Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Review Article

An Active and Low-cost Microwave Imaging System for Detection of Breast Cancer Using Back Scattered Signal

Author(s): Anupma Gupta*, Paras Chawla, Ankush Kansal and Kulbir Singh

Volume 18, Issue 5, 2022

Published on: 29 January, 2021

Article ID: e150322190889 Pages: 16

DOI: 10.2174/1573405617666210129114536

Price: $65

Abstract

A defected ground antenna with dielectric reflector is designed and investigated for breast tumour diagnosis. Ultra-wide band resonance (3.1 to 10.6 GHz) is achieved by etching two slots and adding a narrow vertical strip in a patch antenna. A high dielectric constant substrate is added below the antenna, which shows remarkable effect on performance. Antenna performance is verified experimentally on an artificially fabricated breast tissue and tumour. Malignant tissue has different dielectric properties than the normal tissue which causes deviation in the scattered antenna power. Average value of backscattered signal variation and ground penetrating radar (GPR) algorithm is used to localize the tumour of radius 4mm in breast tissue.

Keywords: Microwave imaging, ultra-wideband, dielectric reflector, GPR algorithm, breast tumour detection, backscattered signal.

Graphical Abstract
[1]
Li C. Breast Cancer Epidemiology. New York, USA: Springer 2010.
[http://dx.doi.org/10.1007/978-1-4419-0685-4]
[2]
Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin 2013; 63(1): 11-30.
[http://dx.doi.org/10.3322/caac.21166] [PMID: 23335087]
[3]
Kahar M, Ray A, Sarkar D, Sarkar P. An UWB microstrip monopole antenna for breast tumour detection. Microw Opt Technol Lett 2015; 57: 49-54.
[http://dx.doi.org/10.1002/mop.28773]
[4]
Mojabi P, LoVetri J. A novel microwave tomography system using a rotatable conductive enclosure. IEEE Trans Antenn Propag 2011; 59: 1597-605.
[http://dx.doi.org/10.1109/TAP.2011.2123066]
[5]
Grzegorczyk TM, Meaney PM, Kaufman PA, diFlorio-Alexander RM, Paulsen KD. Fast 3-d tomographic microwave imaging for breast cancer detection. IEEE Trans Med Imaging 2012; 31(8): 1584-92.
[http://dx.doi.org/10.1109/TMI.2012.2197218] [PMID: 22562726]
[6]
Kornguth PJ, Keefe FJ, Wright KR, Delong DM. Mammography pain in women treated conservatively for breast cancer. J Pain 2000; 1(4): 268-74.
[http://dx.doi.org/10.1054/jpai.2000.7884] [PMID: 14622609]
[7]
Kuhl CK, Schrading S, Leutner CC, et al. Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer. J Clin Oncol 2005; 23(33): 8469-76.
[http://dx.doi.org/10.1200/JCO.2004.00.4960] [PMID: 16293877]
[8]
Elmore JG, Barton MB, Moceri VM, Polk S, Arena PJ, Fletcher SW. Ten-year risk of false positive screening mammograms and clinical breast examinations. N Engl J Med 1998; 338(16): 1089-96.
[http://dx.doi.org/10.1056/NEJM199804163381601] [PMID: 9545356]
[9]
Huynh PT, Jarolimek AM, Daye S. The false-negative mammogram. Radiographics 1998; 18(5): 1137-54.
[http://dx.doi.org/10.1148/radiographics.18.5.9747612] [PMID: 9747612]
[10]
Berg WA, Gutierrez L, NessAiver MS, et al. Diagnostic accuracy of mammography, clinical examination, US, and MR imaging in preoperative assessment of breast cancer. Radiology 2004; 233(3): 830-49.
[http://dx.doi.org/10.1148/radiol.2333031484] [PMID: 15486214]
[11]
Hassan AM, El-Shenawee M. Review of electromagnetic techniques for breast cancer detection. IEEE Rev Biomed Eng 2011; 4: 103-18.
[http://dx.doi.org/10.1109/RBME.2011.2169780] [PMID: 22273794]
[12]
Klemm M, Leendertz JA, Gibbins D, Craddock I, Preece A, Benjamin R. Microwave radar- based differential breast cancer imaging: Imaging in homogenous breast phantoms and low contrast scenarios. IEEE Trans Antenn Propag 2010; 58: 2337-44.
[http://dx.doi.org/10.1109/TAP.2010.2048860]
[13]
Kwon S, Lee S. Recent advances in microwave imaging for breast cancer detection. Int J Biomed Imaging 2016; 2016: 5054912.
[http://dx.doi.org/10.1155/2016/5054912] [PMID: 28096808]
[14]
Lazebnik M, McCartney L, Popovic D, et al. A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries. Phys Med Biol 2007; 52(10): 2637-56.
[http://dx.doi.org/10.1088/0031-9155/52/10/001] [PMID: 17473342]
[15]
Davis SK, Van Veen BD, Hagness SC, Kelcz F. Breast tumor characterization based on ultrawideband microwave backscatter. IEEE Trans Biomed Eng 2008; 55(1): 237-46.
[http://dx.doi.org/10.1109/TBME.2007.900564] [PMID: 18232367]
[16]
Wörtge D, Moll J, Krozer V, et al. Comparison of X-ray-Mammography and planar UWB microwave imaging of the breast: First results from a patient study. Diagnostics (Basel) 2018; 8(3): 54.
[http://dx.doi.org/10.3390/diagnostics8030054] [PMID: 30134617]
[17]
El Misilmani HM, Naous T, Al Khatib SK, Kabalan KY. A survey on antenna designs for breast cancer detection using microwave imaging. IEEE Access 2020; 8: 102570-94.
[http://dx.doi.org/10.1109/ACCESS.2020.2999053]
[18]
Salvador SM, Fear EC, Okoniewski M, Matyas JR. Exploring joint tissues with microwave imaging. IEEE Trans Microw Theory Tech 2010; 58: 2307-13.
[http://dx.doi.org/10.1109/TMTT.2010.2052662]
[19]
Hagness SC, Taflove A, Bridges JE. Two-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: fixed-focus and antenna-array sensors. IEEE Trans Biomed Eng 1998; 45(12): 1470-9.
[http://dx.doi.org/10.1109/10.730440] [PMID: 9835195]
[20]
Bond EJ, Li X, Hagness SC, Vanveen BD. Microwave imaging via space-time beamforming for early detection of breast cancer. IEEE Trans Antenn Propag 2003; 51(8): 1690-705.
[http://dx.doi.org/10.1109/TAP.2003.815446]
[21]
Sugitani T, Kubota S, Toya AX, Kikkawa TA. Compact 4×4 planar UWB antenna array for 3-D breast cancer detection. IEEE Antennas Wirel Propag Lett 2013; 12: 733-6.
[http://dx.doi.org/10.1109/LAWP.2013.2270933]
[22]
Li X, Hagness SC. A confocal microwave imaging algorithm for breast cancer detection. IEEE Microw Wirel Compon Lett 2001; 11: 130-2.
[http://dx.doi.org/10.1109/7260.915627]
[23]
Kaur G, Kaur A. Breast tissue tumor detection using “S” parameter analysis with an UWB stacked aperture coupled microstrip patch antenna having a “ + ” shaped defected ground structure. Int J Microw Wirel Technol 2019; 12(7): 635-51.
[http://dx.doi.org/10.1017/S1759078719001442]
[24]
Beada’a JM, Abbosh AM, Mustafa S, Ireland D. Microwave system for head imaging. IEEE Trans Instrum Meas 2014; 63: 117.
[http://dx.doi.org/10.1109/TIM.2013.2277562]
[25]
Islam MT, Samsuzzaman M, Islam MT, Kibria S, Singh MJS. A homogeneous breast phantom measurement system with an improved modified microwave imaging antenna sensor. Sensors (Basel) 2018; 18(9): 2962.
[http://dx.doi.org/10.3390/s18092962] [PMID: 30189684]
[26]
Reimer T, Solis-Nepote M, Pistorius S. The application of an iterative structure to the delay-and-sum and the delay-multiply-and- sum beamformers in breast microwave imaging. Diagnostics (Basel) 2020; 10(6): 411.
[http://dx.doi.org/10.3390/diagnostics10060411] [PMID: 32560309]
[27]
Kibria S, Samsuzzaman M, Islam MT, Mahmud MZ, Misran N, Islam MT. Breast phantom imaging using iteratively corrected coherence factor delay and sum. IEEE Access 2019; 7: 40822-32.
[http://dx.doi.org/10.1109/ACCESS.2019.2906566]
[28]
Islam MT, Mahmud MZ, Islam MT, Kibria S, Samsuzzaman M. A low cost and portable microwave imaging system for breast tumor detection using UWB directional antenna array. Sci Rep 2019; 9(1): 15491.
[http://dx.doi.org/10.1038/s41598-019-51620-z] [PMID: 31664056]
[29]
Xie Y, Guo B, Xu L, Li J, Stoica P. Multistatic adaptive microwave imaging for early breast cancer detection. IEEE Trans Biomed Eng 2006; 53(8): 1647-57.
[http://dx.doi.org/10.1109/TBME.2006.878058] [PMID: 16916099]
[30]
Selvaraj V, Baskaran D, Rao PH, Srinivasan P, Krishnan R. Breast tissue tumor analysis using wideband antenna and microwave scattering. J Inst Electron Telecommun Eng 2018; 23: 1-11.
[http://dx.doi.org/10.1080/03772063.2018.1531067]
[31]
Li X, Davis SK, Hagness SC, Vander DW, Vanveen BD. Microwave imaging via space- time beamforming: Experimental investigation of tumor detection in multilayer breast phantoms. IEEE Trans Microw Theory Tech 2004; 52: 1856-65.
[http://dx.doi.org/10.1109/TMTT.2004.832686]
[32]
Li X, Bond EJ, Vanveen BD, Hagness SC. An overview of ultra-wideband microwave imaging via space-time beamforming for early stage breast cancer detection. IEEE Antennas Propag Mag 2005; 47: 19-34.
[http://dx.doi.org/10.1109/MAP.2005.1436217]
[33]
Wang WQ. Space–time coding MIMO-OFDM SAR for high-resolution imaging. IEEE Trans Geosci Remote Sens 2011; 49(8): 3094-104.
[http://dx.doi.org/10.1109/TGRS.2011.2116030]
[34]
Bahrami H, Porter E, Santorelli A, Gosselin B, Popovic M, Rusch L. Flexible sixteen monopole antenna array for microwave breast cancer detection. Proceeding of the 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2014 . Aug 26-30; Chicago, IL, USA. IEEE: 2014.
[http://dx.doi.org/10.1109/EMBC.2014.6944445]
[35]
Meaney PM, Fanning MW, Li D, Poplack SP, Paulsen KD. A clinical prototype for active microwave imaging of the breast. IEEE Trans Microw Theory Tech 2000; 48: 1841-53.
[http://dx.doi.org/10.1109/22.883861]
[36]
Klemm M, Craddock IJ, Leendertz JA, Preece A, Benjamin R. Radar-based breast cancer detection using a hemispherical antenna array—experimental results. IEEE Trans Antenn Propag 2009; 57: 1692-704.
[http://dx.doi.org/10.1109/TAP.2009.2019856]
[37]
Fear EC, Bourqui J, Curtis C, Mew D, Docktor B, Romano C. Microwave breast imaging with a monostatic radar-based system: A study of application to patients. IEEE Trans Microw Theory Tech 2013; 61(5): 2119-28.
[http://dx.doi.org/10.1109/TMTT.2013.2255884]
[38]
Porter E, Santorelli A, Popovic M. Time-domain microwave radar applied to breast imaging: Measurement reliability in a clinical setting. Prog Electromagnetics Res 2014; 149: 119-32.
[http://dx.doi.org/10.2528/PIER14080503]
[39]
Haynes M, Stang J, Moghaddam M. Microwave breast imaging system prototype with integrated numerical characterization. Int J Biomed Imaging 2012; 2012: 706365.
[http://dx.doi.org/10.1155/2012/706365] [PMID: 22481906]
[40]
Sill JM, Fear EC. Tissues sensing adaptive radar for breast cancer detection- Experimental investigation of simple tumor models. IEEE Trans Microw Theory Tech 2005; 53: 3312-9.
[http://dx.doi.org/10.1109/TMTT.2005.857330]
[41]
Jalilvand M, Li X, Zwirello L, Zwick T. Ultrawideband compact near-field imaging system for breast cancer detection. IET Microw Antennas Propag 2015; 9: 1009-14.
[http://dx.doi.org/10.1049/iet-map.2014.0735]
[42]
Zulfiker Mahmud MD, Islam N, Misran S, Kibria M Samsuzzaman. Microwave imaging for breast tumour detection using unipolar AMC based CPW Fed Microstrip patch. IEEE Access 2018; 6: 44763-75.
[43]
Aguilar SM, Al-Joumayly MA, Burfeindt MJ, Behdad N, Hagness SC. Multiband miniaturized patch antennas for a compact, shielded microwave breast imaging array. IEEE Trans Antenn Propag 2014; 62: 1221-31.
[http://dx.doi.org/10.1109/TAP.2013.2295615]
[44]
Amineh RK, Ravan M, Trehan A, Nikolova NK. Near-field microwave imaging based on aperture raster scanning with TEM horn antennas. IEEE Trans Antenn Propag 2011; 59: 928-40.
[http://dx.doi.org/10.1109/TAP.2010.2103009]
[45]
Craddock I, Klemm M, Leendertz J, Preece A, Benjamin R. An improved hemispherical antenna array design for breast imaging.
[46]
Fear EC, Meaney PM, Stuchly MA. Microwaves for breast cancer detection. IEEE Potentials 2003; 22(1): 12-8.
[http://dx.doi.org/10.1109/MP.2003.1180933]
[47]
Ojaroudi N, Ojaroudi M, Ebazadeh Y. UWB/omni-directional microstrip monopole antenna for microwave imaging applications. Prog Electromagnetics Res 2014; 47: 139-46.
[http://dx.doi.org/10.2528/PIERC14010804]
[48]
Islam MM, Islam MT, Faruque MRI, Samsuzzaman M, Misran N, Arshad H. Microwave imaging sensor using compact metamaterial UWB antenna with a high correlation factor. Materials (Basel) 2015; 8(8): 4631-51.
[http://dx.doi.org/10.3390/ma8084631] [PMID: 28793461]
[49]
Mahmud M, Islam MT, Misran N, Singh MJ, Mat K. A negative index metamaterial to enhance the performance of miniaturized UWB antenna for microwave imaging applications. Appl Sci (Basel) 2017; 7(11): 1149.
[http://dx.doi.org/10.3390/app7111149]
[50]
Islam MM, Islam MT, Samsuzzaman M, Faruque MRI, Misran N, Mansor MF. A miniaturized antenna with negative index metamaterial based on modified SRR and CLS unit cell for UWB microwave imaging applications. Materials (Basel) 2015; 8(2): 392-407.
[http://dx.doi.org/10.3390/ma8020392] [PMID: 28787945]
[51]
Zhang J, Fear EC, Johnston RH. Cross‐Vivaldi antenna for breast tumor detection. Microw Opt Technol Lett 2009; 51(2): 275-80.
[http://dx.doi.org/10.1002/mop.24037]
[52]
Abbak M, Çayören M, Akduman I. Microwave breast phantom measurements with a cavity-backed Vivaldi antenna. IET Microw Antennas Propag 2014; 8: 1127.
[http://dx.doi.org/10.1049/iet-map.2013.0484]
[53]
Jafari HM, Deen JM, Hranilovic S, Nikolova NK. Co-polarised and cross-polarised antenna arrays for breast, cancer detection. IET Microw Antennas Propag 2007; 1(5): 1055-8.
[http://dx.doi.org/10.1049/iet-map:20060327]
[54]
Mahmud MZ, Islam MT, Misran N, Kibria S, Samsuzzaman M. A Low Cost and Portable Microwave Imaging System for Breast Tumor Detection Using UWB Directional Antenna array. Sci Rep 2019; 9(1)
[55]
Mohammed BAJ, Abbosh AM, Sharpe P. Planar array of corrugated tapered slot antennas for ultrawideband biomedical microwave imaging system. Int J RF Microw Comput-Aided Eng 2013; 23: 59-66.
[http://dx.doi.org/10.1002/mmce.20651]
[56]
Molaei A, Kaboli M, Abrishamian MS, Mirtaheri SA. Dielectric lens balanced antipodal Vivaldi antenna with low cross-polarisation for ultra-wideband applications. IET Microw Antennas Propag 2014; 8(14): 1137-42.
[http://dx.doi.org/10.1049/iet-map.2014.0207]
[57]
Guruswamy S, Chinniah R, Thangavelu K. A printed compact UWB Vivaldi antenna with hemi cylindrical slots and directors for microwave imaging applications. AEU Int J Electron Commun 2019; 110: 152870.
[http://dx.doi.org/10.1016/j.aeue.2019.152870]
[58]
Pandey G, Verma H, Meshram M. Compact antipodal Vivaldi antenna for UWB applications. Electron Lett 2015; 51: 308-10.
[http://dx.doi.org/10.1049/el.2014.3540]
[59]
Chiappe M, Gragnani GL. Vivaldi antennas for microwave imaging: Theoretical analysis and design considerations. IEEE Trans Instrum Meas 2006; 55: 1885-91.
[http://dx.doi.org/10.1109/TIM.2006.884289]
[60]
Kanj H, Popovic M. Miniaturized microstrip-fed Dark Eyes antenna for near-field microwave sensing. IEEE Antennas Wirel Propag Lett 2005; 4: 397-401.
[http://dx.doi.org/10.1109/LAWP.2005.859377]
[61]
Mahmud MZ, Islam MT, Samsuzzaman M. A high performance UWB antenna design for microwave imaging system. Microw Opt Technol Lett 2016; 58(8): 1824-31.
[http://dx.doi.org/10.1002/mop.29924]
[62]
Kanj H, Popovic M. A novel ultra-compact broadband antenna for microwave breast tumor detection. Prog Electromagnetics Res 2008; 86(9): 169-98.
[http://dx.doi.org/10.2528/PIER08090701]
[63]
Nilavalan R, Craddock IJ, Preece A, Leendertz J, Benjamin R. Wideband microstrip patch antenna design for breast cancer tumour detection. IET Microw Antennas Propag 2007; 1: 277-81.
[http://dx.doi.org/10.1049/iet-map:20050189]
[64]
Janaswamy R, Schaubert D. Analysis of the tapered slot antenna. IEEE Trans Antenn Propag 1987; 35: 1058-65.
[http://dx.doi.org/10.1109/TAP.1987.1144218]
[65]
Wu B, Ji Y, Fang G. 9th International Conference. 222-9.
[66]
Nassar IT, Weller TM. A novel method for improving antipodal vivaldi antenna performance. IEEE Trans Antenn Propag 2015; 63: 3321-4.
[http://dx.doi.org/10.1109/TAP.2015.2429749]
[67]
Ojaroudi N, Ojaroudi M, Ghadimi N. UWB omnidirectional square monopole antenna for use in circular cylindrical microwave imaging systems. IEEE Antennas Wirel Propag Lett 2012; 11: 1350-3.
[http://dx.doi.org/10.1109/LAWP.2012.2227137]
[68]
Subramanian S, Sundarambal B, Nirmal D. Investigation on simulation-based specific absorption rate in ultra-wideband antenna for breast cancer detection. IEEE Sens J 2018; 18(24): 10002-9.
[http://dx.doi.org/10.1109/JSEN.2018.2875621]
[69]
Tiang SS, Hathal MS, Zanoon TF, Ain MF, Abdullah MZ. Radar sensing featuring biconical antenna and enhanced delay and sum algorithm for early stage breast cancer detection. Prog Electromagnetics Res 2013; 46: 299-316.
[http://dx.doi.org/10.2528/PIERB12102201]
[70]
Moussakhani K, Amineh RK, Nikolova NK. High-efficiency TEM horn antenna for ultra-wide band microwave tissue imaging. In: 2011 IEEE International Symposium on Antennas and Propagation. (APSURSI) 2011. July 3-8 ; Spokane, WA, USA. IEEE: 2011.
[http://dx.doi.org/10.1109/APS.2011.5996657]
[71]
Amineh RK, Trehan A, Nikolova NK. TEM horn antenna for ultra-wide band microwave breast imaging. Prog Electromagn Res B 2009; 13(3): 59-74.
[http://dx.doi.org/10.2528/PIERB08122213]
[72]
Nepote MS, Herrera DR, Tapia DF, Latif S, Pistorius S. A comparison study between horn and vivaldi antennas for 1.5–6 GHz breast microwave radar imaging.The 8th European Conference on Antennas and Propagation. (EuCAP 2014); 2019 Apr 6-11; The Hague, Netherlands. IEEE: 2019.
[73]
Li X, Hagness SC, Choi MK, Weide DW. Numerical and experimental investigation of an ultrawideband ridged pyramidal horn antenna with curved launching plane for pulse radiation. IEEE Antennas Wirel Propag Lett 2003; 2: 259-62.
[http://dx.doi.org/10.1109/LAWP.2003.820708]
[74]
Yun X, Fear EC, Johnston RH. Compact antenna for radar-based breast cancer detection. IEEE Trans Antenn Propag 2005; 53(8): 2374-80.
[http://dx.doi.org/10.1109/TAP.2005.852308]
[75]
Jalilvand M, Vasanelli C, Wu C, Kowalewski G, Zwick T. On the evaluation of a proposed bowtie antenna for microwave tomography.The 8th European Conference on Antennas and Propagation . (EuCAP 2014); 2014 Apr 6-11; The Hague, Netherlands. IEEE: 2014.
[http://dx.doi.org/10.1109/EuCAP.2014.6902405]
[76]
See CH, Abd-Alhameed RA, Chung SWJ, Zhou D, Al-Ahmad H, Excell PS. The design of a resistively loaded bowtie antenna for applications in breast cancer detection systems. IEEE Trans Antenn Propag 2012; 60(5): 2526-30.
[http://dx.doi.org/10.1109/TAP.2012.2189730]
[77]
Lestari AA, Yarovoy AG, Ligthart LP. RC-loaded bow-tie antenna for improved pulse radiation. IEEE Trans Antenn Propag 2004; 52(10): 2555-63.
[http://dx.doi.org/10.1109/TAP.2004.834444]
[78]
Shannon CJ, Fear EC, Okoniewski M. Dielectric-filled slotline bowtie antenna for breast cancer detection. Electron Lett 2005; 41(7): 388-90.
[http://dx.doi.org/10.1049/el:20057336]
[79]
Aguilar SM. Al- Joumayly MA, Burfeindt MJ, Behdad N, Hagness SC. Multiband miniaturized patch antennas for a compact, shielded microwave breast imaging array. IEEE Trans Antenn Propag 2014; 62: 1221-31.
[http://dx.doi.org/10.1109/TAP.2013.2295615]
[80]
Sugitani T, Kubota S, Toya A, Xiao X, Kikkawa T. A compact 4x4 planar UWB antenna array for 3-D breast cancer detection. IEEE Antennas Wirel Propag Lett 2013; 12: 733-6.
[http://dx.doi.org/10.1109/LAWP.2013.2270933]
[81]
Lopez MAH, Quintillan-Gonzalez M, Gonzalez GS, Bretones AR, Martin RG. A rotating array of antennas for confocal microwave breast imaging. Microw Opt Technol Lett 2003; 39: 307-11.
[http://dx.doi.org/10.1002/mop.11199]
[82]
Bassi M, Caruso M, Khan MS, Bevilacqua A, Capobianco AD, Neviani A. An integrated microwave imaging radar with planar antennas for breast cancer detection. IEEE Trans Microw Theory Tech 2013; 61: 2108-18.
[http://dx.doi.org/10.1109/TMTT.2013.2247052]
[83]
Jafari HM, Deen JM, Hranilovic S, Nikolova NK. Copolarised and cross-polarised antenna arrays for breast, cancer detection. IET Microw Antennas Propag 2007; 1: 1055-8.
[http://dx.doi.org/10.1049/iet-map:20060327]
[84]
Bahramiabarghouei H, Porter E, Santorelli A, Gosselin B, Popović M, Rusch LA. Flexible 16 antenna array for microwave breast cancer detection. IEEE Trans Biomed Eng 2015; 62(10): 2516-25.
[http://dx.doi.org/10.1109/TBME.2015.2434956] [PMID: 26011862]
[85]
Klemm M, Craddock IJ, Preece A, Leendertz J, Benjamin R. Evaluation of a hemi-spherical wideband antenna array for breast cancer imaging. Radio Sci 2008; 43: 1-15.
[http://dx.doi.org/10.1029/2007RS003807]
[86]
Porter E, Bahrami H, Santorelli A, Gosselin B, Rusch LA, Popovic M. Wearable microwave antenna array for time-domain breast tumor screening. IEEE Trans Med Imaging 2016; 35(6): 1501-9.
[http://dx.doi.org/10.1109/TMI.2016.2518489] [PMID: 26780788]
[87]
Islam MT, Samsuzzaman M, Faruque M, Singh MJ, Islam M. Microwave imaging-based breast tumor detection using compact wide slotted UWB patch antenna. Optoelectron Adv Mat 2019; 13: 448-57.
[88]
Chaudhary SS, Mishra RK, Swarup A, Thomas JM. Dielectric properties of normal & malignant human breast tissues at radiowave & microwave frequencies. Indian J Biochem Biophys 1984; 21(1): 76-9.
[PMID: 6490065]
[89]
Campbell AM, Land DV. Dielectric properties of female human breast tissue measured in vitro at 3.2 GHz. Phys Med Biol 1992; 37(1): 193-210.
[http://dx.doi.org/10.1088/0031-9155/37/1/014] [PMID: 1741424]
[90]
Lazebnik M, Popovic D, McCartney L, et al. A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries. Phys Med Biol 2007; 52(20): 6093-115.
[http://dx.doi.org/10.1088/0031-9155/52/20/002] [PMID: 17921574]
[91]
De Santis V, Sill JM, Bourqui J, Fear EC. Safety assessment of ultra-wideband antennas for microwave breast imaging. Bioelectromagnetics 2012; 33(3): 215-25.
[http://dx.doi.org/10.1002/bem.20694] [PMID: 21826686]
[92]
Islam MT, Samsuzzaman M, Kibria S. Experimental breast phantoms for estimation of breast tumor using microwave imaging systems. IEEE Access 2018; 6: 78587-97.
[http://dx.doi.org/10.1109/ACCESS.2018.2885087]
[93]
Baskharoun Y, Trehan A, Nikolova NK, Noseworthy MD. Physical phantoms for microwave imaging of the breasts.2012 IEEE Topical Conference on Biomedical Wireless Technologies, Networks, and Sensing Systems. (BioWireleSS); 2012 Jan 15-18; Santa Clara, CA, USA. IEEE: 2012.
[http://dx.doi.org/10.1109/BioWireless.2012.6172736]
[94]
Joachimowicz N, Henrikkson T, Conessa C, Meyer O. Easy- to produce adjustable realistic breast phantoms for microwave imaging.2016 10th European Conference on Antennas and Propagation. (EuCAP); 2016 Apr 10-15; Davos, Switzerland. IEEE: 2016.
[http://dx.doi.org/10.1109/EuCAP.2016.7481715]
[95]
Joachimowicz N, Conessa C, Henrikkson T, Duchene B. Breast phantoms for microwave imaging. IEEE Wireless Propag Lett 2014; 13: 1333-6.
[http://dx.doi.org/10.1109/LAWP.2014.2336373]
[96]
Tiang SS, et al. Radar sensing featuring biconical antenna and enhanced delay and sum algorithm for early stage breast cancer detection. Prog Electromagn Res B 2013; 46: 299-316.
[http://dx.doi.org/10.2528/PIERB12102201]
[97]
Shahira Banu MA, Vanaja S, Poonguzhali S. UWB microwave breast cancer detection using SAR. Int J Adv Elecl Electronics Eng 2013; 2: 87-92.
[http://dx.doi.org/10.1109/ICEETS.2013.6533366]
[98]
Garrett J, Fear E. A New breast phantom with a durable skin layer for microwave breast imaging. IEEE Trans Antenn Propag 2015; 63(4): 1693-700.
[http://dx.doi.org/10.1109/TAP.2015.2393854]
[99]
Borja B, Tirado JA, Jardon H. An Overview of UWB Antennas for Microwave Imaging Systems for Cancer Detection Purposes. Prog Electromag Res B 2018; 80: 173-98.
[http://dx.doi.org/10.2528/PIERB18030302]
[100]
Burfeindt MJ, Behdad N, Van Veen BD, Hagness SC. Quantitative microwave imaging of realistic numerical breast phantoms using an enclosed array of multiband, miniaturized patch antennas. IEEE Antennas Wirel Propag Lett 2012; 11: 1626-9.
[http://dx.doi.org/10.1109/LAWP.2012.2236071] [PMID: 25419189]
[101]
Koutsoupidou M, Karanasiou IS, Kakoyiannis CG, Groumpas E, Conessa E, Joachimowicz N, et al. Evaluation of a tumor detection microwave system with a realistic breast phantom. Microw Opt Technol Lett 2017; 59: 6-10.
[http://dx.doi.org/10.1002/mop.30212]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy