Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

An Updated Review on Betacoronavirus Viral Entry Inhibitors: Learning from Past Discoveries to Advance COVID-19 Drug Discovery

Author(s): Dima A. Sabbah*, Rima Hajjo, Sanaa K. Bardaweel and Haizhen A. Zhong

Volume 21, Issue 7, 2021

Published on: 19 January, 2021

Page: [571 - 596] Pages: 26

DOI: 10.2174/1568026621666210119111409

Abstract

Even after one year of its first outbreak reported in China, the coronavirus disease 2019 (COVID-19) pandemic is still sweeping the World, causing serious infections and claiming more fatalities. COVID-19 is caused by the novel coronavirus SARS-CoV-2, which belongs to the genus Betacoronavirus (β-CoVs), which is of greatest clinical importance since it contains many other viruses that cause respiratory disease in humans, including OC43, HKU1, SARS-CoV, and MERS. The spike (S) glycoprotein of β-CoVs is a key virulence factor in determining disease pathogenesis and host tropism, and it also mediates virus binding to the host’s receptors to allow viral entry into host cells, i.e., the first step in virus lifecycle. Viral entry inhibitors are considered promising putative drugs for COVID-19. Herein, we mined the biomedical literature for viral entry inhibitors of other coronaviruses, with special emphasis on β-CoVs entry inhibitors. We also outlined the structural features of SARS-CoV-2 S protein and how it differs from other β-CoVs to better understand the structural determinants of S protein binding to its human receptor (ACE2). This review highlighted several promising viral entry inhibitors as potential treatments for COVID-19.

Keywords: Coronavirus, COVID-19, SARS-CoV-2, S protein, ACE2, Cell fusion, Inhibitors.

Next »
Graphical Abstract
[1]
Gorbalenya, A.E.; Baker, S.C.; Baric, R.S.; de Groot, R.J.; Drosten, C.; Gulyaeva, A.A.; Haagmans, B.L.; Lauber, C.; Leontovich, A.M.; Neuman, B.W.; Penzar, D.; Perlman, S.; Poon, L.L.M.; Samborskiy, D.V.; Sidorov, I.A.; Sola, I.; Ziebuhr, J. Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol., 2020, 5(4), 536-544.
[http://dx.doi.org/10.1038/s41564-020-0695-z] [PMID: 32123347]
[2]
Hulswit, R.; de Haan, C.; Bosch, B-J. Coronavirus spike protein and tropism changes.In: Advances in Virus Research; Elsevier: Amsterdam, 2016, Vol. 96, pp. 29-57.
[3]
Brown, T.; Brierley, I. The coronavirus nonstructural proteins. In:The Coronaviridae; Springer: Berlin, 1995, pp. 191-217.
[http://dx.doi.org/10.1007/978-1-4899-1531-3_10]
[4]
Satija, N.; Lal, S.K. The molecular biology of SARS coronavirus. Ann. N. Y. Acad. Sci., 2007, 1102(1), 26-38.
[http://dx.doi.org/10.1196/annals.1408.002] [PMID: 17470909]
[5]
Masters, P.S. The molecular biology of coronaviruses. In:Advances in virus research; Elsevier: Amsterdam, 2006, Vol. 66, pp. 193-292.
[6]
Ghosh, A.K.; Xi, K.; Johnson, M.E.; Baker, S.C.; Mesecar, A.D. Progress in anti-SARS coronavirus chemistry, biology and chemotherapy. Annu. Rep. Med. Chem., 2007, 41, 183-196.
[http://dx.doi.org/10.1016/S0065-7743(06)41011-3] [PMID: 19649165]
[7]
Artika, I.M.; Dewantari, A.K.; Wiyatno, A. Molecular biology of coronaviruses: current knowledge. Heliyon, 2020, 6(8)E04743
[http://dx.doi.org/10.1016/j.heliyon.2020.e04743] [PMID: 32835122]
[8]
Asrani, P.; Hasan, G.M.; Sohal, S.S.; Hassan, M.I. Molecular basis of pathogenesis of coronaviruses: a comparative genomics approach to planetary health to prevent zoonotic outbreaks in the 21st century. OMICS, 2020, 24(11), 634-644.
[http://dx.doi.org/10.1089/omi.2020.0131] [PMID: 32940573]
[9]
Graham, R.L.; Donaldson, E.F.; Baric, R.S. A decade after SARS: strategies for controlling emerging coronaviruses. Nat. Rev. Microbiol., 2013, 11(12), 836-848.
[http://dx.doi.org/10.1038/nrmicro3143] [PMID: 24217413]
[10]
Lai, M.M. SARS virus: the beginning of the unraveling of a new coronavirus. J. Biomed. Sci., 2003, 10(6 Pt 2), 664-675.
[http://dx.doi.org/10.1007/BF02256318] [PMID: 14631105]
[11]
Li, G.; Fan, Y.; Lai, Y.; Han, T.; Li, Z.; Zhou, P.; Pan, P.; Wang, W.; Hu, D.; Liu, X.; Zhang, Q.; Wu, J. Coronavirus infections and immune responses. J. Med. Virol., 2020, 92(4), 424-432.
[http://dx.doi.org/10.1002/jmv.25685] [PMID: 31981224]
[12]
Woo, P.C.; Lau, S.K.; Lam, C.S.; Lau, C.C.; Tsang, A.K.; Lau, J.H.; Bai, R.; Teng, J.L.; Tsang, C.C.; Wang, M.; Zheng, B.J.; Chan, K.H.; Yuen, K.Y. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J. Virol., 2012, 86(7), 3995-4008.
[http://dx.doi.org/10.1128/JVI.06540-11] [PMID: 22278237]
[13]
Fehr, A.R.; Perlman, S. Coronaviruses: an overview of their replication and pathogenesis. In: Coronaviruses; Springer: Berlin, 2015; pp. 1-23.
[http://dx.doi.org/10.1007/978-1-4939-2438-7_1]
[14]
Chan, J.F-W.; Kok, K-H.; Zhu, Z.; Chu, H.; To, K.K-W.; Yuan, S.; Yuen, K-Y. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg. Microbes Infect., 2020, 9(1), 221-236.
[http://dx.doi.org/10.1080/22221751.2020.1719902] [PMID: 31987001]
[15]
Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G.F.; Tan, W. A novel coronavirus from patients with pneumonia in China, 2019. The New England J. Med, 2020, 382(8), 727-733.
[16]
Brian, D.; Baric, R. Coronavirus genome structure and replication.In:Coronavirus replication and reverse genetics; Springer: Berlin, 2005, pp. 1-30.
[http://dx.doi.org/10.1007/3-540-26765-4_1]
[17]
Nakagawa, K.; Lokugamage, K.; Makino, S. Viral and cellular mRNA translation in coronavirus-infected cells. In: Advances in virus research; Elsevier: Amsterdam, 2016; Vol. 96, pp. 165-192.
[18]
Snijder, E.J.; van der Meer, Y.; Zevenhoven-Dobbe, J.; Onderwater, J.J.; van der Meulen, J.; Koerten, H.K.; Mommaas, A.M. Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J. Virol., 2006, 80(12), 5927-5940.
[http://dx.doi.org/10.1128/JVI.02501-05] [PMID: 16731931]
[19]
Hussain, S.; Pan, J.; Chen, Y.; Yang, Y.; Xu, J.; Peng, Y.; Wu, Y.; Li, Z.; Zhu, Y.; Tien, P.; Guo, D. Identification of novel subgenomic RNAs and noncanonical transcription initiation signals of severe acute respiratory syndrome coronavirus. J. Virol., 2005, 79(9), 5288-5295.
[http://dx.doi.org/10.1128/JVI.79.9.5288-5295.2005] [PMID: 15827143]
[20]
Dhama, K.; Khan, S.; Tiwari, R.; Sircar, S.; Bhat, S.; Malik, Y.S.; Singh, K.P.; Chaicumpa, W.; Bonilla-Aldana, D.K.; Rodriguez-Morales, A.J. Coronavirus Disease 2019-COVID-19. Clin. Microbiol. Rev., 2020, 33(4), e00028-e20.
[http://dx.doi.org/10.1128/CMR.00028-20] [PMID: 32580969]
[21]
Wu, A.; Peng, Y.; Huang, B.; Ding, X.; Wang, X.; Niu, P.; Meng, J.; Zhu, Z.; Zhang, Z.; Wang, J.; Sheng, J.; Quan, L.; Xia, Z.; Tan, W.; Cheng, G.; Jiang, T. Genome composition and divergence of the novel coronavirus (2019-ncov) originating in China. Cell Host Microbe, 2020, 27(3), 325-328.
[http://dx.doi.org/10.1016/j.chom.2020.02.001] [PMID: 32035028]
[22]
Gralinski, L.E.; Menachery, V.D. Return of the coronavirus: 2019-nCoV. Viruses, 2020, 12(2), 135-145.
[http://dx.doi.org/10.3390/v12020135] [PMID: 31991541]
[23]
Malik, Y.S.; Sircar, S.; Bhat, S.; Sharun, K.; Dhama, K.; Dadar, M.; Tiwari, R.; Chaicumpa, W. Emerging novel coronavirus (2019-nCoV)-current scenario, evolutionary perspective based on genome analysis and recent developments. Vet. Q., 2020, 40(1), 68-76.
[http://dx.doi.org/10.1080/01652176.2020.1727993] [PMID: 32036774]
[24]
Lu, R.; Zhao, X.; Li, J.; Niu, P.; Yang, B.; Wu, H.; Wang, W.; Song, H.; Huang, B.; Zhu, N.; Bi, Y.; Ma, X.; Zhan, F.; Wang, L.; Hu, T.; Zhou, H.; Hu, Z.; Zhou, W.; Zhao, L.; Chen, J.; Meng, Y.; Wang, J.; Lin, Y.; Yuan, J.; Xie, Z.; Ma, J.; Liu, W.J.; Wang, D.; Xu, W.; Holmes, E.C.; Gao, G.F.; Wu, G.; Chen, W.; Shi, W.; Tan, W. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet, 2020, 395(10224), 565-574.
[http://dx.doi.org/10.1016/S0140-6736(20)30251-8] [PMID: 32007145]
[25]
Ren, L.L.; Wang, Y.M.; Wu, Z.Q.; Xiang, Z.C.; Guo, L.; Xu, T.; Jiang, Y.Z.; Xiong, Y.; Li, Y.J.; Li, X.W.; Li, H.; Fan, G.H.; Gu, X.Y.; Xiao, Y.; Gao, H.; Xu, J.Y.; Yang, F.; Wang, X.M.; Wu, C.; Chen, L.; Liu, Y.W.; Liu, B.; Yang, J.; Wang, X.R.; Dong, J.; Li, L.; Huang, C.L.; Zhao, J.P.; Hu, Y.; Cheng, Z.S.; Liu, L.L.; Qian, Z.H.; Qin, C.; Jin, Q.; Cao, B.; Wang, J.W. Identification of a novel coronavirus causing severe pneumonia in human: a descriptive study. Chin. Med. J. (Engl.), 2020, 133(9), 1015-1024.
[http://dx.doi.org/10.1097/CM9.0000000000000722] [PMID: 32004165]
[26]
Liu, K.; Fang, Y-Y.; Deng, Y.; Liu, W.; Wang, M-F.; Ma, J-P.; Xiao, W.; Wang, Y-N.; Zhong, M-H.; Li, C-H.; Li, G-C.; Liu, H-G. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin. Med. J. (Engl.), 2020, 133(9), 1025-1031.
[http://dx.doi.org/10.1097/CM9.0000000000000744] [PMID: 32044814]
[27]
Cyranoski, D. This scientist hopes to test coronavirus drugs on animals in locked-down Wuhan. Nature, 2020, 577(7792), 607.
[http://dx.doi.org/10.1038/d41586-020-00190-6] [PMID: 31992886]
[28]
Dhama, K.; Pawaiya, R.; Chakraborty, S.; Tiwari, R.; Saminathan, M.; Verma, A. Coronavirus infection in equines: a review. Asian J. Anim. Vet. Adv., 2014, 9(3), 164-176.
[http://dx.doi.org/10.3923/ajava.2014.164.176]
[29]
Zaher, N.H.; Mostafa, M.I.; Altaher, A.Y. Design, synthesis and molecular docking of novel triazole derivatives as potential CoV helicase inhibitors. Acta Pharm., 2020, 70(2), 145-159.
[http://dx.doi.org/10.2478/acph-2020-0024] [PMID: 31955138]
[30]
Lu, H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). Biosci. Trends, 2020, 14(1), 69-71.
[http://dx.doi.org/10.5582/bst.2020.01020] [PMID: 31996494]
[31]
Pillaiyar, T.; Meenakshisundaram, S.; Manickam, M. Recent discovery and development of inhibitors targeting coronaviruses. Drug Discov. Today, 2020, 25(4), 668-688.
[http://dx.doi.org/10.1016/j.drudis.2020.01.015] [PMID: 32006468]
[32]
Hu, B.; Ge, X.; Wang, L-F.; Shi, Z. Bat origin of human coronaviruses. Virol. J., 2015, 12(1), 221.
[http://dx.doi.org/10.1186/s12985-015-0422-1] [PMID: 26689940]
[33]
Li, B.; Si, H-R.; Zhu, Y.; Yang, X-L.; Anderson, D.E.; Shi, Z-L.; Wang, L-F.; Zhou, P. Discovery of bat coronaviruses through surveillance and probe capture-based next-generation sequencing. MSphere, 2020, 5(1), e00807-e00819.
[http://dx.doi.org/10.1128/mSphere.00807-19] [PMID: 31996413]
[34]
Childs, J.E.; Mackenzie, J.S.; Richt, J.A. Wildlife and emerging zoonotic diseases: the biology, circumstances and consequences of cross-species transmission; Springer Science & Business Media: Berlin, 2007.
[http://dx.doi.org/10.1007/978-3-540-70962-6]
[35]
Wang, L-F.; Eaton, B.T. Bats, civets and the emergence of SARS. In: Wildlife and emerging zoonotic diseases: the biology, circumstances and consequences of cross-species transmission; Springer: Berlin, 2007; pp. 325-344.
[http://dx.doi.org/10.1007/978-3-540-70962-6_13]
[36]
Hemida, M.G. Middle East respiratory syndrome coronavirus and the One Health concept. PeerJ, 2019, 7e7556
[http://dx.doi.org/10.7717/peerj.7556] [PMID: 31497405]
[37]
Belouzard, S.; Millet, J.K.; Licitra, B.N.; Whittaker, G.R. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 2012, 4(6), 1011-1033.
[http://dx.doi.org/10.3390/v4061011] [PMID: 22816037]
[38]
Beniac, D.R.; Andonov, A.; Grudeski, E.; Booth, T.F. Architecture of the SARS coronavirus prefusion spike. Nat. Struct. Mol. Biol., 2006, 13(8), 751-752.
[http://dx.doi.org/10.1038/nsmb1123] [PMID: 16845391]
[39]
Li, F. Structure, function, and evolution of coronavirus spike proteins. Annu. Rev. Virol., 2016, 3(1), 237-261.
[http://dx.doi.org/10.1146/annurev-virology-110615-042301] [PMID: 27578435]
[40]
Ge, X-Y.; Li, J-L.; Yang, X-L.; Chmura, A.A.; Zhu, G.; Epstein, J.H.; Mazet, J.K.; Hu, B.; Zhang, W.; Peng, C.; Zhang, Y.J.; Luo, C.M.; Tan, B.; Wang, N.; Zhu, Y.; Crameri, G.; Zhang, S.Y.; Wang, L.F.; Daszak, P.; Shi, Z.L. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature, 2013, 503(7477), 535-538.
[http://dx.doi.org/10.1038/nature12711] [PMID: 24172901]
[41]
Wei, X.; Li, X.; Cui, J. Evolutionary perspectives on novel coronaviruses identified in pneumonia cases in China. Natl. Sci. Rev., 2020, 7(2), 239-242.
[http://dx.doi.org/10.1093/nsr/nwaa009] [PMID: 32288962]
[42]
Li, X.; Song, Y.; Wong, G.; Cui, J. Bat origin of a new human coronavirus: there and back again. Sci. China Life Sci., 2020, 63(3), 461-462.
[http://dx.doi.org/10.1007/s11427-020-1645-7] [PMID: 32048160]
[43]
Sawicki, S.G.; Sawicki, D.L.; Siddell, S.G. A contemporary view of coronavirus transcription. J. Virol., 2007, 81(1), 20-29.
[http://dx.doi.org/10.1128/JVI.01358-06] [PMID: 16928755]
[44]
Guo, J.; Huang, Z.; Lin, L.; Lv, J. Coronavirus disease 2019 (covid-19) and cardiovascular disease: a viewpoint on the potential influence of angiotensin‐converting enzyme inhibitors/angiotensin receptor blockers on onset and severity of severe acute respiratory syndrome coronavirus 2 infection. J. Am. Heart Assoc., 2020, 9(7)
[http://dx.doi.org/10.1161/JAHA.120.016219] [PMID: 32233755]
[45]
Liu, D.X.; Fung, T.S.; Chong, K.K-L.; Shukla, A.; Hilgenfeld, R. Accessory proteins of SARS-CoV and other coronaviruses. Antiviral Res., 2014, 109, 97-109.
[http://dx.doi.org/10.1016/j.antiviral.2014.06.0">13] [PMID: 24995382]
[46]
Cavanagh, D. Coronavirus avian infectious bronchitis virus. Vet. Res., 2007, 38(2), 281-297.
[http://dx.doi.org/10.1051/vetres:2006055] [PMID: 17296157]
[47]
Enjuanes, L. Coronavirus replication and reverse genetics; Springer Science & Business Media: Berlin, 2004, Vol. 287, .
[48]
Weiss, S.R.; Leibowitz, J.L. Coronavirus pathogenesis. In: Advances in Virus Research; Elsevier: Amsterdam, 2011; Vol. 81, pp. 85-164.
[49]
Bosch, B.J.; Rottier, P.J. Nidovirus entry into cells. In: Nidoviruses; American Society of Microbiology: Washington, D.C., 2008; pp. 157-178.
[50]
Bosch, B.J.; Smits, S.L.; Haagmans, B.L. Membrane ectopeptidases targeted by human coronaviruses. Curr. Opin. Virol., 2014, 6, 55-60.
[http://dx.doi.org/10.1016/j.coviro.2014.03.011] [PMID: 24762977]
[51]
Holmes, K.V. SARS-associated coronavirus. N. Engl. J. Med., 2003, 348(20), 1948-1951.
[http://dx.doi.org/10.1056/NEJMp030078] [PMID: 12748314]
[52]
Hofmann, H.; Pöhlmann, S. Cellular entry of the SARS coronavirus. Trends Microbiol., 2004, 12(10), 466-472.
[http://dx.doi.org/10.1016/j.tim.2004.08.008] [PMID: 15381196]
[53]
Weiss, S.R.; Navas-Martin, S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol. Mol. Biol. Rev., 2005, 69(4), 635-664.
[http://dx.doi.org/10.1128/MMBR.69.4.635-664.2005] [PMID: 16339739]
[54]
Bolles, M.; Donaldson, E.; Baric, R. SARS-CoV and emergent coronaviruses: viral determinants of interspecies. Curr. Opin. Virol., 2011, 1(6), 624-634.
[55]
Gallagher, T.M.; Buchmeier, M.J. Coronavirus spike proteins in viral entry and pathogenesis. Virology, 2001, 279(2), 371-374.
[http://dx.doi.org/10.1006/viro.2000.0757] [PMID: 11162792]
[56]
Frieman, M.; Heise, M.; Baric, R. SARS coronavirus and innate immunity. Virus Res., 2008, 133(1), 101-112.
[http://dx.doi.org/10.1016/j.virusres.2007.03.0>15] [PMID: 17451827]
[57]
Bergmann, C.C.; Lane, T.E.; Stohlman, S.A. Coronavirus infection of the central nervous system: host-virus stand-off. Nat. Rev. Microbiol., 2006, 4(2), 121-132.
[http://dx.doi.org/10.1038/nrmicro1343] [PMID: 16415928]
[58]
ter Meulen, J.; Bakker, A.B.; van den Brink, E.N.; Weverling, G.J.; Martina, B.E.; Haagmans, B.L.; Kuiken, T.; de Kruif, J.; Preiser, W.; Spaan, W.; Gelderblom, H.R.; Goudsmit, J.; Osterhaus, A.D. Human monoclonal antibody as prophylaxis for SARS coronavirus infection in ferrets. Lancet, 2004, 363(9427), 2139-2141.
[http://dx.doi.org/10.1016/S0140-6736(04)16506-9] [PMID: 15220038]
[59]
Schoggins, J.W. Coronavirus infection of the central nervous system: host-virus stand-off. Nat. Rev. Microbiol., 2014, 4(2), 121-132.
[60]
Kindler, E.; Thiel, V. To sense or not to sense viral RNA--essentials of coronavirus innate immune evasion. Curr. Opin. Microbiol., 2014, 20, 69-75.
[http://dx.doi.org/10.1016/j.mib.2014.05.005] [PMID: 24908561]
[61]
Shin, M.D.; Shukla, S.; Chung, Y.H.; Beiss, V.; Chan, S.K.; Ortega-Rivera, O.A.; Wirth, D.M.; Chen, A.; Sack, M.; Pokorski, J.K.; Steinmetz, N.F. COVID-19 vaccine development and a potential nanomaterial path forward. Nat. Nanotechnol., 2020, 15(8), 646-655.
[http://dx.doi.org/10.1038/s41565-020-0737-y] [PMID: 32669664]
[62]
Dhama, K.; Sharun, K.; Tiwari, R.; Dadar, M.; Malik, Y.S.; Singh, K.P.; Chaicumpa, W. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Hum. Vaccin. Immunother., 2020, 16(6), 1232-1238.
[63]
Prompetchara, E.; Ketloy, C.; Palaga, T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac. J. Allergy Immunol., 2020, 38(1), 1-9.
[PMID: 32105090]
[64]
Hotez, P.J.; Corry, D.B.; Bottazzi, M.E. COVID-19 vaccine design: the Janus face of immune enhancement. Nat. Rev. Immunol., 2020, 20(6), 347-348.
[http://dx.doi.org/10.1038/s41577-020-0323-4] [PMID: 32346094]
[65]
Koirala, A.; Joo, Y.J.; Khatami, A.; Chiu, C.; Britton, P.N. Vaccines for COVID-19: The current state of play. Paediatr. Respir. Rev., 2020, 35, 43-49.
[PMID: 32653463]
[66]
Lurie, N.; Saville, M.; Hatchett, R.; Halton, J. Developing Covid-19 vaccines at pandemic speed. NEJM, 2020, 382(21), 1969-1973.
[67]
Thanh Le, T.; Andreadakis, Z.; Kumar, A.; Gómez Román, R.; Tollefsen, S.; Saville, M.; Mayhew, S. The COVID-19 vaccine development landscape. Nat. Rev. Drug Discov., 2020, 19(5), 305-306.
[http://dx.doi.org/10.1038/d41573-020-00073-5] [PMID: 32273591]
[68]
Yap, P.S.X.; Tan, T.S.; Chan, Y.F.; Tee, K.K.; Kamarulzaman, A.; Teh, C.S.J. An overview of the genetic variations of the sars-cov-2 genomes isolated in southeast Asian countries. J. Microbiol. Biotechnol., 2020, 30(7), 962-966.
[http://dx.doi.org/10.4014/jmb.2006.06009] [PMID: 32627759]
[69]
Corey, L.; Mascola, J.R.; Fauci, A.S.; Collins, F.S. A strategic approach to COVID-19 vaccine R&D. Science, 2020, 368(6494), 948-950.
[http://dx.doi.org/10.1126/science.abc5312] [PMID: 32393526]
[70]
Yamey, G.; Schäferhoff, M.; Hatchett, R.; Pate, M.; Zhao, F.; McDade, K.K. Ensuring global access to COVID-19 vaccines. Lancet, 2020, 395(10234), 1405-1406.
[http://dx.doi.org/10.1016/S0140-6736(20)30763-7] [PMID: 32243778]
[71]
Hajjo, R.; Tropsha, A. A systems biology workflow for drug and vaccine repurposing: identifying small-molecule bcg mimics to reduce or prevent covid-19 mortality. Pharm. Res., 2020, 37(11), 212.
[http://dx.doi.org/10.1007/s11095-020-02930-9] [PMID: 33025261]
[72]
Pillaiyar, T.; Manickam, M.; Namasivayam, V.; Hayashi, Y.; Jung, S-H. An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: peptidomimetics and small molecule chemotherapy. J. Med. Chem., 2016, 59(14), 6595-6628.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01461] [PMID: 26878082]
[73]
Saavedra, J.M. COVID-19, Angiotensin receptor blockers, and the brain. Cell. Mol. Neurobiol., 2020, 40(5), 667-674.
[http://dx.doi.org/10.1007/s10571-020-00861-y] [PMID: 32385549]
[74]
Orhan, I.E.; Senol Deniz, F.S. Natural products as potential leads against coronaviruses: could they be encouraging structural models against sars-cov-2? Nat. Prod. Bioprospect., 2020, 10(4), 171-186.
[http://dx.doi.org/10.1007/s13659-020-00250-4] [PMID: 32529545]
[75]
Xu, X.; Dang, Z.; Zhang, L.; Zhuang, L.; Jing, W.; Ji, L.; Qiu, G. Potential inhibitor for 2019-novel coronaviruses in drug development. Transl. Cancer Res., 2020, 6(1), 17-20.
[76]
He, J.; Hu, L.; Huang, X.; Wang, C.; Zhang, Z.; Wang, Y.; Zhang, D.; Ye, W. Potential of coronavirus 3C-like protease inhibitors for the development of new anti-SARS-CoV-2 drugs: Insights from structures of protease and inhibitors. Int. J. Antimicrob. Agents, 2020, 56(2)106055
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106055] [PMID: 32534187]
[77]
Liu, C.; Zhou, Q.; Li, Y.; Garner, L.V.; Watkins, S.P.; Carter, L.J.; Smoot, J.; Gregg, A.C.; Daniels, A.D.; Jervey, S.; Albaiu, D. Research and development on therapeutic agents and vaccines for covid-19 and related human coronavirus diseases. ACS Cent. Sci., 2020, 6(3), 315-331.
[http://dx.doi.org/10.1021/acscentsci.0c00>272] [PMID: 32226821]
[78]
Xiu, S.; Dick, A.; Ju, H.; Mirzaie, S.; Abdi, F.; Cocklin, S.; Zhan, P.; Liu, X. Inhibitors of sars-cov-2 entry: current and future opportunities. J. Med. Chem., 2020, 63(21), 12256-12274.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00502] [PMID: 32539378]
[79]
Islam, M.T.; Sarkar, C.; El-Kersh, D.M.; Jamaddar, S.; Uddin, S.J.; Shilpi, J.A.; Mubarak, M.S. Natural products and their derivatives against coronavirus: A review of the non-clinical and pre-clinical data. Phytother. Res., 2020, 34(10), 2471-2492.
[http://dx.doi.org/10.1002/ptr.6700] [PMID: 32248575]
[80]
Elfiky, A.A. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci., 2020, 248117477
[http://dx.doi.org/10.1016/j.lfs.2020.117477] [PMID: 32119961]
[81]
Little, P. Non-steroidal anti-inflammatory drugs and covid-19. BMJ, 2020, 368, m1185.
[http://dx.doi.org/10.1136/bmj.m1185] [PMID: 32220865]
[82]
Bardaweel, S.K.; Hajjo, R.; Sabbah, D.A. Sitagliptin: a potential drug for the treatment of COVID-19? Acta Pharm., 2021, 71(2), 175-184.
[PMID: 33151168]
[83]
Hajjo, R.; Sabbah, D.A.; Bardaweel, S.K. Chemocentric informatics analysis: dexamethasone versus combination therapy for covid-19. ACS Omega, 2020, 5(46), 29765-29779.
[http://dx.doi.org/10.1021/acsomega.0c03597] [PMID: 33251412]
[84]
Sabbah, D.A.; Hajjo, R.; Bardaweel, S.K.; Zhong, H.A. An Updated Review on SARS-CoV-2 Main Proteinase (MPro): Protein Structure and Small-Molecule Inhibitors. Curr. Top. Med. Chem., 2020, 184 (Online ahead of print)
[85]
Burkard, C.; Verheije, M.H.; Wicht, O.; van Kasteren, S.I.; van Kuppeveld, F.J.; Haagmans, B.L.; Pelkmans, L.; Rottier, P.J.; Bosch, B.J.; de Haan, C.A. Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner. PLoS Pathog., 2014, 10(11)e1004709
[http://dx.doi.org/10.1371/journal.ppat.1004502] [PMID: 25375324]
[86]
Eifart, P.; Ludwig, K.; Böttcher, C.; de Haan, C.A.; Rottier, P.J.; Korte, T.; Herrmann, A. Role of endocytosis and low pH in murine hepatitis virus strain A59 cell entry. J. Virol., 2007, 81(19), 10758-10768.
[http://dx.doi.org/10.1128/JVI.00725-07] [PMID: 17626088]
[87]
Inoue, Y.; Tanaka, N.; Tanaka, Y.; Inoue, S.; Morita, K.; Zhuang, M.; Hattori, T.; Sugamura, K. Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted. J. Virol., 2007, 81(16), 8722-8729.
[http://dx.doi.org/10.1128/JVI.00253-07] [PMID: 17522231]
[88]
Nomura, R.; Kiyota, A.; Suzaki, E.; Kataoka, K.; Ohe, Y.; Miyamoto, K.; Senda, T.; Fujimoto, T. Human coronavirus 229E binds to CD13 in rafts and enters the cell through caveolae. J. Virol., 2004, 78(16), 8701-8708.
[http://dx.doi.org/10.1128/JVI.78.16.8701-8708.2004] [PMID: 15280478]
[89]
Wang, H.; Yang, P.; Liu, K.; Guo, F.; Zhang, Y.; Zhang, G.; Jiang, C. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res., 2008, 18(2), 290-301.
[http://dx.doi.org/10.1038/cr.2008.15] [PMID: 18227861]
[90]
Matsuyama, S.; Taguchi, F. Two-step conformational changes in a coronavirus envelope glycoprotein mediated by receptor binding and proteolysis. J. Virol., 2009, 83(21), 11133-11141.
[http://dx.doi.org/10.1128/JVI.00959-09] [PMID: 19706706]
[91]
Zelus, B.D.; Schickli, J.H.; Blau, D.M.; Weiss, S.R.; Holmes, K.V. Conformational changes in the spike glycoprotein of murine coronavirus are induced at 37 degrees C either by soluble murine CEACAM1 receptors or by pH 8. J. Virol., 2003, 77(2), 830-840.
[http://dx.doi.org/10.1128/JVI.77.2.830-840.2003] [PMID: 12502799]
[92]
Simmons, G.; Gosalia, D.N.; Rennekamp, A.J.; Reeves, J.D.; Diamond, S.L.; Bates, P. Inhibitors of cathepsin L prevent severe acute respiratory syndrome coronavirus entry. Proc. Natl. Acad. Sci. USA, 2005, 102(33), 11876-11881.
[http://dx.doi.org/10.1073/pnas.0505577102] [PMID: 16081529]
[93]
Kirchdoerfer, R.N.; Cottrell, C.A.; Wang, N.; Pallesen, J.; Yassine, H.M.; Turner, H.L.; Corbett, K.S.; Graham, B.S.; McLellan, J.S.; Ward, A.B. Pre-fusion structure of a human coronavirus spike protein. Nature, 2016, 531(7592), 118-121.
[http://dx.doi.org/10.1038/nature17200] [PMID: 26935699]
[94]
Yamada, Y.; Liu, D.X. Proteolytic activation of the spike protein at a novel RRRR/S motif is implicated in furin-dependent entry, syncytium formation, and infectivity of coronavirus infectious bronchitis virus in cultured cells. J. Virol., 2009, 83(17), 8744-8758.
[http://dx.doi.org/10.1128/JVI.00613-09] [PMID: 19553314]
[95]
Millet, J.K.; Whittaker, G.R. Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus Res., 2015, 202, 120-134.
[http://dx.doi.org/10.1016/j.virusres.2014.11.021] [PMID: 25445340]
[96]
Bosch, B.J.; van der Zee, R.; de Haan, C.A.; Rottier, P.J. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J. Virol., 2003, 77(16), 8801-8811.
[http://dx.doi.org/10.1128/JVI.77.16.8801-8811.2003] [PMID: 12885899]
[97]
van der Meer, Y.; Snijder, E.J.; Dobbe, J.C.; Schleich, S.; Denison, M.R.; Spaan, W.J.; Locker, J.K. Localization of mouse hepatitis virus nonstructural proteins and RNA synthesis indicates a role for late endosomes in viral replication. J. Virol., 1999, 73(9), 7641-7657.
[http://dx.doi.org/10.1128/JVI.73.9.7641-7657.1999] [PMID: 10438855]
[98]
Desmarets, L.M.B.; Theuns, S.; Roukaerts, I.D.M.; Acar, D.D.; Nauwynck, H.J. Role of sialic acids in feline enteric coronavirus infections. J. Gen. Virol., 2014, 95(Pt 9), 1911-1918.
[http://dx.doi.org/10.1099/vir.0.064717-0] [PMID: 24876305]
[99]
Chang, H-W.; Egberink, H.F.; Halpin, R.; Spiro, D.J.; Rottier, P.J. Spike protein fusion peptide and feline coronavirus virulence. Emerg. Infect. Dis., 2012, 18(7), 1089-1095.
[100]
Terada, Y.; Shiozaki, Y.; Shimoda, H.; Mahmoud, H.Y.A.H.; Noguchi, K.; Nagao, Y.; Shimojima, M.; Iwata, H.; Mizuno, T.; Okuda, M.; Morimoto, M.; Hayashi, T.; Tanaka, Y.; Mochizuki, M.; Maeda, K. Feline infectious peritonitis virus with a large deletion in the 5′-terminal region of the spike gene retains its virulence for cats. J. Gen. Virol., 2012, 93(Pt 9), 1930-1934.
[http://dx.doi.org/10.1099/vir.0.043992-0] [PMID: 22718568]
[101]
Schoeman, D.; Fielding, B.C. Coronavirus envelope protein: current knowledge. Virol. J., 2019, 16(1), 69.
[http://dx.doi.org/10.1186/s12985-019-1182-0] [PMID: 31133031]
[102]
Crossley, B.M.; Mock, R.E.; Callison, S.A.; Hietala, S.K. Identification and characterization of a novel alpaca respiratory coronavirus most closely related to the human coronavirus 229E. Viruses, 2012, 4(12), 3689-3700.
[http://dx.doi.org/10.3390/v4123689] [PMID: 23235471]
[103]
Farsani, S.M.J.; Dijkman, R.; Jebbink, M.F.; Goossens, H.; Ieven, M.; Deijs, M.; Molenkamp, R.; van der Hoek, L. The first complete genome sequences of clinical isolates of human coronavirus 229E. Virus Genes, 2012, 45(3), 433-439.
[http://dx.doi.org/10.1007/s11262-012-0807-9] [PMID: 22926811]
[104]
Corman, V.M.; Baldwin, H.J.; Tateno, A.F.; Zerbinati, R.M.; Annan, A.; Owusu, M.; Nkrumah, E.E.; Maganga, G.D.; Oppong, S.; Adu-Sarkodie, Y.; Vallo, P.; da Silva Filho, L.V.; Leroy, E.M.; Thiel, V.; van der Hoek, L.; Poon, L.L.; Tschapka, M.; Drosten, C.; Drexler, J.F. Evidence for an ancestral association of human coronavirus 229E with bats. J. Virol., 2015, 89(23), 11858-11870.
[http://dx.doi.org/10.1128/JVI.01755-15] [PMID: 26378164]
[105]
Schwegmann-Wessels, C.; Zimmer, G.; Schröder, B.; Breves, G.; Herrler, G. Binding of transmissible gastroenteritis coronavirus to brush border membrane sialoglycoproteins. J. Virol., 2003, 77(21), 11846-11848.
[http://dx.doi.org/10.1128/JVI.77.21.11846-11848.2003] [PMID: 14557669]
[106]
Ji, W.; Wang, W.; Zhao, X.; Zai, J.; Li, X. Cross-species transmission of the newly identified coronavirus 2019-nCoV. J. Med. Virol., 2020, 92(4), 433-440.
[http://dx.doi.org/10.1002/jmv.25682] [PMID: 31967321]
[107]
Li, W.; Wong, S.K.; Li, F.; Kuhn, J.H.; Huang, I.C.; Choe, H.; Farzan, M. Animal origins of the severe acute respiratory syndrome coronavirus: insight from ACE2-S-protein interactions. J. Virol., 2006, 80(9), 4211-4219.
[http://dx.doi.org/10.1128/JVI.80.9.4211-4219.2006] [PMID: 16611880]
[108]
Song, H-D.; Tu, C-C.; Zhang, G-W.; Wang, S-Y.; Zheng, K.; Lei, L-C.; Chen, Q-X.; Gao, Y-W.; Zhou, H-Q.; Xiang, H.; Zheng, H-J.; Chern, S-W.W.; Cheng, F.; Pan, C-M.; Xuan, H.; Chen, S-J.; Luo, H-M.; Zhou, D-H.; Liu, Y-F.; He, J-F.; Qin, P-Z.; Li, L-H.; Ren, Y-Q.; Liang, W-J.; Yu, Y-D.; Anderson, L.; Wang, M.; Xu, R-H.; Wu, X-W.; Zheng, H-Y.; Chen, J-D.; Liang, G.; Gao, Y.; Liao, M.; Fang, L.; Jiang, L-Y.; Li, H.; Chen, F.; Di, B.; He, L-J.; Lin, J-Y.; Tong, S.; Kong, X.; Du, L.; Hao, P.; Tang, H.; Bernini, A.; Yu, X-J.; Spiga, O.; Guo, Z-M.; Pan, H-Y.; He, W-Z.; Manuguerra, J-C.; Fontanet, A.; Danchin, A.; Niccolai, N.; Li, Y-X.; Wu, C-I.; Zhao, G-P. Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc. Natl. Acad. Sci. USA, 2005, 102(7), 2430-2435.
[http://dx.doi.org/10.1073/pnas.0409608102] [PMID: 15695582]
[109]
Li, W.; Zhang, C.; Sui, J.; Kuhn, J.H.; Moore, M.J.; Luo, S.; Wong, S.K.; Huang, I.C.; Xu, K.; Vasilieva, N.; Murakami, A.; He, Y.; Marasco, W.A.; Guan, Y.; Choe, H.; Farzan, M. Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J., 2005, 24(8), 1634-1643.
[http://dx.doi.org/10.1038/sj.emboj.7600640] [PMID: 15791205]
[110]
Qu, X-X.; Hao, P.; Song, X-J.; Jiang, S-M.; Liu, Y-X.; Wang, P-G.; Rao, X.; Song, H-D.; Wang, S-Y.; Zuo, Y.; Zheng, A.H.; Luo, M.; Wang, H.L.; Deng, F.; Wang, H.Z.; Hu, Z.H.; Ding, M.X.; Zhao, G.P.; Deng, H.K. Identification of two critical amino acid residues of the severe acute respiratory syndrome coronavirus spike protein for its variation in zoonotic tropism transition via a double substitution strategy. J. Biol. Chem., 2005, 280(33), 29588-29595.
[http://dx.doi.org/10.1074/jbc.M500662200] [PMID: 15980414]
[111]
Drexler, J.F.; Gloza-Rausch, F.; Glende, J.; Corman, V.M.; Muth, D.; Goettsche, M.; Seebens, A.; Niedrig, M.; Pfefferle, S.; Yordanov, S.; Zhelyazkov, L.; Hermanns, U.; Vallo, P.; Lukashev, A.; Müller, M.A.; Deng, H.; Herrler, G.; Drosten, C. Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences. J. Virol., 2010, 84(21), 11336-11349.
[http://dx.doi.org/10.1128/JVI.00650-10] [PMID: 20686038]
[112]
Ren, W.; Qu, X.; Li, W.; Han, Z.; Yu, M.; Zhou, P.; Zhang, S-Y.; Wang, L-F.; Deng, H.; Shi, Z. Difference in receptor usage between severe acute respiratory syndrome (SARS) coronavirus and SARS-like coronavirus of bat origin. J. Virol., 2008, 82(4), 1899-1907.
[http://dx.doi.org/10.1128/JVI.01085-07] [PMID: 18077725]
[113]
Becker, M.M.; Graham, R.L.; Donaldson, E.F.; Rockx, B.; Sims, A.C.; Sheahan, T.; Pickles, R.J.; Corti, D.; Johnston, R.E.; Baric, R.S.; Denison, M.R. Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice. Proc. Natl. Acad. Sci. USA, 2008, 105(50), 19944-19949.
[http://dx.doi.org/10.1073/pnas.0808116105] [PMID: 19036930]
[114]
Guan, Y.; Zheng, B.; He, Y.; Liu, X.; Zhuang, Z.; Cheung, C.; Luo, S.; Li, P.; Zhang, L.; Guan, Y. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science, 2003, 302(5643), 276-278.
[115]
Tu, C.; Crameri, G.; Kong, X.; Chen, J.; Sun, Y.; Yu, M.; Xiang, H.; Xia, X.; Liu, S.; Ren, T. Antibodies to SARS coronavirus in civets. Emerg. Infect. Dis., 2004, 10(12), 2244.
[116]
Barlan, A.; Zhao, J.; Sarkar, M.K.; Li, K.; McCray, P.B., Jr; Perlman, S.; Gallagher, T. Receptor variation and susceptibility to Middle East respiratory syndrome coronavirus infection. J. Virol., 2014, 88(9), 4953-4961.
[http://dx.doi.org/10.1128/JVI.00161-14] [PMID: 24554656]
[117]
Baker, K.A.; Dutch, R.E.; Lamb, R.A.; Jardetzky, T.S. Structural basis for paramyxovirus-mediated membrane fusion. Mol. Cell, 1999, 3(3), 309-319.
[http://dx.doi.org/10.1016/S1097-2765(00)80458-X] [PMID: 10198633]
[118]
Yang, J.; Wang, W.; Chen, Z.; Lu, S.; Yang, F.; Bi, Z.; Bao, L.; Mo, F.; Li, X.; Huang, Y.; Hong, W.; Yang, Y.; Zhao, Y.; Ye, F.; Lin, S.; Deng, W.; Chen, H.; Lei, H.; Zhang, Z.; Luo, M.; Gao, H.; Zheng, Y.; Gong, Y.; Jiang, X.; Xu, Y.; Lv, Q.; Li, D.; Wang, M.; Li, F.; Wang, S.; Wang, G.; Yu, P.; Qu, Y.; Yang, L.; Deng, H.; Tong, A.; Li, J.; Wang, Z.; Yang, J.; Shen, G.; Zhao, Z.; Li, Y.; Luo, J.; Liu, H.; Yu, W.; Yang, M.; Xu, J.; Wang, J.; Li, H.; Wang, H.; Kuang, D.; Lin, P.; Hu, Z.; Guo, W.; Cheng, W.; He, Y.; Song, X.; Chen, C.; Xue, Z.; Yao, S.; Chen, L.; Ma, X.; Chen, S.; Gou, M.; Huang, W.; Wang, Y.; Fan, C.; Tian, Z.; Shi, M.; Wang, F.S.; Dai, L.; Wu, M.; Li, G.; Wang, G.; Peng, Y.; Qian, Z.; Huang, C.; Lau, J.Y.; Yang, Z.; Wei, Y.; Cen, X.; Peng, X.; Qin, C.; Zhang, K.; Lu, G.; Wei, X. A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity. Nature, 2020, 586(7830), 572-577.
[http://dx.doi.org/10.1038/s41586-020-2599-8] [PMID: 32726802]
[119]
Müller, M.A.; Raj, V.S.; Muth, D.; Meyer, B.; Kallies, S.; Smits, S.L.; Wollny, R.; Bestebroer, T.M.; Specht, S.; Suliman, T.; Zimmermann, K.; Binger, T.; Eckerle, I.; Tschapka, M.; Zaki, A.M.; Osterhaus, A.D.; Fouchier, R.A.; Haagmans, B.L.; Drosten, C. Human coronavirus EMC does not require the SARS-coronavirus receptor and maintains broad replicative capability in mammalian cell lines. MBio, 2012, 3(6), e00515-e12.
[http://dx.doi.org/10.1128/mBio.00515-12] [PMID: 23232719]
[120]
Wang, B.; Liu, Y.; Ji, C-M.; Yang, Y-L.; Liang, Q-Z.; Zhao, P.; Xu, L-D.; Lei, X-M.; Luo, W-T.; Qin, P.; Zhou, J.; Huang, Y.W. Porcine deltacoronavirus engages the transmissible gastroenteritis virus functional receptor porcine aminopeptidase N for infectious cellular entry. J. Virol., 2018, 92(12)e0031818
[http://dx.doi.org/10.1128/JVI.00318-18] [PMID: 29618640]
[121]
Reguera, J.; Santiago, C.; Mudgal, G.; Ordoño, D.; Enjuanes, L.; Casasnovas, J.M. Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies. PLoS Pathog., 2012, 8(8)1002859
[http://dx.doi.org/10.1371/journal.ppat.1002859] [PMID: 22876187]
[122]
Li, W.; Hulswit, R.J.G.; Kenney, S.P.; Widjaja, I.; Jung, K.; Alhamo, M.A.; van Dieren, B.; van Kuppeveld, F.J.M.; Saif, L.J.; Bosch, B-J. Broad receptor engagement of an emerging global coronavirus may potentiate its diverse cross-species transmissibility. Proc. Natl. Acad. Sci. USA, 2018, 115(22), E5135-E5143.
[http://dx.doi.org/10.1073/pnas.1802879115] [PMID: 29760102]
[123]
de Haan, C.A.; Te Lintelo, E.; Li, Z.; Raaben, M.; Wurdinger, T.; Bosch, B.J.; Rottier, P.J. Cooperative involvement of the S1 and S2 subunits of the murine coronavirus spike protein in receptor binding and extended host range. J. Virol., 2006, 80(22), 10909-10918.
[http://dx.doi.org/10.1128/JVI.00950-06] [PMID: 16956938]
[124]
Gallagher, T.; Buchmeier, M.; Perlman, S. Dissemination of MHV4 (strain JHM) infection does not require specific coronavirus receptors.In: In: Coronaviruses; Springer: Berlin, 1994; pp. 279-284.
[http://dx.doi.org/10.1007/978-1-4615-2996-5_43]
[125]
Dalziel, R.G.; Lampert, P.W.; Talbot, P.J.; Buchmeier, M.J. Site-specific alteration of murine hepatitis virus type 4 peplomer glycoprotein E2 results in reduced neurovirulence. J. Virol., 1986, 59(2), 463-471.
[http://dx.doi.org/10.1128/JVI.59.2.463-471.1986] [PMID: 3016306]
[126]
Phillips, J.J.; Weiss, S.R. MHV neuropathogenesis: the study of chimeric S genes and mutations in the hypervariable region.In:The Nidoviruses; Springer: Berlin, 2001, pp. 115-119.
[http://dx.doi.org/10.1007/978-1-4615-1325-4_18]
[127]
Song, W.; Gui, M.; Wang, X.; Xiang, Y. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog., 2018, 14(8)e1007236
[http://dx.doi.org/10.1371/journal.ppat.1007236] [PMID: 30102747]
[128]
Li, W.; Moore, M.J.; Vasilieva, N.; Sui, J.; Wong, S.K.; Berne, M.A.; Somasundaran, M.; Sullivan, J.L.; Luzuriaga, K.; Greenough, T.C.; Choe, H.; Farzan, M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature, 2003, 426(6965), 450-454.
[http://dx.doi.org/10.1038/nature02145] [PMID: 14647384]
[129]
Wang, P.; Chen, J.; Zheng, A.; Nie, Y.; Shi, X.; Wang, W.; Wang, G.; Luo, M.; Liu, H.; Tan, L.; Song, X.; Wang, Z.; Yin, X.; Qu, X.; Wang, X.; Qing, T.; Ding, M.; Deng, H. Expression cloning of functional receptor used by SARS coronavirus. Biochem. Biophys. Res. Commun., 2004, 315(2), 439-444.
[http://dx.doi.org/10.1016/j.bbrc.2004.01.076] [PMID: 14766227]
[130]
Demogines, A.; Farzan, M.; Sawyer, S.L. Evidence for ACE2-utilizing coronaviruses (CoVs) related to severe acute respiratory syndrome CoV in bats. J. Virol., 2012, 86(11), 6350-6353.
[http://dx.doi.org/10.1128/JVI.00311-12] [PMID: 22438550]
[131]
Zhu, M. SARS immunity and vaccination. Cell. Mol. Immunol., 2004, 1(3), 193-198.
[PMID: 16219167]
[132]
Towler, P.; Staker, B.; Prasad, S.G.; Menon, S.; Tang, J.; Parsons, T.; Ryan, D.; Fisher, M.; Williams, D.; Dales, N.A.; Patane, M.A.; Pantoliano, M.W. ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J. Biol. Chem., 2004, 279(17), 17996-18007.
[http://dx.doi.org/10.1074/jbc.M311191200] [PMID: 14754895]
[133]
Li, F.; Li, W.; Farzan, M.; Harrison, S.C. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science, 2005, 309(5742), 1864-1868.
[http://dx.doi.org/10.1126/science.1116480] [PMID: 16166518]
[134]
Sheahan, T.; Rockx, B.; Donaldson, E.; Sims, A.; Pickles, R.; Corti, D.; Baric, R. Mechanisms of zoonotic severe acute respiratory syndrome coronavirus host range expansion in human airway epithelium. J. Virol., 2008, 82(5), 2274-2285.
[http://dx.doi.org/10.1128/JVI.02041-07] [PMID: 18094188]
[135]
Hou, Y.; Peng, C.; Yu, M.; Li, Y.; Han, Z.; Li, F.; Wang, L-F.; Shi, Z. Angiotensin-converting enzyme 2 (ACE2) proteins of different bat species confer variable susceptibility to SARS-CoV entry. Arch. Virol., 2010, 155(10), 1563-1569.
[http://dx.doi.org/10.1007/s00705-010-0729-6] [PMID: 20567988]
[136]
Hofmann, H.; Simmons, G.; Rennekamp, A.J.; Chaipan, C.; Gramberg, T.; Heck, E.; Geier, M.; Wegele, A.; Marzi, A.; Bates, P.; Pöhlmann, S. Highly conserved regions within the spike proteins of human coronaviruses 229E and NL63 determine recognition of their respective cellular receptors. J. Virol., 2006, 80(17), 8639-8652.
[http://dx.doi.org/10.1128/JVI.00560-06] [PMID: 16912312]
[137]
Hofmann, H.; Pyrc, K.; van der Hoek, L.; Geier, M.; Berkhout, B.; Pöhlmann, S. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc. Natl. Acad. Sci. USA, 2005, 102(22), 7988-7993.
[http://dx.doi.org/10.1073/pnas.0409465102] [PMID: 15897467]
[138]
Wu, K.; Li, W.; Peng, G.; Li, F. Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor. Proc. Natl. Acad. Sci. USA, 2009, 106(47), 19970-19974.
[http://dx.doi.org/10.1073/pnas.0908837106] [PMID: 19901337]
[139]
Wu, K.; Chen, L.; Peng, G.; Zhou, W.; Pennell, C.A.; Mansky, L.M.; Geraghty, R.J.; Li, F. A virus-binding hot spot on human angiotensin-converting enzyme 2 is critical for binding of two different coronaviruses. J. Virol., 2011, 85(11), 5331-5337.
[http://dx.doi.org/10.1128/JVI.02274-10] [PMID: 21411533]
[140]
Xiao, F.; Tang, M.; Zheng, X.; Liu, Y.; Li, X.; Shan, H. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology, 2020, 158(6), 1831-1833.e3.
[http://dx.doi.org/10.1053/j.gastro.2020.02.055] [PMID: 32142773]
[141]
Kumaki, Y.; Day, C.W.; Wandersee, M.K.; Schow, B.P.; Madsen, J.S.; Grant, D.; Roth, J.P.; Smee, D.F.; Blatt, L.M.; Barnard, D.L. Interferon alfacon 1 inhibits SARS-CoV infection in human bronchial epithelial Calu-3 cells. Biochem. Biophys. Res. Commun., 2008, 371(1), 110-113.
[http://dx.doi.org/10.1016/j.bbrc.2008.04.006] [PMID: 18406349]
[142]
Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; Wang, X. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 2020, 581(7807), 215-220.
[http://dx.doi.org/10.1038/s41586-020-2180-5] [PMID: 32225176]
[143]
Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor recognition by the novel coronavirus from wuhan: an analysis based on decade-long structural studies of sars coronavirus. J. Virol., 2020, 94(7), e00127-e20.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[144]
Walls, A.C.; Park, Y-J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, function, and antigenicity of the sars-cov-2 spike glycoprotein. Cell, 2020, 181(2), 281-292.e6.
[http://dx.doi.org/10.1016/j.cell.2020.02.058] [PMID: 32155444]
[145]
Tian, X.; Li, C.; Huang, A.; Xia, S.; Lu, S.; Shi, Z.; Lu, L.; Jiang, S.; Yang, Z.; Wu, Y.; Ying, T. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg. Microbes Infect., 2020, 9(1), 382-385.
[http://dx.doi.org/10.1080/22221751.2020.1729069] [PMID: 32065055]
[146]
Moore, J.P.; Doms, R.W. The entry of entry inhibitors: a fusion of science and medicine. Proc. Natl. Acad. Sci. USA, 2003, 100(19), 10598-10602.
[http://dx.doi.org/10.1073/pnas.1932511100] [PMID: 12960367]
[147]
Esté, J.A. Virus entry as a target for anti-HIV intervention. Curr. Med. Chem., 2003, 10(17), 1617-1632.
[http://dx.doi.org/10.2174/0929867033457098] [PMID: 12871111]
[148]
Kao, R.Y.; Tsui, W.H.; Lee, T.S.; Tanner, J.A.; Watt, R.M.; Huang, J-D.; Hu, L.; Chen, G.; Chen, Z.; Zhang, L.; He, T.; Chan, K.H.; Tse, H.; To, A.P.; Ng, L.W.; Wong, B.C.; Tsoi, H.W.; Yang, D.; Ho, D.D.; Yuen, K.Y. Identification of novel small-molecule inhibitors of severe acute respiratory syndrome-associated coronavirus by chemical genetics. Chem. Biol., 2004, 11(9), 1293-1299.
[http://dx.doi.org/10.1016/j.chembiol.2004.07.013] [PMID: 15380189]
[149]
Yi, L.; Li, Z.; Yuan, K.; Qu, X.; Chen, J.; Wang, G.; Zhang, H.; Luo, H.; Zhu, L.; Jiang, P.; Chen, L.; Shen, Y.; Luo, M.; Zuo, G.; Hu, J.; Duan, D.; Nie, Y.; Shi, X.; Wang, W.; Han, Y.; Li, T.; Liu, Y.; Ding, M.; Deng, H.; Xu, X. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J. Virol., 2004, 78(20), 11334-11339.
[http://dx.doi.org/10.1128/JVI.78.20.11334-11339.2004] [PMID: 15452254]
[150]
Schwarz, S.; Sauter, D.; Wang, K.; Zhang, R.; Sun, B.; Karioti, A.; Bilia, A. R.; Efferth, T.; Schwarz, W. Kaempferol derivatives as antiviral drugs against the 3a channel protein of coronavirus Planta Med 2014, 80(02/03), 177-182.
[151]
Ryu, Y.B.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, J-Y.; Kim, D.; Nguyen, T.T.; Park, S-J.; Chang, J.S.; Park, K.H.; Rho, M.C.; Lee, W.S. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorg. Med. Chem., 2010, 18(22), 7940-7947.
[http://dx.doi.org/10.1016/j.bmc.2010.09.035] [PMID: 20934345]
[152]
Cinatl, J.; Morgenstern, B.; Bauer, G.; Chandra, P.; Rabenau, H.; Doerr, H.W. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet, 2003, 361(9374), 2045-2046.
[http://dx.doi.org/10.1016/S0140-6736(03)13615-X] [PMID: 12814717]
[153]
Hoever, G.; Baltina, L.; Michaelis, M.; Kondratenko, R.; Baltina, L.; Tolstikov, G.A.; Doerr, H.W.; Cinatl, J. Jr Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus. J. Med. Chem., 2005, 48(4), 1256-1259.
[http://dx.doi.org/10.1021/jm0493008] [PMID: 15715493]
[154]
Cheng, P.W.; Ng, L.T.; Chiang, L.C.; Lin, C.C. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin. Exp. Pharmacol. Physiol., 2006, 33(7), 612-616.
[http://dx.doi.org/10.1111/j.1440-1681.2006.04415.x] [PMID: 16789928]
[155]
Zhuang, M.; Jiang, H.; Suzuki, Y.; Li, X.; Xiao, P.; Tanaka, T.; Ling, H.; Yang, B.; Saitoh, H.; Zhang, L.; Qin, C.; Sugamura, K.; Hattori, T. Procyanidins and butanol extract of Cinnamomi Cortex inhibit SARS-CoV infection. Antiviral Res., 2009, 82(1), 73-81.
[http://dx.doi.org/10.1016/j.antiviral.2009.02.001] [PMID: 19428598]
[156]
Choudhary, S.; Malik, Y.S.; Tomar, S. Identification of SARS-CoV-2 cell entry inhibitors by drug repurposing using in silico structure-based virtual screening approach. Front. Immunol., 2020, 11, 1664.
[http://dx.doi.org/10.3389/fimmu.2020.01664] [PMID: 32754161]
[157]
Wrapp, D.; Wang, N.; Corbett, K.S.; Goldsmith, J.A.; Hsieh, C-L.; Abiona, O.; Graham, B.S.; McLellan, J.S. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science, 2020, 367(6483), 1260-1263.
[http://dx.doi.org/10.1126/science.abb2507] [PMID: 32075877]
[158]
Adedeji, A.O.; Severson, W.; Jonsson, C.; Singh, K.; Weiss, S.R.; Sarafianos, S.G. Novel inhibitors of severe acute respiratory syndrome coronavirus entry that act by three distinct mechanisms. J. Virol., 2013, 87(14), 8017-8028.
[http://dx.doi.org/10.1128/JVI.00998-13] [PMID: 23678171]
[159]
Lundin, A.; Dijkman, R.; Bergström, T.; Kann, N.; Adamiak, B.; Hannoun, C.; Kindler, E.; Jónsdóttir, H.R.; Muth, D.; Kint, J.; Forlenza, M.; Müller, M.A.; Drosten, C.; Thiel, V.; Trybala, E. Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the middle East respiratory syndrome virus. PLoS Pathog., 2014, 10(5)
[http://dx.doi.org/10.1371/journal.ppat.1004166] [PMID: 24874215]
[160]
Ho, T-Y.; Wu, S-L.; Chen, J-C.; Wei, Y-C.; Cheng, S-E.; Chang, Y-H.; Liu, H-J.; Hsiang, C-Y. Design and biological activities of novel inhibitory peptides for SARS-CoV spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res., 2006, 69(2), 70-76.
[http://dx.doi.org/10.1016/j.antiviral.2005.10.005] [PMID: 16337697]
[161]
ter Meulen, J. Monoclonal antibodies for prophylaxis and therapy of infectious diseases. Expert Opin. Emerg. Drugs, 2007, 12(4), 525-540.
[http://dx.doi.org/10.1517/14728214.12.4.525] [PMID: 17979597]
[162]
Dibo, M.; Battocchio, E.C.; Dos Santos Souza, L.M.; da Silva, M.D.V.; Banin-Hirata, B.K.; Sapla, M.M.M.; Marinello, P.; Rocha, S.P.D.; Faccin-Galhardi, L.C. Antibody therapy for the control of viral diseases: An update. Curr. Pharm. Biotechnol., 2019, 20(13), 1108-1121.
[http://dx.doi.org/10.2174/1389201020666190809112704] [PMID: 31400263]
[163]
Xiao, X.; Dimitrov, D.S. Monoclonal antibodies against viruses and bacteria: a survey of patents. Recent Pat Antiinfect Drug Discov, 2007, 2(3), 171-177.
[http://dx.doi.org/10.2174/157489107782497272] [PMID: 18221173]
[164]
Coughlin, M.M.; Babcook, J.; Prabhakar, B.S. Human monoclonal antibodies to SARS-coronavirus inhibit infection by different mechanisms. Virology, 2009, 394(1), 39-46.
[http://dx.doi.org/10.1016/j.virol.2009.07.028] [PMID: 19748648]
[165]
Greenough, T.C.; Babcock, G.J.; Roberts, A.; Hernandez, H.J.; Thomas, W.D., Jr; Coccia, J.A.; Graziano, R.F.; Srinivasan, M.; Lowy, I.; Finberg, R.W.; Subbarao, K.; Vogel, L.; Somasundaran, M.; Luzuriaga, K.; Sullivan, J.L.; Ambrosino, D.M. Development and characterization of a severe acute respiratory syndrome-associated coronavirus-neutralizing human monoclonal antibody that provides effective immunoprophylaxis in mice. J. Infect. Dis., 2005, 191(4), 507-514.
[http://dx.doi.org/10.1086/427242] [PMID: 15655773]
[166]
Coughlin, M.; Lou, G.; Martinez, O.; Masterman, S.K.; Olsen, O.A.; Moksa, A.A.; Farzan, M.; Babcook, J.S.; Prabhakar, B.S. Generation and characterization of human monoclonal neutralizing antibodies with distinct binding and sequence features against SARS coronavirus using XenoMouse. Virology, 2007, 361(1), 93-102.
[http://dx.doi.org/10.1016/j.virol.2006.09.029] [PMID: 17161858]
[167]
Prabakaran, P.; Gan, J.; Feng, Y.; Zhu, Z.; Choudhry, V.; Xiao, X.; Ji, X.; Dimitrov, D.S. Structure of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with neutralizing antibody. J. Biol. Chem., 2006, 281(23), 15829-15836.
[http://dx.doi.org/10.1074/jbc.M600697200] [PMID: 16597622]
[168]
Lei, C.; Fu, W.; Qian, K.; Li, T.; Zhang, S.; Ding, M.; Hu, S. Potent neutralization of 2019 novel coronavirus by recombinant ACE2-Ig. bioRxiv, 2020. Online ahead of Print
[169]
Pascal, K.E.; Coleman, C.M.; Mujica, A.O.; Kamat, V.; Badithe, A.; Fairhurst, J.; Hunt, C.; Strein, J.; Berrebi, A.; Sisk, J.M.; Matthews, K.L.; Babb, R.; Chen, G.; Lai, K-M.V.; Huang, T.T.; Olson, W.; Yancopoulos, G.D.; Stahl, N.; Frieman, M.B.; Kyratsous, C.A. Pre- and postexposure efficacy of fully human antibodies against Spike protein in a novel humanized mouse model of MERS-CoV infection. Proc. Natl. Acad. Sci. USA, 2015, 112(28), 8738-8743.
[http://dx.doi.org/10.1073/pnas.1510830112] [PMID: 26124093]
[170]
de Wit, E.; Feldmann, F.; Okumura, A.; Horne, E.; Haddock, E.; Saturday, G.; Scott, D.; Erlandson, K.J.; Stahl, N.; Lipsich, L.; Kyratsous, C.A.; Feldmann, H. Prophylactic and therapeutic efficacy of mAb treatment against MERS-CoV in common marmosets. Antiviral Res., 2018, 156, 64-71.
[http://dx.doi.org/10.1016/j.antiviral.2018.06.006] [PMID: 29885377]
[171]
Chen, X.; Li, R.; Pan, Z.; Qian, C.; Yang, Y.; You, R.; Zhao, J.; Liu, P.; Gao, L.; Li, Z.; Huang, Q.; Xu, L.; Tang, J.; Tian, Q.; Yao, W.; Hu, L.; Yan, X.; Zhou, X.; Wu, Y.; Deng, K.; Zhang, Z.; Qian, Z.; Chen, Y.; Ye, L. Human monoclonal antibodies block the binding of SARS-CoV-2 spike protein to angiotensin converting enzyme 2 receptor. Cell. Mol. Immunol., 2020, 17(6), 647-649.
[http://dx.doi.org/10.1038/s41423-020-0426-7] [PMID: 32313207]
[172]
Wang, C.; Li, W.; Drabek, D.; Okba, N.M.A.; van Haperen, R.; Osterhaus, A.D.M.E.; van Kuppeveld, F.J.M.; Haagmans, B.L.; Grosveld, F.; Bosch, B-J. A human monoclonal antibody blocking SARS-CoV-2 infection. Nat. Commun., 2020, 11(1), 2251.
[http://dx.doi.org/10.1038/s41467-020-16256-y] [PMID: 32366817>]
[173]
Brouwer, P.J.M.; Caniels, T.G.; van der Straten, K.; Snitselaar, J.L.; Aldon, Y.; Bangaru, S.; Torres, J.L.; Okba, N.M.A.; Claireaux, M.; Kerster, G.; Bentlage, A.E.H.; van Haaren, M.M.; Guerra, D.; Burger, J.A.; Schermer, E.E.; Verheul, K.D.; van der Velde, N.; van der Kooi, A.; van Schooten, J.; van Breemen, M.J.; Bijl, T.P.L.; Sliepen, K.; Aartse, A.; Derking, R.; Bontjer, I.; Kootstra, N.A.; Wiersinga, W.J.; Vidarsson, G.; Haagmans, B.L.; Ward, A.B.; de Bree, G.J.; Sanders, R.W.; van Gils, M.J. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science, 2020, 369(6504), 643-650.
[http://dx.doi.org/10.1126/science.abc5902] [PMID: 32540902]
[174]
Li, W.; Drelich, A.; Martinez, D. R.; Gralinski, L.; Chen, C.; Sun, Z.; Schäfer, A.; Leist, S. R.; Liu, X.; Zhelev, D.; Zhang, L.; Peterson, E. C.; Conard, A.; Mellors, J. W.; Tseng, C.-T.; Baric, R. S.; Dimitrov, D. S. Rapid selection of a human monoclonal antibody that potently neutralizes SARS-CoV-2 in two animal models bio- Rxiv, 2020, (Online ahead of Print)
[175]
Glowacka, I.; Bertram, S.; Müller, M.A.; Allen, P.; Soilleux, E.; Pfefferle, S.; Steffen, I.; Tsegaye, T.S.; He, Y.; Gnirss, K.; Niemeyer, D.; Schneider, H.; Drosten, C.; Pöhlmann, S. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J. Virol., 2011, 85(9), 4122-4134.
[http://dx.doi.org/10.1128/JVI.02232-10] [PMID: 21325420]
[176]
Shulla, A.; Heald-Sargent, T.; Subramanya, G.; Zhao, J.; Perlman, S.; Gallagher, T. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J. Virol., 2011, 85(2), 873-882.
[http://dx.doi.org/10.1128/JVI.02062-10] [PMID: 21068237]
[177]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N-H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. Sars-cov-2 cell entry depends on ace2 and tmprss2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[178]
Iwata-Yoshikawa, N.; Okamura, T.; Shimizu, Y.; Hasegawa, H.; Takeda, M.; Nagata, N. TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection. J. Virol., 2019, 93(6), 01815-01818.
[http://dx.doi.org/10.1128/JVI.01815-18] [PMID: 30626688]
[179]
Shirato, K.; Kanou, K.; Kawase, M.; Matsuyama, S. Clinical isolates of human coronavirus 229E bypass the endosome for cell entry. J. Virol., 2016, 91(1), e01387-e16.
[PMID: 27733646]
[180]
Zhu, Y.; Yu, D.; Yan, H.; Chong, H.; He, Y. Design of potent membrane fusion inhibitors against sars-cov-2, an emerging coronavirus with high fusogenic activity. J. Virol., 2020, 94(14), e00635-e20.
[http://dx.doi.org/10.1128/JVI.00635-20] [PMID: 32376627]
[181]
Xia, S.; Liu, M.; Wang, C.; Xu, W.; Lan, Q.; Feng, S.; Qi, F.; Bao, L.; Du, L.; Liu, S.; Qin, C.; Sun, F.; Shi, Z.; Zhu, Y.; Jiang, S.; Lu, L. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res., 2020, 30(4), 343-355.
[http://dx.doi.org/10.1038/s41422-020-0305-x] [PMID: 32231345]
[182]
Bosch, B.J.; Martina, B.E.; Van Der Zee, R.; Lepault, J.; Haijema, B.J.; Versluis, C.; Heck, A.J.; De Groot, R.; Osterhaus, A.D.; Rottier, P.J. Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides. Proc. Natl. Acad. Sci. USA, 2004, 101(22), 8455-8460.
[http://dx.doi.org/10.1073/pnas.0400576101] [PMID: 15150417]
[183]
Deng, Y.; Liu, J.; Zheng, Q.; Yong, W.; Lu, M. Structures and polymorphic interactions of two heptad-repeat regions of the SARS virus S2 protein. Structure, 2006, 14(5), 889-899.
[http://dx.doi.org/10.1016/j.str.2006.03.007] [PMID: 16698550]
[184]
Pyrc, K.; Bosch, B.J.; Berkhout, B.; Jebbink, M.F.; Dijkman, R.; Rottier, P.; van der Hoek, L. Inhibition of human coronavirus NL63 infection at early stages of the replication cycle. Antimicrob. Agents Chemother., 2006, 50(6), 2000-2008.
[http://dx.doi.org/10.1128/AAC.01598-05] [PMID: 16723558]
[185]
Chu, L-H.M.; Chan, S-H.; Tsai, S-N.; Wang, Y.; Cheng, C.H-K.; Wong, K-B.; Waye, M.M-Y.; Ngai, S-M. Fusion core structure of the severe acute respiratory syndrome coronavirus (SARS-CoV): in search of potent SARS-CoV entry inhibitors. J. Cell. Biochem., 2008, 104(6), 2335-2347.
[http://dx.doi.org/10.1002/jcb.21790] [PMID: 18442051]
[186]
Lu, L.; Liu, Q.; Zhu, Y.; Chan, K-H.; Qin, L.; Li, Y.; Wang, Q.; Chan, J.F-W.; Du, L.; Yu, F.; Ma, C.; Ye, S.; Yuen, K.Y.; Zhang, R.; Jiang, S. Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor. Nat. Commun., 2014, 5(1), 3067.
[http://dx.doi.org/10.1038/ncomms4067] [PMID: 24473083]
[187]
Channappanavar, R.; Lu, L.; Xia, S.; Du, L.; Meyerholz, D.K.; Perlman, S.; Jiang, S. Protective effect of intranasal regimens containing peptidic middle east respiratory syndrome coronavirus fusion inhibitor against mers-cov infection. J. Infect. Dis., 2015, 212(12), 1894-1903.
[http://dx.doi.org/10.1093/infdis/jiv325] [PMID: 26164863]
[188]
Sun, Y.; Zhang, H.; Shi, J.; Zhang, Z.; Gong, R. Identification of a novel inhibitor against Middle East respiratory syndrome coronavirus. Viruses, 2017, 9(9), 255.
[http://dx.doi.org/10.3390/v9090255] [PMID: 28906430]
[189]
Xia, S.; Xu, W.; Wang, Q.; Wang, C.; Hua, C.; Li, W.; Lu, L.; Jiang, S. Peptide-based membrane fusion inhibitors targeting HCoV-229E spike protein HR1 and HR2 domains. Int. J. Mol. Sci., 2018, 19(2), 487.
[http://dx.doi.org/10.3390/ijms19020487] [PMID: 29415501]
[190]
Mitsuki, Y.Y.; Ohnishi, K.; Takagi, H.; Oshima, M.; Yamamoto, T.; Mizukoshi, F.; Terahara, K.; Kobayashi, K.; Yamamoto, N.; Yamaoka, S.; Tsunetsugu-Yokota, Y. A single amino acid substitution in the S1 and S2 Spike protein domains determines the neutralization escape phenotype of SARS-CoV. Microbes Infect., 2008, 10(8), 908-915.
[http://dx.doi.org/10.1016/j.micinf.2008.05.009] [PMID: 18606245]
[191]
van Dongen, M.J.P.; Kadam, R.U.; Juraszek, J.; Lawson, E.; Brandenburg, B.; Schmitz, F.; Schepens, W.B.G.; Stoops, B.; van Diepen, H.A.; Jongeneelen, M.; Tang, C.; Vermond, J.; van Eijgen-Obregoso Real, A.; Blokland, S.; Garg, D.; Yu, W.; Goutier, W.; Lanckacker, E.; Klap, J.M.; Peeters, D.C.G.; Wu, J.; Buyck, C.; Jonckers, T.H.M.; Roymans, D.; Roevens, P.; Vogels, R.; Koudstaal, W.; Friesen, R.H.E.; Raboisson, P.; Dhanak, D.; Goudsmit, J.; Wilson, I.A. A small-molecule fusion inhibitor of influenza virus is orally active in mice. Science, 2019, 363(6431)
[http://dx.doi.org/10.1126/science.aar6221] [PMID: 30846569]
[192]
Frey, G.; Rits-Volloch, S.; Zhang, X-Q.; Schooley, R.T.; Chen, B.; Harrison, S.C. Small molecules that bind the inner core of gp41 and inhibit HIV envelope-mediated fusion. Proc. Natl. Acad. Sci. USA, 2006, 103(38), 13938-13943.
[http://dx.doi.org/10.1073/pnas.0601036103] [PMID: 16963566]
[193]
Lin, C.W.; Tsai, F.J.; Tsai, C.H.; Lai, C.C.; Wan, L.; Ho, T.Y.; Hsieh, C.C.; Chao, P.D. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res., 2005, 68(1), 36-42.
[http://dx.doi.org/10.1016/j.antiviral.2005.07.002] [PMID: 16115693]
[194]
Zhao, G.; Du, L.; Ma, C.; Li, Y.; Li, L.; Poon, V.K.M.; Wang, L.; Yu, F.; Zheng, B-J.; Jiang, S.; Zhou, Y. A safe and convenient pseudovirus-based inhibition assay to detect neutralizing antibodies and screen for viral entry inhibitors against the novel human coronavirus MERS-CoV. Virol. J., 2013, 10(1), 266.
[http://dx.doi.org/10.1186/1743-422X-10-266] [PMID: 23978242]
[195]
Kadam, R.U.; Wilson, I.A. Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol. Proc. Natl. Acad. Sci. USA, 2017, 114(2), 206-214.
[http://dx.doi.org/10.1073/pnas.1617020114] [PMID: 28003465]
[196]
Wang, X.; Cao, R.; Zhang, H.; Liu, J.; Xu, M.; Hu, H.; Li, Y.; Zhao, L.; Li, W.; Sun, X.; Yang, X.; Shi, Z.; Deng, F.; Hu, Z.; Zhong, W.; Wang, M. The anti-influenza virus drug, arbidol is an efficient inhibitor of SARS-CoV-2 in vitro. Cell Discov., 2020, 6(1), 28.
[http://dx.doi.org/10.1038/s41421-020-0169-8] [PMID: 32373347]
[197]
Vankadari, N. Arbidol: A potential antiviral drug for the treatment of SARS-CoV-2 by blocking trimerization of the spike glycoprotein. Int. J. Antimicrob. Agents, 2020, 56(2)105998
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105998] [PMID: 32360231]
[198]
Shah, P.P.; Wang, T.; Kaletsky, R.L.; Myers, M.C.; Purvis, J.E.; Jing, H.; Huryn, D.M.; Greenbaum, D.C.; Smith, A.B., III; Bates, P.; Diamond, S.L. A small-molecule oxocarbazate inhibitor of human cathepsin L blocks severe acute respiratory syndrome and ebola pseudotype virus infection into human embryonic kidney 293T cells. Mol. Pharmacol., 2010, 78(2), 319-324.
[http://dx.doi.org/10.1124/mol.110.064261] [PMID: 20466822]
[199]
Zhou, Y.; Vedantham, P.; Lu, K.; Agudelo, J.; Carrion, R., Jr; Nunneley, J.W.; Barnard, D.; Pöhlmann, S.; McKerrow, J.H.; Renslo, A.R.; Simmons, G. Protease inhibitors targeting coronavirus and filovirus entry. Antiviral Res., 2015, 116, 76-84.
[http://dx.doi.org/10.1016/j.antiviral.2015.01.011] [PMID: 25666761]
[200]
Kawase, M.; Shirato, K.; van der Hoek, L.; Taguchi, F.; Matsuyama, S. Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J. Virol., 2012, 86(12), 6537-6545.
[http://dx.doi.org/10.1128/JVI.00094-12] [PMID: 22496216]
[201]
Simmons, G.; Zmora, P.; Gierer, S.; Heurich, A.; Pöhlmann, S. Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research. Antiviral Res., 2013, 100(3), 605-614.
[http://dx.doi.org/10.1016/j.antiviral.2013.09.028] [PMID: 24121034]
[202]
Millet, J.K.; Whittaker, G.R. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc. Natl. Acad. Sci. USA, 2014, 111(42), 15214-15219.
[http://dx.doi.org/10.1073/pnas.1407087111] [PMID: 25288733]
[203]
Bestle, D.; Heindl, M.R.; Limburg, H.; Van Lam van, T; Pilgram, O; Moulton, H; Stein, DA; Hardes, K; Eickmann, M; Dolnik, O; Rohde, C; Klenk, H.D; Garten, W; Steinmetzer, T; Böttcher- Friebertshäuser, E TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells Life Sci Alliance,, 2020, 3(9)
[http://dx.doi.org/10.26508/lsa.202000786] [PMID: 32703818]
[204]
Hu, H.; Li, L.; Kao, R.Y.; Kou, B.; Wang, Z.; Zhang, L.; Zhang, H.; Hao, Z.; Tsui, W.H.; Ni, A.; Cui, L.; Fan, B.; Guo, F.; Rao, S.; Jiang, C.; Li, Q.; Sun, M.; He, W.; Liu, G. Screening and identification of linear B-cell epitopes and entry-blocking peptide of severe acute respiratory syndrome (SARS)-associated coronavirus using synthetic overlapping peptide library. J. Comb. Chem., 2005, 7(5), 648-656.
[http://dx.doi.org/10.1021/cc0500607] [PMID: 16153058]
[205]
Struck, A-W.; Axmann, M.; Pfefferle, S.; Drosten, C.; Meyer, B. A hexapeptide of the receptor-binding domain of SARS corona virus spike protein blocks viral entry into host cells via the human receptor ACE2. Antiviral Res., 2012, 94(3), 288-296.
[http://dx.doi.org/10.1016/j.antiviral.2011.12.012] [PMID: 22265858]
[206]
Huang, L.; Sexton, D.J.; Skogerson, K.; Devlin, M.; Smith, R.; Sanyal, I.; Parry, T.; Kent, R.; Enright, J.; Wu, Q.L.; Conley, G.; DeOliveira, D.; Morganelli, L.; Ducar, M.; Wescott, C.R.; Ladner, R.C. Novel peptide inhibitors of angiotensin-converting enzyme 2. J. Biol. Chem., 2003, 278(18), 15532-15540.
[http://dx.doi.org/10.1074/jbc.M212934200] [PMID: 12606557]
[207]
Huentelman, M.J.; Zubcevic, J.; Hernández Prada, J.A.; Xiao, X.; Dimitrov, D.S.; Raizada, M.K.; Ostrov, D.A. Structure-based discovery of a novel angiotensin-converting enzyme 2 inhibitor. Hypertension, 2004, 44(6), 903-906.
[http://dx.doi.org/10.1161/01.HYP.0000146120.29648.36] [PMID: 15492138]
[208]
Vincent, M.J.; Bergeron, E.; Benjannet, S.; Erickson, B.R.; Rollin, P.E.; Ksiazek, T.G.; Seidah, N.G.; Nichol, S.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J., 2005, 2(1), 69-79.
[http://dx.doi.org/10.1186/1743-422X-2-69] [PMID: 16115318]
[209]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[210]
Gao, J.; Tian, Z.; Yang, X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends, 2020, 14(1), 72-73.
[http://dx.doi.org/10.5582/bst.2020.01047] [PMID: 32074550]
[211]
Keyaerts, E.; Vijgen, L.; Maes, P.; Neyts, J.; Van Ranst, M. In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem. Biophys. Res. Commun., 2004, 323(1), 264-268.
[http://dx.doi.org/10.1016/j.bbrc.2004.08.085] [PMID: 15351731]
[212]
Biot, C.; Daher, W.; Chavain, N.; Fandeur, T.; Khalife, J.; Dive, D.; De Clercq, E. Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities. J. Med. Chem., 2006, 49(9), 2845-2849.
[http://dx.doi.org/10.1021/jm0601856] [PMID: 16640347]
[213]
Dong, L.; Hu, S.; Gao, J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov. Ther., 2020, 14(1), 58-60.
[http://dx.doi.org/10.5582/ddt.2020.01012] [PMID: 32147628]
[214]
Rainsford, K.D.; Parke, A.L.; Clifford-Rashotte, M.; Kean, W.F. Therapy and pharmacological properties of hydroxychloroquine and chloroquine in treatment of systemic lupus erythematosus, rheumatoid arthritis and related diseases. Inflammopharmacology, 2015, 23(5), 231-269.
[http://dx.doi.org/10.1007/s10787-015-0239-y] [PMID: 26246395]
[215]
Yao, X.; Ye, F.; Zhang, M.; Cui, C.; Huang, B.; Niu, P.; Liu, X.; Zhao, L.; Dong, E.; Song, C.; Zhan, S.; Lu, R.; Li, H.; Tan, W.; Liu, D. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (sars-cov-2). Clin. Infect. Dis., 2020, 71(15), 732-739.
[http://dx.doi.org/10.1093/cid/ciaa237] [PMID: 32150618]
[216]
Chen, C-Y.; Wang, F-L.; Lin, C-C. Chronic hydroxychloroquine use associated with QT prolongation and refractory ventricular arrhythmia. Clin. Toxicol. (Phila.), 2006, 44(2), 173-175.
[http://dx.doi.org/10.1080/15563650500514558] [PMID: 16615675]
[217]
Stas, P.; Faes, D.; Noyens, P. Conduction disorder and QT prolongation secondary to long-term treatment with chloroquine. Int. J. Cardiol., 2008, 127(2), e80-e82.
[http://dx.doi.org/10.1016/j.ijcard.2007.04.055] [PMID: 17590456]
[218]
Yaylali, S.A.; Sadigov, F.; Erbil, H.; Ekinci, A.; Akcakaya, A.A. Chloroquine and hydroxychloroquine retinopathy-related risk factors in a Turkish cohort. Int. Ophthalmol., 2013, 33(6), 627-634.
[http://dx.doi.org/10.1007/s10792-013-9748-0] [PMID: 23456514]
[219]
Lambert, D.W.; Yarski, M.; Warner, F.J.; Thornhill, P.; Parkin, E.T.; Smith, A.I.; Hooper, N.M.; Turner, A.J. Tumor necrosis factor-α convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J. Biol. Chem., 2005, 280(34), 30113-30119.
[http://dx.doi.org/10.1074/jbc.M505111200] [PMID: 15983030]
[220]
Haga, S.; Nagata, N.; Okamura, T.; Yamamoto, N.; Sata, T.; Yamamoto, N.; Sasazuki, T.; Ishizaka, Y. TACE antagonists blocking ACE2 shedding caused by the spike protein of SARS-CoV are candidate antiviral compounds. Antiviral Res., 2010, 85(3), 551-555.
[http://dx.doi.org/10.1016/j.antiviral.2009.12.001] [PMID: 19995578]
[221]
Milewska, A.; Ciejka, J.; Kaminski, K.; Karewicz, A.; Bielska, D.; Zeglen, S.; Karolak, W.; Nowakowska, M.; Potempa, J.; Bosch, B.J.; Pyrc, K.; Szczubialka, K. Novel polymeric inhibitors of HCoV-NL63. Antiviral Res., 2013, 97(2), 112-121.
[http://dx.doi.org/10.1016/j.antiviral.2012.11.006] [PMID: 23201315]
[222]
Milewska, A.; Kaminski, K.; Ciejka, J.; Kosowicz, K.; Zeglen, S.; Wojarski, J.; Nowakowska, M.; Szczubiałka, K.; Pyrc, K. HTCC: broad range inhibitor of coronavirus entry. PLoS One, 2016, 11(6)
[http://dx.doi.org/10.1371/journal.pone.0156552] [PMID: 27249425]
[223]
Imai, Y.; Kuba, K.; Penninger, J.M. The discovery of angiotensin-converting enzyme 2 and its role in acute lung injury in mice. Exp. Physiol., 2008, 93(5), 543-548.
[http://dx.doi.org/10.1113/expphysiol.2007.040048] [PMID: 18448662]
[224]
Imai, Y.; Kuba, K.; Rao, S.; Huan, Y.; Guo, F.; Guan, B.; Yang, P.; Sarao, R.; Wada, T.; Leong-Poi, H.; Crackower, M.A.; Fukamizu, A.; Hui, C.C.; Hein, L.; Uhlig, S.; Slutsky, A.S.; Jiang, C.; Penninger, J.M. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature, 2005, 436(7047), 112-116.
[http://dx.doi.org/10.1038/nature03712] [PMID: 16001071]
[225]
Ho, T-Y.; Wu, S-L.; Chen, J-C.; Li, C-C.; Hsiang, C-Y. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res., 2007, 74(2), 92-101.
[http://dx.doi.org/10.1016/j.antiviral.2006.04.014] [PMID: 16730806]
[226]
Lane, T.E.; Paoletti, A.D.; Buchmeier, M.J. Disassociation between the in vitro and in vivo effects of nitric oxide on a neurotropic murine coronavirus. J. Virol., 1997, 71(3), 2202-2210.
[http://dx.doi.org/10.1128/JVI.71.3.2202-2210.1997] [PMID: 9032354]
[227]
Akerström, S.; Mousavi-Jazi, M.; Klingström, J.; Leijon, M.; Lundkvist, A.; Mirazimi, A. Nitric oxide inhibits the replication cycle of severe acute respiratory syndrome coronavirus. J. Virol., 2005, 79(3), 1966-1969.
[http://dx.doi.org/10.1128/JVI.79.3.1966-1969.2005] [PMID: 15650225]
[228]
Yamamoto, N.; Yang, R.; Yoshinaka, Y.; Amari, S.; Nakano, T.; Cinatl, J.; Rabenau, H.; Doerr, H.W.; Hunsmann, G.; Otaka, A.; Tamamura, H.; Fujii, N.; Yamamoto, N. HIV protease inhibitor nelfinavir inhibits replication of SARS-associated coronavirus. Biochem. Biophys. Res. Commun., 2004, 318(3), 719-725.
[http://dx.doi.org/10.1016/j.bbrc.2004.04.083] [PMID: 15144898]
[229]
Tan, E.L.; Ooi, E.E.; Lin, C-Y.; Tan, H.C.; Ling, A.E.; Lim, B.; Stanton, L.W. Inhibition of SARS coronavirus infection in vitro with clinically approved antiviral drugs. Emerg. Infect. Dis., 2004, 10(4), 581-586.
[http://dx.doi.org/10.3201/eid1004.030458] [PMID: 15200845]
[230]
Wu, C-J.; Jan, J-T.; Chen, C-M.; Hsieh, H-P.; Hwang, D-R.; Liu, H-W.; Liu, C-Y.; Huang, H-W.; Chen, S-C.; Hong, C-F.; Lin, R.K.; Chao, Y.S.; Hsu, J.T. Inhibition of severe acute respiratory syndrome coronavirus replication by niclosamide. Antimicrob. Agents Chemother., 2004, 48(7), 2693-2696.
[http://dx.doi.org/10.1128/AAC.48.7.2693-2696.2004] [PMID: 15215127]
[231]
Koren, G.; King, S.; Knowles, S.; Phillips, E. Ribavirin in the treatment of SARS: A new trick for an old drug? CMAJ, 2003, 168(10), 1289-1292.
[PMID: 12743076]
[232]
Ströher, U.; DiCaro, A.; Li, Y.; Strong, J.E.; Aoki, F.; Plummer, F.; Jones, S.M.; Feldmann, H. Severe acute respiratory syndrome-related coronavirus is inhibited by interferon- α. J. Infect. Dis., 2004, 189(7), 1164-1167.
[http://dx.doi.org/10.1086/382597] [PMID: 15031783]
[233]
Morgenstern, B.; Michaelis, M.; Baer, P.C.; Doerr, H.W.; Cinatl, J. Jr Ribavirin and interferon-β synergistically inhibit SARS-associated coronavirus replication in animal and human cell lines. Biochem. Biophys. Res. Commun., 2005, 326(4), 905-908.
[http://dx.doi.org/10.1016/j.bbrc.2004.11.128] [PMID: 15607755]
[234]
Gaurav, A.; Al-Nema, M. Polymerases of coronaviruses: structure, function, and inhibitors.In: Viral Polymerases; Elsevier: Amsterdam, 2019, pp. 271-300.
[http://dx.doi.org/10.1016/B978-0-12-815422-9.00010-3]
[235]
Eastman, R.T.; Roth, J.S.; Brimacombe, K.R.; Simeonov, A.; Shen, M.; Patnaik, S.; Hall, M.D. Remdesivir: a review of its discovery and development leading to emergency use authorization for treatment of covid-19. ACS Cent. Sci., 2020, 6(5), 672-683.
[http://dx.doi.org/10.1021/acscentsci.0c00489] [PMID: 32483554]
[236]
Peters, H.L.; Jochmans, D.; de Wilde, A.H.; Posthuma, C.C.; Snijder, E.J.; Neyts, J.; Seley-Radtke, K.L. Design, synthesis and evaluation of a series of acyclic fleximer nucleoside analogues with anti-coronavirus activity. Bioorg. Med. Chem. Lett., 2015, 25(15), 2923-2926.
[http://dx.doi.org/10.1016/j.bmcl.2015.05.039] [PMID: 26048809]
[237]
Cao, J.; Forrest, J.C.; Zhang, X. A screen of the NIH Clinical Collection small molecule library identifies potential anti-coronavirus drugs. Antiviral Res., 2015, 114, 1-10.
[http://dx.doi.org/10.1016/j.antiviral.2014.11.010] [PMID: 25451075]
[238]
Kim, H-Y.; Shin, H-S.; Park, H.; Kim, Y-C.; Yun, Y.G.; Park, S.; Shin, H-J.; Kim, K. In vitro inhibition of coronavirus replications by the traditionally used medicinal herbal extracts, Cimicifuga rhizoma, Meliae cortex, Coptidis rhizoma, and Phellodendron cortex. J. Clin. Virol., 2008, 41(2), 122-128.
[http://dx.doi.org/10.1016/j.jcv.2007.10.011] [PMID: 18036887]
[239]
Ghosh, A.K.; Takayama, J.; Rao, K.V.; Ratia, K.; Chaudhuri, R.; Mulhearn, D.C.; Lee, H.; Nichols, D.B.; Baliji, S.; Baker, S.C.; Johnson, M.E.; Mesecar, A.D. Severe acute respiratory syndrome coronavirus papain-like novel protease inhibitors: design, synthesis, protein-ligand X-ray structure and biological evaluation. J. Med. Chem., 2010, 53(13), 4968-4979.
[http://dx.doi.org/10.1021/jm1004489] [PMID: 20527968]
[240]
Ghosh, A.K.; Takayama, J.; Aubin, Y.; Ratia, K.; Chaudhuri, R.; Baez, Y.; Sleeman, K.; Coughlin, M.; Nichols, D.B.; Mulhearn, D.C.; Prabhakar, B.S.; Baker, S.C.; Johnson, M.E.; Mesecar, A.D. Structure-based design, synthesis, and biological evaluation of a series of novel and reversible inhibitors for the severe acute respiratory syndrome-coronavirus papain-like protease. J. Med. Chem., 2009, 52(16), 5228-5240.
[http://dx.doi.org/10.1021/jm900611t] [PMID: 19645480]
[241]
Lin, S-C.; Ho, C-T.; Chuo, W-H.; Li, S.; Wang, T.T.; Lin, C-C. Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect. Dis., 2017, 17(1), 144.
[http://dx.doi.org/10.1186/s12879-017-2253-8] [PMID: 28193191]
[242]
Chandra, A.; Gurjar, V.; Qamar, I.; Singh, N. Identification of Potential Inhibitors of SARS-COV-2 Endoribonuclease (EndoU) from FDA Approved Drugs: A Drug Repurposing Approach to find Therapeutics for COID19. J. Biomol. Struct. Dyn., 2020, 1-16.
[243]
Kim, Y.; Jedrzejczak, R.; Maltseva, N.I.; Wilamowski, M.; Endres, M.; Godzik, A.; Michalska, K.; Joachimiak, A. Crystal structure of Nsp15 endoribonuclease NendoU from SARS-CoV-2. Protein Sci., 2020, 29(7), 1596-1605.
[http://dx.doi.org/10.1002/pro.3873] [PMID: 32304108]
[244]
Blanchard, E.; Belouzard, S.; Goueslain, L.; Wakita, T.; Dubuisson, J.; Wychowski, C.; Rouillé, Y.; Hepatitis, C. Hepatitis C virus entry depends on clathrin-mediated endocytosis. J. Virol., 2006, 80(14), 6964-6972.
[http://dx.doi.org/10.1128/JVI.00024-06] [PMID: 16809302]
[245]
Pohjala, L.; Utt, A.; Varjak, M.; Lulla, A.; Merits, A.; Ahola, T.; Tammela, P. Inhibitors of alphavirus entry and replication identified with a stable Chikungunya replicon cell line and virus-based assays. PLoS One, 2011, 6(12)e28923
[http://dx.doi.org/10.1371/journal.pone.0028923] [PMID: 22205980]
[246]
Pu, Y.; Zhang, X. Mouse hepatitis virus type 2 enters cells through a clathrin-mediated endocytic pathway independent of Eps15. J. Virol., 2008, 82(16), 8112-8123.
[http://dx.doi.org/10.1128/JVI.00837-0] [PMID: 18550663]
[247]
Sisk, J.M.; Frieman, M.B.; Machamer, C.E. Coronavirus S protein-induced fusion is blocked prior to hemifusion by Abl kinase inhibitors. J. Gen. Virol., 2018, 99(5), 619-630.
[http://dx.doi.org/10.1099/jgv.0.001047] [PMID: 29557770]
[248]
Coleman, C.M.; Sisk, J.M.; Mingo, R.M.; Nelson, E.A.; White, J.M.; Frieman, M.B. Abelson kinase inhibitors are potent inhibitors of severe acute respiratory syndrome coronavirus and middle east respiratory syndrome coronavirus fusion. J. Virol., 2016, 90(19), 8924-8933.
[http://dx.doi.org/10.1128/JVI.01429-16] [PMID: 27466418]
[249]
Dyall, J.; Coleman, C.M.; Hart, B.J.; Venkataraman, T.; Holbrook, M.R.; Kindrachuk, J.; Johnson, R.F.; Olinger, G.G., Jr; Jahrling, P.B.; Laidlaw, M.; Johansen, L.M.; Lear-Rooney, C.M.; Glass, P.J.; Hensley, L.E.; Frieman, M.B. Repurposing of clinically developed drugs for treatment of middle east respiratory syndrome coronavirus infection. antimicrob. Agents Chemother., 2014, 58(8), 4885-4893.
[http://dx.doi.org/10.1128/AAC.03036-14] [PMID: 24841273]
[250]
Shin, J.S.; Jung, E.; Kim, M.; Baric, R.S.; Go, Y.Y. Saracatinib inhibits middle east respiratory syndrome-coronavirus replication in vitro. Viruses, 2018, 10(6), 283-302.
[http://dx.doi.org/10.3390/v10060283] [PMID: 29795047]
[251]
Shen, Y.C.; Wang, L.T.; Khalil, A.T.; Chiang, L.C.; Cheng, P.W. Bioactive pyranoxanthones from the roots of Calophyllum blancoi. Chem. Pharm. Bull. (Tokyo), 2005, 53(2), 244-247.
[http://dx.doi.org/10.1248/cpb.53.244] [PMID: 15684529]
[252]
Li, S-Y.; Chen, C.; Zhang, H-Q.; Guo, H-Y.; Wang, H.; Wang, L.; Zhang, X.; Hua, S-N.; Yu, J.; Xiao, P-G.; Li, R-S.; Tan, X. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res., 2005, 67(1), 18-23.
[http://dx.doi.org/10.1016/j.antiviral.2005.02.007] [PMID: 15885816]
[253]
Tahir Ul Qamar, M.; Alqahtani, S.M.; Alamri, M.A.; Chen, L.L. Structural basis of SARS-CoV-2 3CLpro and anti-COVID-19 drug discovery from medicinal plants. J. Pharm. Anal., 2020, 10(4), 313-319.
[http://dx.doi.org/10.1016/j.jpha.2020.03.009] [PMID: 32296570]
[254]
Kang, K.B.; Kim, H.W.; Kim, J.W.; Oh, W.K.; Kim, J.; Sung, S.H. Catechin-bound ceanothane-type triterpenoid derivatives from the roots of zizyphus jujuba. J. Nat. Prod., 2017, 80(4), 1048-1054.
[http://dx.doi.org/10.1021/acs.jnatprod.6b01103] [PMID: 28257196]
[255]
Park, J.Y.; Kim, J.H.; Kim, Y.M.; Jeong, H.J.; Kim, D.W.; Park, K.H.; Kwon, H.J.; Park, S.J.; Lee, W.S.; Ryu, Y.B. Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases. Bioorg. Med. Chem., 2012, 20(19), 5928-5935.
[http://dx.doi.org/10.1016/j.bmc.2012.07.038] [PMID: 22884354]
[256]
Keyaerts, E.; Vijgen, L.; Pannecouque, C.; Van Damme, E.; Peumans, W.; Egberink, H.; Balzarini, J.; Van Ranst, M. Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Res., 2007, 75(3), 179-187.
[http://dx.doi.org/10.1016/j.antiviral.2007.03.003] [PMID: 17428553]

© 2024 Bentham Science Publishers | Privacy Policy