Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Synthesis of Eicosapentaenoic Acid-enriched Phosphatidylcholine and its Effect on Pro-inflammatory Cytokine Expression

Author(s): Jae Yeul Baek, Eun Na and Sun Young Lim*

Volume 25, Issue 1, 2022

Published on: 17 January, 2021

Page: [97 - 102] Pages: 6

DOI: 10.2174/1386207324666210118100049

Abstract

Aim and Objective: We synthesized eicosapentaenoic acid-enriched phosphatidylcholine (EPA-PC) and investigated its effect on the production of lipopolysaccharide (LPS)- induced cytokines in murine splenocytes.

Material and Methods: The culture supernatants of splenocytes, which was exposed to EPA-PC along with LPS, was harvested to determine the production of cytokines [interleukin (IL)-4 , IL-5, IL-6, interferon (IFN)-γ, IL-2 and IL-12/IL-23(p40)]. Cytokines were measured using enzymelinked immunosorbent assay (ELISA).

Results: The co-administration of EPA-PC with LPS resulted in a significantly lower IFN-γ expression than that observed with LPS alone (p < 0.01). Moreover, treatment with EPA-PC and LPS significantly decreased IL-2, IL-6 and IL-12/IL-23(p40) expression (p < 0.01). Coadministration of EPA-PC at a concentration of 0.3 μg/mL with LPS resulted in a higher IL-5 expression after 24 hr of treatment when compared to LPS alone (p < 0.05).

Conclusion: These results suggest that EPA-PC is more effective in decreasing the expression of pro-inflammatory cytokines [IL-2, IFN-γ, IL-6 and IL-12/IL-23(p40)] upon induction of inflammation.

Keywords: Eicosapentaenoic acid, phosphatidylcholine, cytokines, PUFAs, EPA, LPS.

Graphical Abstract
[1]
Jacobsen, C. Omega-3s in food emulsions: Overview and case studies. Agro Food Ind. Hi-Tech, 2008, 19(5), 9-12.
[2]
Dyerberg, J.; Madsen, P.; Møller, J.M.; Aardestrup, I.; Schmidt, E.B. Bioavailability of marine n-3 fatty acid formulations. Prostaglandins Leukot. Essent. Fatty Acids, 2010, 83(3), 137-141.
[http://dx.doi.org/10.1016/j.plefa.2010.06.007] [PMID: 20638827]
[3]
Davis, P.J.; Keouh, K.M.W. Differential scanning calorimetric studies of aqueous dispersions of mixtures of cholesterol with some mixed-acid and single-acid phosphatidylcholines. Biochem., 1983, 22(26), 6334-6340.
[http://dx.doi.org/10.1021/bi00295a045]
[4]
Rhodes, D.G.; Xu, Z.; Bittman, R. Structure of polymerizable lipid bilayers. V. Synthesis, bilayer structure and properties of diacetylenic ether and ester lipids. Biochim. Biophys. Acta, 1992, 1128(1), 93-104.
[http://dx.doi.org/10.1016/0005-2760(92)90262-T] [PMID: 1390881]
[5]
Peng, J.; Larondelle, Y.; Pham, D.; Ackman, R.G.; Rollin, X. Polyunsaturated fatty acid profiles of whole body phospholipids and triacylglycerols in anadromous and landlocked Atlantic salmon (Salmo salar L.) fry. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 2003, 134(2), 335-348.
[http://dx.doi.org/10.1016/S1096-4959(02)00263-4] [PMID: 12568811]
[6]
Calder, P.C. n-3 fatty acids, inflammation and immunity: new mechanisms to explain old actions. Proc. Nutr. Soc., 2013, 72(3), 326-336.
[http://dx.doi.org/10.1017/S0029665113001031] [PMID: 23668691]
[7]
Tayal, V.; Kalra, B.S. Cytokines and anti-cytokines as therapeutics--an update. Eur. J. Pharmacol., 2008, 579(1-3), 1-12.
[http://dx.doi.org/10.1016/j.ejphar.2007.10.049] [PMID: 18021769]
[8]
Das, U.N. Infection, inflammation, and polyunsaturated fatty acids. Nutrition, 2011, 27(10), 1080-1084.
[http://dx.doi.org/10.1016/j.nut.2011.08.001] [PMID: 21907900]
[9]
Tokés, T.; Eros, G.; Bebes, A.; Hartmann, P.; Várszegi, S.; Varga, G.; Kaszaki, J.; Gulya, K.; Ghyczy, M.; Boros, M. Protective effects of a phosphatidylcholine-enriched diet in lipopolysaccharide-induced experimental neuroinflammation in the rat. Shock, 2011, 36(5), 458-465.
[http://dx.doi.org/10.1097/SHK.0b013e31822f36b0] [PMID: 21937953]
[10]
Dial, E.J.; Zayat, M.; Lopez-Storey, M.; Tran, D.; Lichtenberger, L. Oral phosphatidylcholine preserves the gastrointestinal mucosal barrier during LPS-induced inflammation. Shock, 2008, 30(6), 729-733.
[http://dx.doi.org/10.1097/SHK.0b013e318173e8d4] [PMID: 18496240]
[11]
Na, E.; Choi, M.; Park, I.; Lim, S.Y. Effect of black sea bream extracts on cytokine production in lipopolysaccharide-induced inflammation. Biocell, 2020, 44(2), 193-199.
[http://dx.doi.org/10.32604/biocell.2020.08648]
[12]
Kim, K.H.; Choi, M.; Choi, H.M.; Lim, S.Y. Protective effect of dried mackerel extract on lipopolysaccharide-induced inflammation. J. Life Sci., 2013, 23(9), 1140-1146.
[http://dx.doi.org/10.5352/JLS.2013.23.9.1140]
[13]
Borsotti, G.; Guglielmetti, G.; Spera, S.; Battistel, E. Synthesis of phosphatidylcholines containing ricinoleic acid. Tetrahedron, 2001, 57, 10219-10227.
[http://dx.doi.org/10.1016/S0040-4020(01)01057-2]
[14]
Hwang, S.A.; Dasgupta, A.; Actor, J.K. Cytokine production by non-adherent mouse splenocyte cultures to Echinacea extracts. Clin. Chim. Acta, 2004, 343(1-2), 161-166.
[http://dx.doi.org/10.1016/j.cccn.2004.01.011] [PMID: 15115689]
[15]
Kim, K.H.; Kim, S.H.; Park, K.Y. Effects of kimchi extracts on production of nitric oxide by activated macrophages, transforming growth factor-beta 1 of tumor cells and interleukin-6 in splenocytes. J. Food Sci., 2001, 6(2), 126-132.
[16]
Choi, M.; Park, I.; Ju, J.; Park, K.Y.; Kim, K.H. Effects of β-lapachone on the production of Th1 and Th2 cytokines in C57BL/6 mice. J. Environ. Pathol. Toxicol. Oncol., 2012, 31(2), 87-94.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v31.i2.10] [PMID: 23216634]
[17]
Opal, S.M.; DePalo, V.A. Anti-inflammatory cytokines. Chest, 2000, 117(4), 1162-1172.
[http://dx.doi.org/10.1378/chest.117.4.1162] [PMID: 10767254]
[18]
Jolly, C.A.; Jiang, Y.H.; Chapkin, R.S.; McMurray, D.N. Dietary (n-3) polyunsaturated fatty acids suppress murine lymphoproliferation, interleukin-2 secretion, and the formation of diacylglycerol and ceramide. J. Nutr., 1997, 127(1), 37-43.
[http://dx.doi.org/10.1093/jn/127.1.37] [PMID: 9040541]
[19]
Küllenberg, D.; Taylor, L.A.; Schneider, M.; Massing, U. Health effects of dietary phospholipids. Lipids Health Dis., 2012, 11, 3.http://www.lipidworld.com/content/11/1/3
[http://dx.doi.org/10.1186/1476-511X-11-3] [PMID: 22221489]
[20]
Jung, Y.Y.; Nam, Y.; Park, Y.S.; Lee, H.S.; Hong, S.A.; Kim, B.K.; Park, E.S.; Chung, Y.H.; Jeong, J.H. Protective effect of phosphatidylcholine on lipopolysaccharide-induced acute inflammation in multiple organ injury. Korean J. Physiol. Pharmacol., 2013, 17(3), 209-216.
[http://dx.doi.org/10.4196/kjpp.2013.17.3.209] [PMID: 23776397]
[21]
Liu, Y.; Gong, L.; Li, D.; Feng, Z.; Zhao, L.; Dong, T. Effects of fish oil on lymphocyte proliferation, cytokine production and intracellular signalling in weanling pigs. Arch. Tierernahr., 2003, 57(3), 151-165.
[PMID: 12903861]
[22]
Lian, M.; Luo, W.; Sui, Y.; Li, Z.; Hua, J. Dietary n-3 PUFA protects mice from Con A induced liver injury by modulating regulatory T cells and PPAR-γ expression. PLoS One, 2015, 10(7), e0132741.
[http://dx.doi.org/10.1371/journal.pone.0132741] [PMID: 26177196]
[23]
Khalfoun, B.; Thibault, F.; Watier, H.; Bardos, P.; Lebranchu, Y. Docosahexaenoic and eicosapentaenoic acids inhibit in vitro human endothelial cell production of interleukin-6. Adv. Exp. Med. Biol., 1997, 400B, 589-597.
[PMID: 9547608]
[24]
Lo, C.J.; Chiu, K.C.; Fu, M.; Lo, R.; Helton, S. Fish oil decreases macrophage tumor necrosis factor gene transcription by altering the NF kappa B activity. J. Surg. Res., 1999, 82(2), 216-221.
[http://dx.doi.org/10.1006/jsre.1998.5524] [PMID: 10090832]
[25]
Billiar, T.; Bankey, P.; Svingen, B.; Curran, R.D.; West, M.A.; Holman, R.T.; Simmons, R.L.; Cerra, F.B. Fatty acid uptake and Kupffer cell function: fish oil alters eicosanoids and monokine production of interleukine-10. J. Surg. Res., 1988, 104(2), 343-349.
[PMID: 3041642]
[26]
Li, H.; Ruan, X.Z.; Powis, S.H.; Fernando, R.; Mon, W.Y.; Wheeler, D.C.; Moorhead, J.F.; Varghese, Z. EPA and DHA reduce LPS-induced inflammation responses in HK-2 cells: evidence for a PPAR-γ-dependent mechanism. Kidney Int., 2005, 67(3), 867-874.
[http://dx.doi.org/10.1111/j.1523-1755.2005.00151.x] [PMID: 15698426]
[27]
Grando, F.C.; Felício, C.A.; Twardowschy, A.; Paula, F.M.; Batista, V.G.; Fernandes, L.C.; Curi, R.; Nishiyama, A. Modulation of peritoneal macrophage activity by the saturation state of the fatty acid moiety of phosphatidylcholine. Braz. J. Med. Biol. Res., 2009, 42(7), 599-605.
[http://dx.doi.org/10.1590/S0100-879X2009005000003] [PMID: 19466285]
[28]
Kim, W.; Khan, N.A.; McMurray, D.N.; Prior, I.A.; Wang, N.; Chapkin, R.S. Regulatory activity of polyunsaturated fatty acids in T-cell signaling. Prog. Lipid Res., 2010, 49(3), 250-261.
[http://dx.doi.org/10.1016/j.plipres.2010.01.002] [PMID: 20176053]
[29]
Shaikh, S.R.; Jolly, C.A.; Chapkin, R.S. n-3 Polyunsaturated fatty acids exert immunomodulatory effects on lymphocytes by targeting plasma membrane molecular organization. Mol. Aspects Med., 2012, 33(1), 46-54.
[http://dx.doi.org/10.1016/j.mam.2011.10.002] [PMID: 22020145]

© 2024 Bentham Science Publishers | Privacy Policy