; 126(9): 3556-66.
[http://dx.doi.org/10.1172/JCI84939] [PMID: 27500493]
[52]
Cadenas S. Mitochondrial uncoupling, ROS generation and cardioprotection. Biochim Biophys Acta Bioenerg 2018; 1859(9): 940-50.
[http://dx.doi.org/10.1016/j.bbabio.2018.05.019] [PMID: 29859845]
[53]
Kunz A, Park L, Abe T, et al. Neurovascular protection by ischemic tolerance: role of nitric oxide and reactive oxygen species. J Neurosci 2007; 27(27): 7083-93.
[http://dx.doi.org/10.1523/JNEUROSCI.1645-07.2007] [PMID: 17611261]
[54]
Krajewski S, Krajewska M, Ellerby LM, et al. Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia. Proc Natl Acad Sci USA 1999; 96(10): 5752-7.
[http://dx.doi.org/10.1073/pnas.96.10.5752] [PMID: 10318956]
[55]
Schinzel AC, Takeuchi O, Huang Z, et al. Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci USA 2005; 102(34): 12005-10.
[http://dx.doi.org/10.1073/pnas.0505294102] [PMID: 16103352]
[56]
Endo H, Kamada H, Nito C, Nishi T, Chan PH. Mitochondrial translocation of p53 mediates release of cytochrome C and hippocampal CA1 neuronal death after transient global cerebral ischemia in rats. J Neurosci 2006; 26(30): 7974-83.
[http://dx.doi.org/10.1523/JNEUROSCI.0897-06.2006] [PMID: 16870742]
[57]
Cao G, Xing J, Xiao X, et al. Critical role of calpain I in mitochondrial release of apoptosis-inducing factor in ischemic neuronal injury. J Neurosci 2007; 27(35): 9278-93.
[http://dx.doi.org/10.1523/JNEUROSCI.2826-07.2007] [PMID: 17728442]
[58]
Maciel EN, Vercesi AE, Castilho RF. Oxidative stress in Ca2+-induced membrane permeability transition in brain mitochondria. J Neurochem 2001; 79(6): 1237-45.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00670.x] [PMID: 11752064]
[59]
Stanika RI, Pivovarova NB, Brantner CA, Watts CA, Winters CA, Andrews SB. Coupling diverse routes of calcium entry to mitochondrial dysfunction and glutamate excitotoxicity. Proc Natl Acad Sci USA 2009; 106(24): 9854-9.
[http://dx.doi.org/10.1073/pnas.0903546106] [PMID: 19482936]
[60]
Liao Y, Hao Y, Chen H, He Q, Yuan Z, Cheng J. Mitochondrial calcium uniporter protein MCU is involved in oxidative stress-induced cell death. Protein Cell 2015; 6(6): 434-42.
[http://dx.doi.org/10.1007/s13238-015-0144-6] [PMID: 25753332]
[61]
Zhao L, Li S, Wang S, Yu N, Liu J. The effect of mitochondrial calcium uniporter on mitochondrial fission in hippocampus cells ischemia/reperfusion injury. Biochem Biophys Res Commun 2015; 461(3): 537-42.
[http://dx.doi.org/10.1016/j.bbrc.2015.04.066] [PMID: 25911325]
[62]
Zhen Y, Ding C, Sun J, Wang Y, Li S, Dong L. Activation of the calcium-sensing receptor promotes apoptosis by modulating the JNK/p38 MAPK pathway in focal cerebral ischemia-reperfusion in mice. Am J Transl Res 2016; 8(2): 911-21.
[PMID: 27158378]
[63]
Peng TI, Jou MJ. Oxidative stress caused by mitochondrial calcium overload. Ann N Y Acad Sci 2010; 1201(1): 183-8.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05634.x] [PMID: 20649555]
[64]
Zhao Q, Lu D, Wang J, et al. Calcium dysregulation mediates mitochondrial and neurite outgrowth abnormalities in SOD2 deficient embryonic cerebral cortical neurons. Cell Death Differ 2019; 26(9): 1600-14.
[http://dx.doi.org/10.1038/s41418-018-0230-4] [PMID: 30390091]
[65]
Nedergaard M, Dirnagl U. Role of glial cells in cerebral ischemia. Glia 2005; 50(4): 281-6.
[http://dx.doi.org/10.1002/glia.20205] [PMID: 15846807]
[66]
Rossi DJ, Oshima T, Attwell D. Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 2000; 403(6767): 316-21.
[http://dx.doi.org/10.1038/35002090] [PMID: 10659851]
[67]
Phillis JW, Ren J, O’Regan MH. Transporter reversal as a mechanism of glutamate release from the ischemic rat cerebral cortex: studies with DL-threo-β-benzyloxyaspartate. Brain Res 2000; 868(1): 105-12.
[http://dx.doi.org/10.1016/S0006-8993(00)02303-9] [PMID: 10841893]
[68]
Kimelberg HK. Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy. Glia 2005; 50(4): 389-97.
[http://dx.doi.org/10.1002/glia.20174] [PMID: 15846797]
[69]
Zheng W, Watts LT, Holstein DM, et al. Purinergic receptor stimulation reduces cytotoxic edema and brain infarcts in mouse induced by photothrombosis by energizing glial mitochondria. PLoS One 2010; 5(12): e14401.
[http://dx.doi.org/10.1371/journal.pone.0014401] [PMID: 21203502]
[70]
Risher WC, Croom D, Kirov SA. Persistent astroglial swelling accompanies rapid reversible dendritic injury during stroke-induced spreading depolarizations. Glia 2012; 60(11): 1709-20.
[http://dx.doi.org/10.1002/glia.22390] [PMID: 22821441]
[71]
Brown AM. Brain glycogen re-awakened. J Neurochem 2004; 89(3): 537-52.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02421.x] [PMID: 15086511]
[72]
Rossi DJ, Brady JD, Mohr C. Astrocyte metabolism and signaling during brain ischemia. Nat Neurosci 2007; 10(11): 1377-86.
[http://dx.doi.org/10.1038/nn2004] [PMID: 17965658]
[73]
Gürer G, Gursoy-Ozdemir Y, Erdemli E, Can A, Dalkara T. Astrocytes are more resistant to focal cerebral ischemia than neurons and die by a delayed necrosis. Brain Pathol 2009; 19(4): 630-41.
[http://dx.doi.org/10.1111/j.1750-3639.2008.00226.x] [PMID: 18947334]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy