Generic placeholder image

Current Applied Polymer Science

Editor-in-Chief

ISSN (Print): 2452-2716
ISSN (Online): 2452-2724

Research Article

Mass-suspension Polymerization Process as an Efficient Tool to Produce Polymer/Clay Nanocomposites

Author(s): Mariaugusta F. Mota, Thainá Araruna, Nathália M. Campelo, Meiry Gláucia F. Rodrigues, Gabriella R. Ferreira and Fabricio Machado*

Volume 4, Issue 2, 2021

Published on: 19 January, 2021

Page: [134 - 147] Pages: 14

DOI: 10.2174/2452271604666210120090014

Price: $65

Abstract

Background: This work presents the preparation and characterization of the polymeric nanocomposites based on methyl methacrylate (MMA), ethyl acrylate (EA), and natural and modified clays. The clays used to prepare the composite were natural green bentonite (GBC-N) and organophilic clays modified with ammonium quaternary salts: Praepagen (GCB-P), Dodigen (GCB-D) and Praepagen/Dodigen mixture 1:1 in weight (GCB-P/D).

Objective: The experimental studies focused on the evaluation of the effect of clays (in nature and chemically modified) on the final quality of the polymeric nanocomposites containing around 3 wt%. of clay nanocharges in association with MMA to produce poly(methyl methacrylate)/clays, and MMA/EA to form poly(methyl methacrylate-co-ethyl acrylate)/clays.

Methods: The poly(methyl methacrylate)/clay and poly(methyl methacrylate-co-ethyl acrylate)/- clay materials were synthesized through mass-suspension polymerization process. The natural and modified green bentonite clays were characterized by X-ray powder diffraction (XRD), infrared spectroscopy (IR), Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) analyses to understand its effect on the basal spacing, d001 (compared to the pure clay), as a result of cation exchange step, which also improved the thermal efficiency of the final nanocomposites.

Results: The proper incorporation of MMA and MMA/EA monomers between the layers of natural and modified clays occurred through in situ mass-suspension polymerization, leading to a successful exfoliation of clay layers during the growth of the polymer chains.

Conclusion: The IR, SEM, TGA and DSC analyses confirmed the improvement in the thermal property of the composites compared to polymers formed in the absence of clays. The experimental results are very promising, indicating that the experimental protocol based on the in situ formation of polymer nanocomposites by using sequential mass-suspension polymerization consisting of an interesting tool.

Keywords: Clay organophilization, green bentonite, smectite, methyl methacrylate, ethyl acrylate, copolymerization.

Graphical Abstract
[1]
Chen B. Polymer–clay nanocomposites: an overview with emphasis on interaction mechanisms. Br Ceram Trans 2004; 103(6): 241-9.
[http://dx.doi.org/10.1179/096797804X4592]
[2]
Bockstaller MR, Mickiewicz RA, Thomas EL. Block Copolymer Nanocomposites: Perspectives for Tailored Functional Materials. Adv Mater 2005; 17(11): 1331-49.
[http://dx.doi.org/10.1002/adma.200500167]
[3]
Paul DR, Robeson LM. Polymer nanotechnology: Nanocomposites. Polymer (Guildf) 2008; 49(15): 3187-204.
[http://dx.doi.org/10.1016/j.polymer.2008.04.017]
[4]
Kumar AP, Depan D, Singh TN, Pal SR. Nanoscale particles for polymer degradation and stabilization—Trends and future perspectives. Prog Polym Sci 2009; 34(6): 479-515.
[http://dx.doi.org/10.1016/j.progpolymsci.2009.01.002]
[5]
Alves TS, Barbosa R. Carvalho LHd, Canedo EL. Flammability of polypropylene/organoclay nanocomposites. Polímeros 2014; 24(3): 307-13.
[http://dx.doi.org/10.4322/polimeros.2014.030]
[6]
Ray SS. Clay-Containing Polymer Nanocomposites: From Fundamentals to Real Applications. 1st ed. New York: Elsevier Science 2013.
[7]
Alcântara ACS, Darder M. Building Up Functional Bionanocomposites from the Assembly of Clays and Biopolymers. Chem Rec 2018; 18(7-8): 696-712.
[http://dx.doi.org/10.1002/tcr.201700076] [PMID: 29314621]
[8]
Feng K, Hung G-Y, Yang X, Liu M. High-strength and physical cross-linked nanocomposite hydrogel with clay nanotubes for strain sensor and dye adsorption application. Compos Sci Technol 2019; 181107701
[http://dx.doi.org/10.1016/j.compscitech.2019.107701]
[9]
Tessarolli FGC, Souza STS, Gomes AS, Mansur CRE. Influence of polymer structure on the gelation kinetics and gel strength of acrylamide-based copolymers, bentonite and polyethylenimine systems for conformance control of oil reservoirs. J Appl Polym Sci 2019; 136(22): 47556.
[http://dx.doi.org/10.1002/app.47556]
[10]
Chen L, Wu Q, Zhang J, Zhao T, Jin X, Liu M. Anisotropic thermoresponsive hydrogels by mechanical force orientation of clay nanosheets. Polymer (Guildf) 2020; 192122309
[http://dx.doi.org/10.1016/j.polymer.2020.122309]
[11]
Stanly S, Jelmy EJ, John H. Studies on Modified Montmorillonite Clay and Its PVA Nanohybrid for Water Purification. J Polym Environ 2020; 28(9): >2433-2443.
[http://dx.doi.org/10.1007/s10924-020-01786-9]
[12]
Velde B. Origin and Mineralogy of Clays: Clays and the Environment. 1st ed. New York: Springer Berlin Heidelberg 1995.
[http://dx.doi.org/10.1007/978-3-662-12648-6]
[13]
Newman ACD. The chemical constitution of clays. Chemistry of Clays and Clay Minerals Geology 1987; 16(9): 861-3.
[http://dx.doi.org/10.1130/0091-7613(1988)016<0861:BR>2.3.CO;2]
[14]
Murray HH. Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Appl Clay Sci 2000; 17(5-6): 207-21.
[http://dx.doi.org/10.1016/S0169-1317(00)00016-8]
[15]
Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN. Liquid Exfoliation of Layered Materials. Science 2013; 340(6139)1226419
[http://dx.doi.org/10.1126/science.1226419]
[16]
Shao J-J, Raidongia K, Koltonow AR, Huang J. Self-assembled two-dimensional nanofluidic proton channels with high thermal stability. Nat Commun 2015; 6(1): 7602.
[http://dx.doi.org/10.1038/ncomms8602] [PMID: 26165550]
[17]
Zhao LZ, Zhou CH, Wang J, Tong DS, Yu WH, Wang H. Recent advances in clay mineral-containing nanocomposite hydrogels. Soft Matter 2015; 11(48): 9229-46.
[http://dx.doi.org/10.1039/C5SM01277E] [PMID: 26435008]
[18]
Dedzo GK, Detellier C. Clay Minerals—Ionic Liquids, Nanoarchitectures, and Applications. Adv Funct Mater 2018; 28(27)1703845
[http://dx.doi.org/10.1002/adfm.201703845]
[19]
Bergaya F, Lagaly G. General Introduction: Clays, Clay Minerals, and Clay Science. In:Bergaya F, Lagaly G. Eds Handbook of Clay Science 5. New York: Elsevier 2013; pp. 1-19.
[20]
Liu J, Zhang G. Recent advances in synthesis and applications of clay-based photocatalysts: a review. Phys Chem Chem Phys 2014; 16(18): 8178-92.
[http://dx.doi.org/10.1039/C3CP54146K] [PMID: 24660221]
[21]
Zhou Y, LaChance AM, Smith AT, Cheng H, Liu Q, Sun L. Strategic Design of Clay-Based Multifunctional Materials: From Natural Minerals to Nanostructured Membranes. Adv Funct Mater 2019; 29(16)1807611
[http://dx.doi.org/10.1002/adfm.201807611]
[22]
Uddin F. Clays, Nanoclays, and Montmorillonite Minerals. Metallurgical & Materials Transactions Part A 2008; 39(12): 2804-14.
[http://dx.doi.org/10.1007/s11661-008-9603-5]
[23]
de Oliveira CIR, Rocha MCG. Silva ALNd, Bertolino LC. Characterization of bentonite clays from Cubati, Paraíba (Northeast of Brazil). Ceramica 2016; 62(363): 272-7.
[http://dx.doi.org/10.1590/0366-69132016623631970]
[24]
Amorim LV, Gomes CM, Lira HL, França KB, Ferreira HC. Bentonites from Boa Vista, Brazil: physical, mineralogical and rheological properties. Mater Res 2004; 7(4): 583-93.
[http://dx.doi.org/10.1590/S1516-14392004000400012]
[25]
Silva SML, Araújo PER, Ferreira KM, Canedo EL, Carvalho LH, Raposo CMO. Effect of clay/water ratio during bentonite clay organophilization on the characteristics of the organobentonites and its polypropylene nanocomposites. Polym Eng Sci 2009; 49(9): 1696-702.
[http://dx.doi.org/10.1002/pen.21399]
[26]
Sinha Ray S, Okamoto M. Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 2003; 28(11): 1539-641.
[http://dx.doi.org/10.1016/j.progpolymsci.2003.08.002]
[27]
Auerbach SM, Carrado KA, Dutta PK. Handbook of Layered Materials. 1st ed. New York: CRC Press 2004.
[http://dx.doi.org/10.1201/9780203021354]
[28]
Schoonheydt RA, Johnston CT. Surface and Interface Chemistry of Clay Minerals.Handbook of Clay Science 1. 1st ed. New York: Elsevier 2006; pp. 87-113.
[http://dx.doi.org/10.1016/S1572-4352(05)01003-2]
[29]
Grim RE. Clay mineralogy. New York: McGraw-Hill 1968.
[30]
Vaia RA, Ishii H, Giannelis EP. Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chem Mater 1993; 5(12): 1694-6.
[http://dx.doi.org/10.1021/cm00036a004]
[31]
LeBaron PC, Wang Z, Pinnavaia TJ. Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 1999; 15(1-2): 11-29.
[http://dx.doi.org/10.1016/S0169-1317(99)00017-4]
[32]
Schoonheydt RA. Reflections on the material science of clay minerals. Appl Clay Sci 2016; 131: 107-12.
[http://dx.doi.org/10.1016/j.clay.2015.12.005]
[33]
Pavlidou S, Papaspyrides CD. A review on polymer–layered silicate nanocomposites. Prog Polym Sci 2008; 33(12): 1119-98.
[http://dx.doi.org/10.1016/j.progpolymsci.2008.07.008]
[34]
Kotal M, Bhowmick AK. Polymer nanocomposites from modified clays: Recent advances and challenges. Prog Polym Sci 2015; 51: 127-87.
[http://dx.doi.org/10.1016/j.progpolymsci.2015.10.001]
[35]
Wang L, Wang K, Chen L, Zhang Y, He C. Preparation, morphology and thermal/mechanical properties of epoxy/nanoclay composite. Compos, Part A Appl Sci Manuf 2006; 37(11): 1890-6.
[http://dx.doi.org/10.1016/j.compositesa.2005.12.020]
[36]
Kausar A. A review of fundamental principles and applications of polymer nanocomposites filled with both nanoclay and nano-sized carbon allotropes – Graphene and carbon nanotubes. J Plast Film Sheeting 2019; 36(2): 209-28.
[http://dx.doi.org/10.1177/8756087919884607]
[37]
Fagundes AP, Macuvele DLP, Padoin N, Soares C, Gracher Riella H. A novel ultrahigh-molecular-weight polyethylene-based nanocomposite for contaminants adsorption in aqueous systems. Mater Lett 2019; 240: 197-200.
[http://dx.doi.org/10.1016/j.matlet.2018.12.102]
[38]
Macuvele DLP, Colla G, Cesca K, et al. UHMWPE/HA biocomposite compatibilized by organophilic montmorillonite: An evaluation of the mechanical-tribological properties and its hemocompatibility and performance in simulated blood fluid. Mater Sci Eng C 2019; 100: 411-23.
[http://dx.doi.org/10.1016/j.msec.2019.02.102] [PMID: 30948077]
[39]
Pereira KAB, Aguiar KLNP, Oliveira PF, Vicente BM, Pedroni LG, Mansur CRE. Synthesis of Hydrogel Nanocomposites Based on Partially Hydrolyzed Polyacrylamide, Polyethyleneimine, and Modified Clay. ACS Omega 2020; 5(10): 4759-69.
[http://dx.doi.org/10.1021/acsomega.9b02829] [PMID: 32201761]
[40]
Brooks B. Suspension Polymerization Processes. Chem Eng Technol 2010; 33(11): 1737-44.
[http://dx.doi.org/10.1002/ceat.201000210]
[41]
Machado F, Lima EL, Pinto JC. Uma revisão sobre os processos de polimerização em suspensão. Polímeros 2007; 17(2): 166-79.
[http://dx.doi.org/10.1590/S0104-14282007000200016]
[42]
Victor PA, Gonçalves SB, Machado F. Styrene/Lignin-Based Polymeric Composites Obtained Through a Sequential Mass-Suspension Polymerization Process. J Polym Environ 2018; 26(5): 1755-74.
[http://dx.doi.org/10.1007/s10924-017-1078-2]
[43]
Campelo NM, Machado F. Reciclagem de poli(estireno-divinilbenzeno) via processo de polimerização em massa-suspensão. Polímeros 2013; 23: 212-22.
[http://dx.doi.org/10.1590/S0104-14282013005000020]
[44]
Pinto MCC, Santos JGF Jr, Machado F, Pinto JC. Suspension Polymerization Processes. In:Matyjaszewski K. Ed Encyclopedia of Polymer Science and Technology 1. 4th ed. New York: John Wiley & Sons, Inc. 2013; pp. 1-31.
[http://dx.doi.org/10.1002/0471440264.pst597]
[45]
Kiliaris P, Papaspyrides CD. Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy. Prog Polym Sci 2010; 35(7): 902-58.
[http://dx.doi.org/10.1016/j.progpolymsci.2010.03.001]
[46]
Reddy B. Advances in Diverse Industrial Applications of Nanocomposites. 1st ed. London: IntechOpen 2011.
[http://dx.doi.org/10.5772/1931]
[47]
Alexandre M, Dubois P. Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng Rep 2000; 28(1): 1-63.
[http://dx.doi.org/10.1016/S0927-796X(00)00012-7]
[48]
Shakeri F, Nodehi A, Atai M. PMMA/double-modified organoclay nanocomposites as fillers for denture base materials with improved mechanical properties. J Mech Behav Biomed Mater 2019; 90: 11-9.
[http://dx.doi.org/10.1016/j.jmbbm.2018.09.033] [PMID: 30342275]
[49]
Godiya CB, Marcantoni E, Dunjić B, Tomić M, Nikolić MS, Maletaškić J, et al. Effect of organoclay modifier structure on the viscoelastic and thermal properties of poly(methyl methacrylate)/organoclay nanocomposites. Polym Bull 2020; 78: 2911-32.
[http://dx.doi.org/10.1007/s00289-020-03248-7]
[50]
Mota MF, Rodrigues MGF, Machado F. Oil–water separation process with organoclays: A comparative analysis. Appl Clay Sci 2014; 99: 237-45.
[http://dx.doi.org/10.1016/j.clay.2014.06.039]
[51]
Santos PS. Ciência e Tecnologia de Argilas. 2nd ed. São Paulo: Edgard Blücher Ltda 1989.
[52]
Russell JD, Fraser AR. Infrared methods. In:Wilson MJ. Ed Clay Mineralogy: Spectroscopic and Chemical Determinative Methods. Dordrecht: Springer Netherlands 1994; pp. 11-67.
[http://dx.doi.org/10.1007/978-94-011-0727-3_2]
[53]
Natali Sora I, Pelosato R, Zampori L, Botta D, Dotelli G, Vitelli M. Matrix optimisation for hazardous organic waste sorption. Appl Clay Sci 2005; 28(1-4): 43-54.
[http://dx.doi.org/10.1016/j.clay.2004.01.015]
[54]
Barbosa R, Alves T, Araújo E, Mélo T, Camino G, Fina A, et al. Flammability and morphology of HDPE/clay nanocomposites. J Therm Anal Calorim 2014; 115(1): 627-34.
[http://dx.doi.org/10.1007/s10973-013-3310-1]
[55]
Lin W, Hou A, Feng Y-H, Yang Z-T, Qu J-P. UHMWPE/organoclay nanocomposites fabricated by melt intercalation under continuous elongational flow: Dispersion, thermal behaviors and mechanical properties. Polym Eng Sci 2019; 59(3): 547-54.
[http://dx.doi.org/10.1002/pen.24964]
[56]
Zheng X, Jiang DD, Wang D, Wilkie CA. Flammability of styrenic polymer clay nanocomposites based on a methyl methacrylate oligomerically-modified clay. Polym Degrad Stabil 2006; 91(2): 289-97.
[http://dx.doi.org/10.1016/j.polymdegradstab.2005.05.007]
[57]
Morgan AB, Harris JD. Exfoliated polystyrene-clay nanocomposites synthesized by solvent blending with sonication. Polymer (Guildf) 2004; 45(26): 8695-703.
[http://dx.doi.org/10.1016/j.polymer.2004.10.067]
[58]
Horrocks AR, Kandola BK, Davies PJ, Zhang S, Padbury SA. Developments in flame retardant textiles – a review. Polym Degrad Stabil 2005; 88(1): 3-12.
[http://dx.doi.org/10.1016/j.polymdegradstab.2003.10.024]
[59]
Gilman JW, Kashiwagi T, Litchtenhan JD. Nanocomposites: a revolucionary a new flame retardant approach. Sample. 33(4): 40-6.
[60]
Fornes TD, Yoon PJ, Keskkula H, Paul DR. Nylon 6 nanocomposites: the effect of matrix molecular weight. Polymer (Guildf) 2001; 42(25): 09929-40.
[http://dx.doi.org/10.1016/S0032-3861(01)00552-3]
[61]
Pramoda KP, Liu T, Liu Z, He C, Sue H-J. Thermal degradation behavior of polyamide 6/clay nanocomposites. Polym Degrad Stabil 2003; 81(1): 47-56.
[http://dx.doi.org/10.1016/S0141-3910(03)00061-2]
[62]
Mekhzoum MEM, Raji M, Rodrigue D. Qaiss A, Bouhfid R. The effect of benzothiazolium surfactant modified montmorillonite content on the properties of polyamide 6 nanocomposites. Appl Clay Sci 2020; 185105417
[http://dx.doi.org/10.1016/j.clay.2019.105417]
[63]
Ibrahim N, Jollands M, Parthasarathy R. Mechanical and thermal properties of melt processed PLA/organoclay nanocomposites. IOP Conf Series Mater Sci Eng 2017; 191012005
[http://dx.doi.org/10.1088/1757-899X/191/1/012005]
[64]
Morawiec J, Pawlak A, Slouf M, Galeski A, Piorkowska E, Krasnikowa N. Preparation and properties of compatibilized LDPE/organo-modified montmorillonite nanocomposites. Eur Polym J 2005; 41(5): 1115-22.
[http://dx.doi.org/10.1016/j.eurpolymj.2004.11.011]
[65]
Bartholmai M, Schartel B. Layered silicate polymer nanocomposites: new approach or illusion for fire retardancy? Investigations of the potentials and the tasks using a model system. Polym Adv Technol 2004; 15(7): 355-64.
[http://dx.doi.org/10.1002/pat.483]
[66]
Stoeffler K, Lafleur PG, Denault J. Thermal decomposition of various alkyl onium organoclays: Effect on polyethylene terephthalate nanocomposites’ properties. Polym Degrad Stabil 2008; 93(7): 1332-50.
[http://dx.doi.org/10.1016/j.polymdegradstab.2008.03.029]
[67]
Cherifi Z, Boukoussa B, Zaoui A, Belbachir M, Meghabar R. Structural, morphological and thermal properties of nanocomposites poly(GMA)/clay prepared by ultrasound and in-situ polymerization. Ultrason Sonochem 2018; 48: 188-98.
[http://dx.doi.org/10.1016/j.ultsonch.2018.05.027] [PMID: 30080541]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy