Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Nanocrystal for Dermatological Application: A Comprehensive Review

Author(s): Bhawana Singh, Prabhat Kumar Upadhyay* and Manish Kumar

Volume 18, Issue 1, 2022

Published on: 21 January, 2021

Page: [48 - 60] Pages: 13

DOI: 10.2174/1573413717666210121143038

Price: $65

Abstract

Background: Dermatological problems impose the biggest challenges for formulation scientists because of the innate structure of the skin that offers an excellent barrier to the topical delivery of drugs. Conventional topical delivery systems are associated with low encapsulation efficiency, stability issue and skin irritation, and reduction in therapeutic efficacy. In recent years, nanocrystal has emerged as an attractive option for topical delivery due to its enhanced saturation solubility, increased surface area, adhesiveness, absence of excipients, and small particle size.

Objective: The present review provides a comprehensive account of topical delivery for the management of various dermatological problems through nanocrystal technology. The review highlights the aptness of drug nanocrystals for skin delivery. The various methods used for the fabrication of nanocrystals and the mechanism of skin penetration have been included and dealt with in this review. The main emphasis is on the management of dermatological problems through employing nanocrystals; a plethora of literature and patents based on nanocrystal technology for topical delivery have been included in this review.

Conclusion: Nanocrystal-based topical delivery system can be a promising approach for drugs with poor skin penetration as this system possesses the tremendous potential to overcome skin barrier and deliver drugs at relevant concentrations at the local tissue level and avoid skin irritation.

Keywords: Nanocrystal, dermatological, skin, saturation solubility, topical delivery, skin penetration

Graphical Abstract
[1]
Mahant, S.; Kumar, S.; Nanda, S.; Rao, R. Microsponges for dermatological applications: Perspectives and challenges. Asian J Pharm Sci, 2020, 15(3), 273-291.
[http://dx.doi.org/10.1016/j.ajps.2019.05.004] [PMID: 32636947]
[2]
Song, S.H.; Lee, K.M.; Kang, J.B.; Lee, S.G.; Kang, M.J.; Choi, Y.W. Improved skin delivery of voriconazole with a nanostructured lipid carrier-based hydrogel formulation. Chem. Pharm. Bull. , 2014, 62(8), 793-798.
[http://dx.doi.org/10.1248/cpb.c14-00202] [PMID: 25087631]
[3]
Haque, T.; Talukder, M.M.U. Chemical Enhancer: A simplistic way to modulate barrier function of the stratum corneum. Adv. Pharm. Bull., 2018, 8(2), 169-179.
[http://dx.doi.org/10.15171/apb.2018.021] [PMID: 30023318]
[4]
Malamatari, M.; Taylor, K.M.G.; Malamataris, S.; Douroumis, D.; Kachrimanis, K. Pharmaceutical nanocrystals: production by wet milling and applications. Drug Discov. Today, 2018, 23(3), 534-547.
[http://dx.doi.org/10.1016/j.drudis.2018.01.016] [PMID: 29326082]
[5]
Junyaprasert, V.B.; Morakul, B. Nanocrystals for enhancement of oral bioavailability of poorly soluble drugs.Asian. J. Pharm. Sci., 2015, 10, 13-23.
[6]
Müller, R.H.; Gohla, S.; Keck, C.M. State of the art of nanocrystals--special features, production, nanotoxicology aspects and intracellular delivery. Eur. J. Pharm. Biopharm., 2011, 78(1), 1-9.
[http://dx.doi.org/10.1016/j.ejpb.2011.01.007] [PMID: 21266197]
[7]
Moschwitzer, J.; Muller, R.H. Drug nanocrystals the universal formulation approach for poorly soluble drugs. In: Nanoparticulate drug delivery systems; Thassu, D.; Deleers, M.; Pathak, Y., Eds.; Informa Healthcare: New York, 2007, p. 71e88;
[8]
Junghanns, J.U.A.H.; Muller, R.H. Nanocrystal technology, drug delivery and clinical appications.Int. J. Nanomedicine., 2008, 3, 295e309..,
[9]
Kocbek, P.; Baumgartner, S.; Kristl, J. Preparation and evaluation of nanosuspensions for enhancing the dissolution of poorly soluble drugs. Int. J. Pharm., 2006, 312(1-2), 179-186.
[http://dx.doi.org/10.1016/j.ijpharm.2006.01.008] [PMID: 16469459]
[10]
Chen, H.; Khemtong, C.; Yang, X.; Chang, X.; Gao, J. Nanonization strategies for poorly water-soluble drugs. Drug Discov. Today, 2011, 16(7-8), 354-360.
[http://dx.doi.org/10.1016/j.drudis.2010.02.009] [PMID: 20206289]
[11]
Guo, S.; Huang, L. Nanoparticles containing insoluble drug for cancer therapy. Biotechnol. Adv., 2014, 32(4), 778-788.
[http://dx.doi.org/10.1016/j.biotechadv.2013.10.002] [PMID: 24113214]
[12]
Korting, H.C.; Schäfer-Korting, M. Carriers in the topical treatment of skin disease. Handb. Exp. Pharmacol., 2010, 197(197), 435-468.
[http://dx.doi.org/10.1007/978-3-642-00477-3_15] [PMID: 20217539]
[13]
Petrak, K. Nanotechnology and site-targeted drug delivery. J. Biomater. Sci. Polym. Ed., 2006, 17(11), 1209-1219.
[http://dx.doi.org/10.1163/156856206778667497] [PMID: 17176746]
[14]
Cevc, G.; Vierl, U. Nanotechnology and the transdermal route: A state of the art review and critical appraisal. J. Control. Release, 2010, 141(3), 277-299.
[http://dx.doi.org/10.1016/j.jconrel.2009.10.016] [PMID: 19850095]
[15]
Schroeter, A.; Engelbrecht, T.; Neubert, R.H.; Goebel, A.S. New nanosized technologies for dermal and transdermal drug delivery. A review. J. Biomed. Nanotechnol., 2010, 6(5), 511-528.
[http://dx.doi.org/10.1166/jbn.2010.1149] [PMID: 21329045]
[16]
Nohynek, G.J.; Dufour, E.K.; Roberts, M.S. Nanotechnology, cosmetics and the skin: is there a health risk? Skin Pharmacol. Physiol., 2008, 21(3), 136-149.
[http://dx.doi.org/10.1159/000131078] [PMID: 18523411]
[17]
Souto, E.; Almeida, A.; Muller, R. Lipid nanoparticles (SLN, NLC) forcutaneous drug delivery: Structure, protection and skin effects. J. Biomed. Nanotechnol., 2007, 3, 317-331.
[http://dx.doi.org/10.1166/jbn.2007.049]
[18]
Pardeike, J.; Hommoss, A.; Müller, R.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm., 2009, 366(1-2), 170-184.
[http://dx.doi.org/10.1016/j.ijpharm.2008.10.003] [PMID: 18992314]
[19]
Ma, J.; Yang, Y.; Sun, Y.; Sun, J. Optimization, characterization and in vitro/vivo evaluation of azilsartan nanocrystals. Asian J Pharm Sci, 2017, 12(4), 344-352.
[http://dx.doi.org/10.1016/j.ajps.2016.09.008] [PMID: 32104345]
[20]
Al Shaal, L.; Shegokar, R.; Müller, R.H. Production and characterization of antioxidant apigenin nanocrystals as a novel UV skin protective formulation. Int. J. Pharm., 2011, 420(1), 133-140.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.018] [PMID: 21871547]
[21]
Müller, R.H.; Keck, C.M. Twenty years of drug nanocrystals: where are we, and where do we go? Eur. J. Pharm. Biopharm., 2012, 80(1), 1-3.
[http://dx.doi.org/10.1016/j.ejpb.2011.09.012] [PMID: 21971369]
[22]
Goyal, R.; Macri, L.K.; Kaplan, H.M.; Kohn, J. Nanoparticles and nanofibers for topical drug delivery. J. Control. Release, 2016, 240, 77-92.
[http://dx.doi.org/10.1016/j.jconrel.2015.10.049] [PMID: 26518723]
[23]
Gupta, M.; Sharma, V.; Chauhan, N.S. Promising novel nanopharmaceutical for improving topical antifungal drug delivery.Nano and microscale drug delivery system design and fabrication; Grumezescu, A.M., Ed.; Elsevier Science: Netherlands, 2017, pp. 197-224.
[http://dx.doi.org/10.1016/B978-0-323-52727-9.00011-X]
[24]
Dandagi, M.; Kaushik, S.; Telsang, S. Enhancement of solubility and dissolution property of Griseofluvin by nanocrystalization. Int. J. Drug Dev. Res., 2011, 3(1), 45-48.
[25]
Desu, P.K.; Sindhuja, M.; Thriveni, K.; Nagalakshi, V. Rao, P.V. A review on significance of nanocrystal in drug delivery. World J. Pharm. Pharm. Sci., 2017, 6(12), 347-358.
[26]
Sun, B.; Yeo, Y. Nanocrystals for the parenteral delivery of poorly water-soluble drugs. Curr. Opin. Solid State Mater. Sci., 2012, 16(6), 295-301.
[http://dx.doi.org/10.1016/j.cossms.2012.10.004] [PMID: 23645994]
[27]
Sharma, O.P.; Patel, V.; Mehta, T. Nanocrystal for ocular drug delivery: hope or hype. Drug Deliv. Transl. Res., 2016, 6(4), 399-413.
[http://dx.doi.org/10.1007/s13346-016-0292-0] [PMID: 27165145]
[28]
Liversidge, G.G.; Cundy, K.C.; Bishop, J.F.; Czekai, D.A. Surface modified drug nanoparticles.US 5145684, September 8, 1992.
[29]
Moschwitzer, J.P. Drug nanocrystals in the commercial pharmaceutical development process. Int. J. Pharm., 2013, 453, 142e156..
[http://dx.doi.org/10.1016/j.ijpharm.2012.09.034]
[30]
Merisko-Liversidge, E.; Liversidge, G.G. Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet mediamilling technology. Adv. Drug.Deliv. Rev., 2011, 30, 427e440..
[http://dx.doi.org/10.1016/j.addr.2010.12.007]
[31]
Niwa, T.; Miura, S.; Danjo, K. Universal wet-milling technique to prepare oral nanosuspension focused on discovery and preclinical animal studies-development of particle design method. Int. J. Pharm., 2011, 405, 218e227.
[32]
Lu, Y.; Li, Y.; Wu, W. Injected nanocrystals for targeted drug delivery. Acta Pharm. Sin. B, 2016, 6(2), 106-113.
[http://dx.doi.org/10.1016/j.apsb.2015.11.005] [PMID: 27006893]
[33]
Patravale, V.B.; Date, A.A.; Kulkarni, R.M. Nanosuspensions: A promising drug delivery strategy. J. Pharm. Pharmacol., 2004, 56(7), 827-840.
[http://dx.doi.org/10.1211/0022357023691] [PMID: 15233860]
[34]
Srivalli, K.M.R. Mishra, B. Drug nanocrystals: a way toward scale up. Saudi Pharm. J., 2016, 24(4), 386-404.
[35]
Nekkanti, V.; Vabalaboina, V.; Pillai, R. Drug nanoparticle: An Overview.The delivery of Nanoparticles; Abbas, A.H.; Tech, I., Eds.; London, 2012, pp. 111-132.
[http://dx.doi.org/10.5772/34680]
[36]
Krause, K.P.; Müller, R.H. Production and characterisation of highly concentrated nanosuspensions by high pressure homogenisation. Int. J. Pharm., 2001, 214(1-2), 21-24.
[http://dx.doi.org/10.1016/S0378-5173(00)00626-8] [PMID: 11282231]
[37]
Shegokar, R.; Müller, R.H. Nanocrystals: Industrially feasible multifunctional formulation technology for poorly soluble actives. Int. J. Pharm., 2010, 399(1-2), 129-139.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.044] [PMID: 20674732]
[38]
Noyes, A.; Whitney, W. The rate of solution of solid substances in their own solutions. J. Am. Chem. Soc., 1897, 19, 930-934.
[http://dx.doi.org/10.1021/ja02086a003]
[39]
Patel, V.; Sharma, O.P.; Mehta, T. Nanocrystal: A novel approach to overcome skin barriers for improved topical drug delivery. Expert Opin. Drug Deliv., 2018, 15(4), 351-368.
[http://dx.doi.org/10.1080/17425247.2018.1444025]
[40]
Gulsun, T.; Gursoy, R.N.; Oner, L. Nanocrystal technology for oral delivery of poorly water-soluble drugs. FABAD J. Pharm. Sci., 2009, 34, 55e65.,
[41]
Müller, R.H.; Jacobs, C.; Kayser, O. Nanosuspensions as particulate drug formulations in therapy: Rationale for development and what we can expect for the future. Adv. Drug Deliv. Rev., 2001, 47(1), 3-19.
[http://dx.doi.org/10.1016/S0169-409X(00)00118-6] [PMID: 11251242]
[42]
Tomić, I.; Juretić, M.; Jug, M.; Pepić, I.; Cetina Čižmek, B.; Filipović-Grčić, J. Preparation of in situ hydrogels loaded with azelaic acid nanocrystals and their dermal application performance study. Int. J. Pharm., 2019, 563, 249-258.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.016] [PMID: 30965120]
[43]
Gupta, M.; Agrawal, U.; Vyas, S.P. Nanocarrier-based topical drug delivery for the treatment of skin diseases. Expert Opin. Drug Deliv., 2012, 9(7), 783-804.
[http://dx.doi.org/10.1517/17425247.2012.686490] [PMID: 22559240]
[44]
Lai, F.; Schlich, M.; Pireddu, R.; Corrias, F.; Fadda, A.M.; Sinico, C. Production of nanosuspensions as a tool to improve drug bioavailability: focus on topical delivery. Curr. Pharm. Des., 2015, 21(42), 6089-6103.
[http://dx.doi.org/10.2174/1381612821666151027152350] [PMID: 26503149]
[45]
Ameen, M. Epidemiology of superficial fungal infections. Clin. Dermatol., 2010, 28(2), 197-201.
[http://dx.doi.org/10.1016/j.clindermatol.2009.12.005] [PMID: 20347663]
[46]
Hay, R. Superficial fungal infections. Medicine, 2009, 37(11), 610-612.
[http://dx.doi.org/10.1016/j.mpmed.2009.08.008]
[47]
Ramos-E-Silva, M.; Lima, C.M.; Schechtman, R.C.; Trope, B.M.; Carneiro, S. Superficial mycoses in immunodepressed patients (AIDS). Clin. Dermatol., 2010, 28(2), 217-225.
[http://dx.doi.org/10.1016/j.clindermatol.2009.12.008] [PMID: 20347666]
[48]
Lee, C.M.; Maibach, H.I. Deep percutaneous penetration into muscles and joints. J. Pharm. Sci., 2006, 95(7), 1405-1413.
[http://dx.doi.org/10.1002/jps.20666] [PMID: 16729269]
[49]
Güngör, S.; Erdal, M.; Aksu, B. New formulation strategies in topical antifungal therapy. J. Cosmet. Dermatol. Sci. Appl, 2013, 3(1), 56-65.
[50]
Kumar, M.; Shanthi, N.; Mahato, A.K.; Soni, S.; Rajnikanth, P.S. Preparation of luliconazole nanocrystals loaded hydrogel for improvement of dissolution and antifungal activity. Heliyon, 2019, 5(5)e01688
[http://dx.doi.org/10.1016/j.heliyon.2019.e01688] [PMID: 31193099]
[51]
Pyo, S.M.; Hespeler, D.; Keck, C.M.; Müller, R.H. Dermal miconazole nitrate nanocrystals - formulation development, increased antifungal efficacy & skin penetration. Int. J. Pharm., 2017, 531(1), 350-359.
[http://dx.doi.org/10.1016/j.ijpharm.2017.08.108] [PMID: 28855137]
[52]
Patel, V.; Sharma, O.P.; Mehta, T.A. Impact of process parameters on particle size involved in media milling technique used for preparing clotrimazole nanocrystals for the management of cutaneous candidiasis. AAPS PharmSciTech, 2019, 20(5), 175.
[http://dx.doi.org/10.1208/s12249-019-1368-1] [PMID: 31028492]
[53]
Henderson, W.R., Jr The role of leukotrienes in inflammation. Ann. Intern. Med., 1994, 121(9), 684-697.
[http://dx.doi.org/10.7326/0003-4819-121-9-199411010-00010] [PMID: 7944079]
[54]
Manconi, M.; Caddeo, C.; Sinico, C.; Valenti, D.; Mostallino, M.C.; Biggio, G.; Fadda, A.M. Ex vivo skin delivery of diclofenac by transcutol containing liposomes and suggested mechanism of vesicle-skin interaction. Eur. J. Pharm. Biopharm., 2011, 78(1), 27-35.
[http://dx.doi.org/10.1016/j.ejpb.2010.12.010] [PMID: 21167279]
[55]
Standiford, T.J. Anti-inflammatory cytokines and cytokine antagonists. Curr. Pharm. Des., 2000, 6(6), 633-649.
[http://dx.doi.org/10.2174/1381612003400533] [PMID: 10788601]
[56]
Manca, M.L.; Manconi, M.; Falchi, A.M.; Castangia, I.; Valenti, D.; Lampis, S.; Fadda, A.M. Close-packed vesicles for diclofenac skin delivery and fibroblast targeting. Colloids Surf. B Biointerfaces, 2013, 111, 609-617.
[http://dx.doi.org/10.1016/j.colsurfb.2013.07.014] [PMID: 23907049]
[57]
Pireddu, R.; Caddeo, C.; Valenti, D.; Marongiu, F.; Scano, A.; Ennas, G.; Lai, F.; Fadda, A.M.; Sinico, C. Diclofenac acid nanocrystals as an effective strategy to reduce in vivo skin inflammation by improving dermal drug bioavailability. Colloids Surf. B Biointerfaces, 2016, 143, 64-70.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.026] [PMID: 26998867]
[58]
Döge, N.; Hönzke, S.; Schumacher, F.; Balzus, B.; Colombo, M.; Hadam, S.; Rancan, F.; Blume-Peytavi, U.; Schäfer-Korting, M.; Schindler, A.; Rühl, E.; Skov, P.S.; Church, M.K.; Hedtrich, S.; Kleuser, B.; Bodmeier, R.; Vogt, A. Ethyl cellulose nanocarriers and nanocrystals differentially deliver dexamethasone into intact, tape-stripped or sodium lauryl sulfate-exposed ex vivo human skin - assessment by intradermal microdialysis and extraction from the different skin layers. J. Control. Release, 2016, 242, 25-34.
[http://dx.doi.org/10.1016/j.jconrel.2016.07.009] [PMID: 27394682]
[59]
Yu, Q.; Wu, X.; Zhu, Q.; Wu, W.; Chen, Z.; Li, Y.; Lu, Y. Enhanced Transdermal delivery of meloxicam by nanocrystal: Preparation and in vitro and in vivo evaluation. Asian J. Pharm. Sci., 2018, 13(6), 518-526.
[PMID: 32104426]
[60]
Sinico, C.; Pireddu, R.; Pini, E.; Valenti, D.; Caddeo, C.; Fadda, A.M.; Lai, F. Enhancing topical delivery of resveratrol through a nanosizing approach. Planta Med., 2017, 83(5), 476-481.
[PMID: 27220078]
[61]
Mishra, P.R.; Al Shaal, L.; Müller, R.H.; Keck, C.M. Production and characterization of Hesperetin nanosuspensions for dermal delivery. Int. J. Pharm., 2009, 371(1-2), 182-189.
[http://dx.doi.org/10.1016/j.ijpharm.2008.12.030] [PMID: 19162147]
[62]
Pyo, S.M.; Meinke, M.; Keck, C.M.; Müller, R.H. Rutin-increased antioxidant activity and skin penetration by nanocrystal technology (smartCrystals). Cosmetics, 2016, 3(1), 9.
[http://dx.doi.org/10.3390/cosmetics3010009]
[63]
Mitri, K.; Shegokar, R.; Gohla, S.; Anselmi, C.; Müller, R.H. Lutein nanocrystals as antioxidant formulation for oral and dermal delivery. Int. J. Pharm., 2011, 420(1), 141-146.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.026] [PMID: 21884768]
[64]
Muller, R.H.; Keck, C.M. Second generation of drug nanocrystals for delivery of poorly soluble drugs: smartCrystal technology. Eur. J. Pharm. Sci., 2008, 24, S20-S21.
[http://dx.doi.org/10.1016/j.ejps.2008.02.049]
[65]
Gao, L.; Zhang, D.; Chen, M. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. J. Nanopart. Res., 2008, 10(5), 845-862.
[http://dx.doi.org/10.1007/s11051-008-9357-4]
[66]
Huang, X.; Peng, X.; Wang, Y.; Wang, Y.; Shin, D.M.; El-Sayed, M.A.; Nie, S. A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands. ACS Nano, 2010, 4(10), 5887-5896.
[http://dx.doi.org/10.1021/nn102055s] [PMID: 20863096]
[67]
Pawar, V.K.; Singh, Y.; Meher, J.G.; Gupta, S.; Chourasia, M.K. Engineered nanocrystal technology: in-vivo fate, targeting and applications in drug delivery. J. Control. Release, 2014, 183, 51-66.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.030] [PMID: 24667572]
[68]
Chaubal, M.V. Application of drug delivery technologies in lead candidate selection and optimization. Drug Discov. Today, 2004, 9(14), 603-609.
[http://dx.doi.org/10.1016/S1359-6446(04)03171-X] [PMID: 15239979]
[69]
Yoshioka, C.; Ito, Y.; Nagai, N. Enhanced percutaneous absorption of cilostazol nanocrystals using aqueous gel patch systems and clarification of the absorption mechanism. Exp. Ther. Med., 2018, 15(4), 3501-3508.
[http://dx.doi.org/10.3892/etm.2018.5820] [PMID: 29545875]
[70]
Vidlářová, L.; Romero, G.B.; Hanuš, J.; Štěpánek, F.; Müller, R.H. Nanocrystals for dermal penetration enhancement-Effect of concentration and underlying mechanisms using curcumin as model. Eur. J. Pharm. Biopharm., 2016, 104, 216-225.
[http://dx.doi.org/10.1016/j.ejpb.2016.05.004] [PMID: 27163241]
[71]
Gao, L.; Gan, H.; Meng, Z.; Gu, R.; Wu, Z.; Zhu, X.; Sun, W.; Li, J.; Zheng, Y.; Sun, T.; Dou, G. Evaluation of genipin-crosslinked chitosan hydrogels as a potential carrier for silver sulfadiazine nanocrystals. Colloids Surf. B Biointerfaces, 2016, 148, 343-353.
[http://dx.doi.org/10.1016/j.colsurfb.2016.06.016] [PMID: 27619186]
[72]
Teeranachaideekul, V.; Junyaprasert, V.B.; Souto, E.B.; Müller, R.H. Development of ascorbyl palmitate nanocrystals applying the nanosuspension technology. Int. J. Pharm., 2008, 354(1-2), 227-234.
[http://dx.doi.org/10.1016/j.ijpharm.2007.11.062] [PMID: 18242898]
[73]
Hatahet, T.; Morille, M.; Hommoss, A.; Dorandeu, C.; Müller, R.H.; Bégu, S. Dermal quercetin smartCrystals®: Formulation development, antioxidant activity and cellular safety. Eur. J. Pharm. Biopharm., 2016, 102, 51-63.
[http://dx.doi.org/10.1016/j.ejpb.2016.03.004] [PMID: 26948977]
[74]
Romero, G.B.; Arntjen, A.; Keck, C.M.; Müller, R.H. Amorphous cyclosporin A nanoparticles for enhanced dermal bioavailability. Int. J. Pharm., 2016, 498(1-2), 217-224.
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.019] [PMID: 26688038]
[75]
Zhai, X.; Lademann, J.; Keck, C.M.; Müller, R.H. Dermal nanocrystals from medium soluble actives-physical stability and stability affecting parameters. Eur. J. Pharm. Biopharm., 2014, 88(1), 85-91.
[http://dx.doi.org/10.1016/j.ejpb.2014.07.002] [PMID: 25016978]
[76]
Lai, F.; Pireddu, R.; Corrias, F.; Fadda, A.M.; Valenti, D.; Pini, E.; Sinico, C. Nanosuspension improves tretinoin photostability and delivery to the skin. Int. J. Pharm., 2013, 458(1), 104-109.
[http://dx.doi.org/10.1016/j.ijpharm.2013.10.007] [PMID: 24135683]
[77]
Gupta, N.; Bedi, S.; Srivastava, J.; Arrora, V.K.; Pandya, M.; Singatgeri, V.M.; Bhelonde, J.J.; Obrah, M.; Sharma, S.K.; Jalali, R.K. Arrora, S.K. Topical composition comprising nanonized silver sulfadiazine. U.S. Patent 9572777B2, February 21 2017.,
[78]
Petersen, R. Nanocrystals for use in topical cosmetic formulations and method of production thereof. U.S. Patent 9114077B2, August 25,2015.,
[79]
Vergnault, G.; Grenier, P.; Nhamias, A.; Scherer, D.; Beck, P.; Cancade, P. Topical nanoparticulate spironolactone formulation. U.S. Patent 8003690, August 23, 2011,
[80]
Petersson, K. Calcipotriol monohydrate nanocrystals.European Patent 20140322331, August 20,2014.,
[81]
Tapley, C.A.M. Method of preparing sunscreens. European Patent 0535972B1, October 1, 1992.,
[82]
Keith Johnson, R.L. Delivery of drug nanoparticles and methods of use thereof.WIPO Patent 2017049083 A3., March, , 2017.
[83]
Lange, C.E.D.M. Topical care products or medicines containing finely divided transparent zinc oxide. German Patent 4232143A1, March 31, 1994.
[84]
Jahangir, M.A.; Imam, S.S.; Muheem, A.; Chettupalli, A.; Al-Abbassi, F.A.; Nadeem, M.S.; Kazmi, I.; Afzal, M.; Alshehri, S. Nanocrystals: Characterization overview, application in drug delivery and their toxicity concerns. J. Pharm. Innov., 2020. Epub ahead of print
[http://dx.doi.org/10.1007/s12247-020-09499-1]
[85]
Nanotechnology for drug delivery: Global market for nanocrystals. Avialaible from:, https://www.researchandmarkets.com/reports/2124025/nanotechnology_for_drug_delivery_global_market (Accessed on: Oct 10,2020)
[86]
Chen, Z.; Wu, W.; Lu, Y. What is the future for nanocrystal-based drug-delivery systems? Ther. Deliv., 2020, 11(4), 225-229.
[http://dx.doi.org/10.4155/tde-2020-0016] [PMID: 32157960]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy