Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Review Article

Recent Advances of Genetic Resources, Genes and Genetic Approaches for Flooding Tolerance in Rice

Author(s): Debabrata Panda*, Jijnasa Barik and Ramani K. Sarkar

Volume 22, Issue 1, 2021

Published on: 14 January, 2021

Page: [41 - 58] Pages: 18

DOI: 10.2174/1389202922666210114104140

Price: $65

Abstract

Flooding is one of the most hazardous natural disasters and a major stress constraint to rice production throughout the world, which results in huge economic losses. The frequency and duration of flooding is predicted to increase in near future as a result of global climate change. Breeding of flooding tolerance in rice is a challenging task because of the complexity of the component traits, screening technique, environmental factors and genetic interactions. A great progress has been made during last two decades to find out the flooding tolerance mechanism in rice. An important breakthrough in submergence research was achieved by the identification of major quantitative trait locus (QTL) SUB1 in rice chromosomes that acts as the primary contributor for tolerance. This enabled the use of marker-assisted backcrossing (MABC) to transfer SUB1 QTL into popular varieties which showed yield advantages in flood prone areas. However, SUB1 varieties are not always tolerant to stagnant flooding and flooding during germination stage. So, gene pyramiding approach can be used by combining several important traits to develop new breeding rice lines that confer tolerances to different types of flooding. This review highlights the important germplasm/genetic resources of rice to different types of flooding stress. A brief discussion on the genes and genetic mechanism in rice exhibited to different types of flooding tolerance was discussed for the development of flood tolerant rice variety. Further research on developing multiple stresses tolerant rice can be achieved by combining SUB1 with other tolerance traits/genes for wider adaptation in the rain-fed rice ecosystems.

Keywords: Anaerobic germination potential, marker-assisted backcrossing, stagnant flooding, submergence, SUB1, rice.

Graphical Abstract
[1]
Oladosu, Y.; Rafii, M.Y.; Arolu, F. Submergence tolerance in rice: review of mechanism, breeding and, future prospects. Sustainability, 2020, 12(4), 1632.
[http://dx.doi.org/10.3390/su12041632]
[2]
Sasidharan, R.; Hartman, S.; Liu, Z.; Martopawiro, S.; Sajeev, N.; van Veen, H.; Yeung, E.; Voesenek, L.A.C.J. Signal dynamics and interactions during flooding stress. Plant Physiol., 2018, 176(2), 1106-1117.
[http://dx.doi.org/10.1104/pp.17.01232] [PMID: 29097391]
[3]
Buraschi, F.B.; Mollard, F.P.O.; Grimoldi, A.A.; Striker, G.G. Eco-physiological traits related to recovery from complete submergence in the model legume lotus japonicus. Plants (Basel), 2020, 9(4), 538.
[http://dx.doi.org/10.3390/plants9040538] [PMID: 32326202]
[4]
Hirabayashi, Y.; Mahendran, R.; Koirala, S. Global flood risk under climate change. Nat. Clim. Chang., 2013, 3(9), 816-821.
[http://dx.doi.org/10.1038/nclimate1911]
[5]
Kirtman, B; Power, SB; Adedoyin, AJ Near-term climate change: projections and predictability. 2013.
[6]
Locke, A.M.; Barding, G.A., Jr; Sathnur, S.; Larive, C.K.; Bailey-Serres, J. Rice SUB1A constrains remodelling of the transcriptome and metabolome during submergence to facilitate post-submergence recovery. Plant Cell Environ., 2018, 41(4), 721-736.
[http://dx.doi.org/10.1111/pce.13094] [PMID: 29094353]
[7]
Mustroph, A. Improving flooding tolerance of crop plants. Agron., 2018, 8(9), 160.
[http://dx.doi.org/10.3390/agronomy8090160]
[8]
Tewari, S.; Mishra, A. Flooding stress in plants and approaches to overcome. In: Plant Metabolites and Regulation Under Environmental Stress; Elsevier, 2018; pp. 355-366.
[9]
Ali, J.; Xu, J-L.; Gao, Y-M.; Ma, X.F.; Meng, L.J.; Wang, Y.; Pang, Y.L.; Guan, Y.S.; Xu, M.R.; Revilleza, J.E.; Franje, N.J.; Zhou, S.C.; Li, Z.K. Harnessing the hidden genetic diversity for improving multiple abiotic stress tolerance in rice (Oryza sativa L.). PLoS One, 2017, 12(3), e0172515.
[http://dx.doi.org/10.1371/journal.pone.0172515] [PMID: 28278154]
[10]
Gadal, N.; Shrestha, J.; Poudel, M.N.; Pokharel, B. A review on production status and growing environments of rice in Nepal and in the world. AAES, 2019, 4(1), 83-87.
[http://dx.doi.org/10.26832/24566632.2019.0401013]
[11]
Sudeepthi, K.; Srinivas, T.; Kumar, B.R.; Jyothula, D.; Umar, S.N. Genetic divergence studies for anaerobic germination traits in rice (Oryza sativa L.). Curr J Appl Sci Technol., 2020, 39(1), 71-78.
[http://dx.doi.org/10.9734/cjast/2020/v39i130482]
[12]
Fukao, T.; Xu, K.; Ronald, P.C.; Bailey-Serres, J. A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell, 2006, 18(8), 2021-2034.
[http://dx.doi.org/10.1105/tpc.106.043000] [PMID: 16816135]
[13]
Xu, K.; Xu, X.; Fukao, T.; Canlas, P.; Maghirang-Rodriguez, R.; Heuer, S.; Ismail, A.M.; Bailey-Serres, J.; Ronald, P.C.; Mackill, D.J. Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature, 2006, 442(7103), 705-708.
[http://dx.doi.org/10.1038/nature04920] [PMID: 16900200]
[14]
Panda, D.; Barik, J. Flooding tolerance in rice: focus on mechanisms and approaches. Rice Sci., 2021, 28(1), 43-57.
[15]
Cai, W.; Santoso, A.; Wang, G.; Weller, E.; Wu, L.; Ashok, K.; Masumoto, Y.; Yamagata, T. Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming. Nature, 2014, 510(7504), 254-258.
[http://dx.doi.org/10.1038/nature13327] [PMID: 24919920]
[16]
Singh, D.; Tsiang, M.; Rajaratnam, B.; Diffenbaugh, N.S. Observed changes in extreme wet and dry spells during the South Asian summer monsoon season. Nat. Clim. Chang., 2014, 4(6), 456-461.
[http://dx.doi.org/10.1038/nclimate2208]
[17]
Bailey-Serres, J.; Lee, S.C.; Brinton, E. Waterproofing crops: effective flooding survival strategies. Plant Physiol., 2012, 160(4), 1698-1709.
[http://dx.doi.org/10.1104/pp.112.208173] [PMID: 23093359]
[18]
Bank, W. Climate change impacts in drought and flood affected areas: case studies in India. Report No 43946‐IN. 2008.
[19]
Septiningsih, E.M.; Mackill, D.J. Genetics and breeding of flooding tolerance in rice. In: Rice Genomics, Genetics and Breeding; Springer, 2018; pp. 275-295.
[http://dx.doi.org/10.1007/978-981-10-7461-5_15]
[20]
Kuroha, T.; Ashikari, M. Molecular mechanisms and future improvement of submergence tolerance in rice. Mol. Breed., 2020, 40, 1-14.
[http://dx.doi.org/10.1007/s11032-020-01122-y]
[21]
Ray, S.; Vijayan, J.; Sarkar, R.K. Germination stage oxygen deficiency (GSOD): an emerging stress in the era of changing trends in climate and rice cultivation practice. Front. Plant Sci., 2016, 7, 671.
[http://dx.doi.org/10.3389/fpls.2016.00671] [PMID: 27242872]
[22]
Senapati, S.; Kuanar, S.R.; Sarkar, R.K. Anaerobic germination potential in rice (Oryza sativa L.): role of amylases, alcohol deydrogenase and ethylene. J. Stress Physiol. Biochem., 2019, 15(4), 39-52.
[23]
Angaji, S.A.; Septiningsih, E.M.; Mackill, D.; Ismail, A.M. QTLs associated with tolerance of flooding during germination in rice (Oryza sativa L.). Euphytica, 2010, 172(2), 159-168.
[http://dx.doi.org/10.1007/s10681-009-0014-5]
[24]
El-Hendawy, S.; Sone, C.; Ito, O.; Sakagami, J. Evaluation of germination ability in rice seeds under anaerobic conditions by cluster analysis. Res J Seed Sci, 2011, 4(2), 82-93.
[http://dx.doi.org/10.3923/rjss.2011.82.93]
[25]
Ismail, A.M.; Ella, E.S.; Vergara, G.V.; Mackill, D.J. Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice (Oryza sativa). Ann. Bot., 2009, 103(2), 197-209.
[http://dx.doi.org/10.1093/aob/mcn211] [PMID: 19001425]
[26]
Ismail, A.M.; Johnson, D.E.; Ella, E.S.; Vergara, G.V.; Baltazar, A.M. Adaptation to flooding during emergence and seedling growth in rice and weeds, and implications for crop establishment. AoB Plants, 2012, 2012, pls019.
[http://dx.doi.org/10.1093/aobpla/pls019] [PMID: 22957137]
[27]
Yamauchi, M.; Aguilar, A.; Vaughan, D.; Seshu, D. Rice (Oryza sativa L.) germplasm suitable for direct sowing under flooded soil surface. Euphytica, 1993, 67(3), 177-184.
[http://dx.doi.org/10.1007/BF00040619]
[28]
Yamauchi, M.; Herradura, P.S.; Aguilar, A.M. Genotype difference in rice postgermination growth under hypoxia. Plant Sci., 1994, 100(1), 105-113.
[http://dx.doi.org/10.1016/0168-9452(94)90138-4]
[29]
Biswas, J. Mechanism of seedling establishment of direct seeded rice (Oryza sativa L.) under lowland conditions. Bull Acad Sin, 1997, 38, 29-32.
[30]
Ella, E.S.; Setter, T.L. Importance of seed carbohydrates in rice seedling establishment under anoxia. VI Symposium on Stand Establishment and ISHS Seed Symposium, 1999.
[31]
Magneschi, L.; Perata, P. Rice germination and seedling growth in the absence of oxygen. Ann. Bot., 2009, 103(2), 181-196.
[http://dx.doi.org/10.1093/aob/mcn121] [PMID: 18660495]
[32]
Redona, E.; Mackill, D. Genetic variation for seedling vigor traits in rice. Crop Sci., 1996, 36(2), 285-290.
[http://dx.doi.org/10.2135/cropsci1996.0011183X003600020012x]
[33]
Barik, J.; Kumar, V.; Lenka, S.K.; Panda, D. Genetic potentiality of lowland indigenous indica rice (Oryza sativa L.) landraces to anaerobic germination potential. Plant Physiol Rep., 2019, 24(2), 249-261.
[http://dx.doi.org/10.1007/s40502-019-00441-3]
[34]
Miro, B.; Ismail, A.M. Tolerance of anaerobic conditions caused by flooding during germination and early growth in rice (Oryza sativa L.). Front. Plant Sci., 2013, 4, 269.
[http://dx.doi.org/10.3389/fpls.2013.00269] [PMID: 23888162]
[35]
Mondal, S.; Khan, M.I.R.; Entila, F.; Dixit, S.; Sta Cruz, P.C.; Panna Ali, M.; Pittendrigh, B.; Septiningsih, E.M.; Ismail, A.M. Responses of AG1 and AG2 QTL introgression lines and seed pre-treatment on growth and physiological processes during anaerobic germination of rice under flooding. Sci. Rep., 2020, 10(1), 10214.
[http://dx.doi.org/10.1038/s41598-020-67240-x] [PMID: 32576897]
[36]
Panda, D.; Rao, D.N.; Das, K.K.; Sarkar, R.K. Role of starch hydrolytic enzymes and phosphatases in relation to under water seedling establishment in rice. Indian J. Plant. Physiol., 2017, 22(3), 279-286.
[http://dx.doi.org/10.1007/s40502-017-0305-0]
[37]
Vijayan, J.; Senapati, S.; Ray, S. Transcriptomic and physiological studies identify cues for germination stage oxygen deficiency tolerance in rice. Environ. Exp. Bot., 2018, 147, 234-248.
[http://dx.doi.org/10.1016/j.envexpbot.2017.12.013]
[38]
Lee, K.W.; Chen, P.W.; Yu, S.M. Metabolic adaptation to sugar/O2 deficiency for anaerobic germination and seedling growth in rice. Plant Cell Environ., 2014, 37(10), 2234-2244.
[PMID: 24575721]
[39]
Lee, K-W.; Chen, P-W.; Lu, C-A.; Chen, S.; Ho, T.H.; Yu, S.M. Coordinated responses to oxygen and sugar deficiency allow rice seedlings to tolerate flooding. Sci. Signal., 2009, 2(91), ra61.
[http://dx.doi.org/10.1126/scisignal.2000333] [PMID: 19809091]
[40]
Farooq, M.; Siddique, K.H.; Rehman, H. Rice direct seeding: experiences, challenges and opportunities. Soil Tillage Res., 2011, 111(2), 87-98.
[http://dx.doi.org/10.1016/j.still.2010.10.008]
[41]
Mahender, A.; Anandan, A.; Pradhan, S.K. Early seedling vigour, an imperative trait for direct-seeded rice: an overview on physio- morphological parameters and molecular markers. Planta, 2015, 241(5), 1027-1050.
[http://dx.doi.org/10.1007/s00425-015-2273-9] [PMID: 25805338]
[42]
Manigbas, N.L.; Solis, R.O.; Barroga, W.V. Development of screening methods for anaerobic germination and seedling vigor in direct wet-seeded rice culture. Philipp. J. Crop Sci., 2008, 33, 34-44.
[43]
Septiningsih, E.M.; Ignacio, J.C.I.; Sendon, P.M.; Sanchez, D.L.; Ismail, A.M.; Mackill, D.J. QTL mapping and confirmation for tolerance of anaerobic conditions during germination derived from the rice landrace Ma-Zhan Red. Theor. Appl. Genet., 2013, 126(5), 1357-1366.
[http://dx.doi.org/10.1007/s00122-013-2057-1] [PMID: 23417074]
[44]
Chamara, B.S.; Marambe, B.; Kumar, V.; Ismail, A.M.; Septiningsih, E.M.; Chauhan, B.S. Optimizing sowing and flooding depth for anaerobic germination-tolerant genotypes to enhance crop establishment, early growth, and weed management in dry-seeded rice (Oryza sativa L.). Front. Plant Sci., 2018, 9, 1654.
[http://dx.doi.org/10.3389/fpls.2018.01654] [PMID: 30532759]
[45]
Joshi, E.; Kumar, D.; Lal, B. Management of direct seeded rice for enhanced resource-use efficiency. PKJ, 2013, 2(3), 119.
[46]
Barik, J.; Kumar, V.; Lenka, S.K.; Panda, D. Assessment of variation in morpho-physiological traits and genetic diversity in relation to submergence tolerance of five indigenous lowland rice landraces. Rice Sci., 2020, 27(1), 32-43.
[http://dx.doi.org/10.1016/j.rsci.2019.12.004]
[47]
Biswajit, P.; Sritama, K.; Anindya, S.; Moushree, S.; Sabyasachi, K. Breeding for submergence tolerance in rice (Oryza sativa L.) and its management for flash flood in rainfed low land area: a review. Agric. Rev. (Karnal), 2017, 38(3), 167-179.
[http://dx.doi.org/10.18805/ag.v38i02.7938]
[48]
Fukao, T.; Barrera-Figueroa, B.E.; Juntawong, P.; Peña-Castro, J.M. Submergence and waterlogging stress in plants: a review highlighting research opportunities and understudied aspects. Front. Plant Sci., 2019, 10, 340.
[http://dx.doi.org/10.3389/fpls.2019.00340] [PMID: 30967888]
[49]
Bailey-Serres, J.; Fukao, T.; Ronald, P. Submergence tolerant rice: SUB1’s journey from landrace to modern cultivar. Rice (N. Y.), 2010, 3(2), 138-147.
[http://dx.doi.org/10.1007/s12284-010-9048-5]
[50]
Colmer, T.D.; Armstrong, W.; Greenway, H. Physiological mechanisms of flooding tolerance in rice: transient complete submergence and prolonged standing water. In: Progress in botany; Springer, 2014; pp. 255-307.
[51]
Ismail, A.M.; Singh, U.S.; Singh, S.; Dar, M.H.; Mackill, D.J. The contribution of submergence-tolerant (Sub1) rice varieties to food security in flood-prone rainfed lowland areas in Asia. Field Crops Res., 2013, 152, 83-93.
[http://dx.doi.org/10.1016/j.fcr.2013.01.007]
[52]
Mackill, D.; Coffman, W.; Garrity, D. Rainfed lowland rice improvement; International Rice Research Institute: Philippines, 1996.
[53]
Mackill, D.; Ismail, A.; Singh, U.; Labios, R.; Paris, T. Development and rapid adoption of submergence-tolerant (Sub1) rice varieties. In: Advances in agronomy. 115; Elsevier, 2012; pp. 299-352.
[54]
Singh, S.; Mackill, D.J.; Ismail, A.M. Responses of SUB1 rice introgression lines to submergence in the field: yield and grain quality. Field Crops Res., 2009, 113(1), 12-23.
[http://dx.doi.org/10.1016/j.fcr.2009.04.003]
[55]
Afrin, W.; Nafis, M.H.; Hossain, M.A.; Islam, M.M.; Hossain, M.A. Responses of rice (Oryza sativa L.) genotypes to different levels of submergence. C. R. Biol., 2018, 341(2), 85-96.
[http://dx.doi.org/10.1016/j.crvi.2018.01.001] [PMID: 29398646]
[56]
Azarin, K.V.; Usatov, A.V.; Kostylev, P.I. Molecular breeding of submergence-tolerant rice. Annu. Res. Rev. Biol., 2017, 1-10.
[http://dx.doi.org/10.9734/ARRB/2017/35616]
[57]
Fukao, T.; Yeung, E.; Bailey-Serres, J. The submergence tolerance regulator SUB1A mediates crosstalk between submergence and drought tolerance in rice. Plant Cell, 2011, 23(1), 412-427.
[http://dx.doi.org/10.1105/tpc.110.080325] [PMID: 21239643]
[58]
Mickelbart, M.V.; Hasegawa, P.M.; Bailey-Serres, J. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat. Rev. Genet., 2015, 16(4), 237-251.
[http://dx.doi.org/10.1038/nrg3901] [PMID: 25752530]
[59]
Panda, D.; Rao, D.; Sharma, S.G.; Strasser, R.; Sarkar, R.K. Submergence effects on rice genotypes during seedling stage: probing of submergence driven changes of photosystem 2 by chlorophyll a fluorescence induction OJIP transients. Photosynthetica, 2006, 44(1), 69-75.
[http://dx.doi.org/10.1007/s11099-005-0200-1]
[60]
Bailey-Serres, J.; Voesenek, L.A. Flooding stress: acclimations and genetic diversity. Annu. Rev. Plant Biol., 2008, 59, 313-339.
[http://dx.doi.org/10.1146/annurev.arplant.59.032607.092752] [PMID: 18444902]
[61]
Colmer, T.D.; Voesenek, L.A.C.J. Flooding tolerance: suites of plant traits in variable environments. Funct. Plant Biol., 2009, 36(8), 665-681.
[http://dx.doi.org/10.1071/FP09144] [PMID: 32688679]
[62]
Das, K.K.; Sarkar, R.K.; Ismail, A.M. Elongation ability and non-structural carbohydrate levels in relation to submergence tolerance in rice. Plant Sci., 2005, 168(1), 131-136.
[http://dx.doi.org/10.1016/j.plantsci.2004.07.023]
[63]
El-Hendawy, S.; Sone, C.; Ito, O.; Sakagami, J-I. Differential growth response of rice genotypes based on quiescence mechanism under flash flooding stress. Aust. J. Crop Sci., 2012, 6(12), 1587.
[64]
Setter, T.; Waters, I. Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant Soil, 2003, 253(1), 1-34.
[http://dx.doi.org/10.1023/A:1024573305997]
[65]
Armstrong, W.; Drew, M. Root growth and metabolism under oxygen deficiency. In: Plant roots: the hidden half, 3rd ed; Waisel, Y.; Eshel, A.; Kafkafi, U., Eds.; CRC Press: New York, 2002; pp. 729-761.
[66]
Nishiuchi, S.; Yamauchi, T.; Takahashi, H.; Kotula, L.; Nakazono, M. Mechanisms for coping with submergence and waterlogging in rice. Rice (N. Y.), 2012, 5(1), 2.
[http://dx.doi.org/10.1186/1939-8433-5-2] [PMID: 24764502]
[67]
Colmer, T.D.; Pedersen, O. Oxygen dynamics in submerged rice (Oryza sativa). New Phytol., 2008, 178(2), 326-334.
[http://dx.doi.org/10.1111/j.1469-8137.2007.02364.x] [PMID: 18248586]
[68]
Das, K.K.; Panda, D.; Sarkar, R.K.; Reddy, J.; Ismail, A.M. Submergence tolerance in relation to variable floodwater conditions in rice. Environ. Exp. Bot., 2009, 66(3), 425-434.
[http://dx.doi.org/10.1016/j.envexpbot.2009.02.015]
[69]
Panda, D.; Sarkar, R.K. Structural and functional alteration of photosynthetic apparatus in rice under submergence. J. Stress Physiol. Biochem., 2012, 8(1)
[70]
Ella, E.S.; Kawano, N.; Yamauchi, Y.; Tanaka, K.; Ismail, A. Blocking ethylene perception enhances flooding tolerance in rice seedlings. Funct. Plant Biol., 2003, 30(7), 813-819.
[http://dx.doi.org/10.1071/FP03049] [PMID: 32689065]
[71]
Jackson, M.; Armstrong, W. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol., 1999, 1(03), 274-287.
[http://dx.doi.org/10.1111/j.1438-8677.1999.tb00253.x]
[72]
Panda, D.; Sarkar, R.K. Leaf photosynthetic activity and antioxidant defense associated with Sub1 QTL in rice subjected to submergence and subsequent re-aeration. Rice Sci., 2012, 19(2), 108-116.
[http://dx.doi.org/10.1016/S1672-6308(12)60029-8]
[73]
Panda, D.; Sarkar, R.K. Role of non-structural carbohydrate and its catabolism associated with Sub 1 QTL in rice subjected to complete submergence. Exp. Agric., 2012, 48(4), 502.
[http://dx.doi.org/10.1017/S0014479712000397]
[74]
Panda, D.; Sharma, S.; Sarkar, R. Fast chlorophyll fluorescence transients as selection tools for submergence tolerance in rice (Oryza sativa). Indian J. Agric. Sci., 2008, 78(11), 933-939.
[75]
Pedersen, O.; Rich, S.M.; Colmer, T.D. Surviving floods: leaf gas films improve O2; and CO2; exchange, root aeration, and growth of completely submerged rice. Plant J., 2009, 58(1), 147-156.
[http://dx.doi.org/10.1111/j.1365-313X.2008.03769.x] [PMID: 19077169]
[76]
Sarkar, R.; Reddy, J.; Sharma, S.; Ismail, A.M. Physiological basis of submergence tolerance in rice and implications for crop improvement. Curr. Sci., 2006, 91(7), 899-906.
[77]
Ram, P.; Singh, B.; Singh, A. Submergence tolerance in rainfed lowland rice: physiological basis and prospects for cultivar improvement through marker-aided breeding. Field Crops Res., 2002, 76(2-3), 131-152.
[http://dx.doi.org/10.1016/S0378-4290(02)00035-7]
[78]
Voesenek, L.A.C.J.; Bailey-Serres, J. Flood adaptive traits and processes: an overview. New Phytol., 2015, 206(1), 57-73.
[http://dx.doi.org/10.1111/nph.13209] [PMID: 25580769]
[79]
Tamang, B.G.; Fukao, T. Plant adaptation to multiple stresses during submergence and following desubmergence. Int. J. Mol. Sci., 2015, 16(12), 30164-30180.
[http://dx.doi.org/10.3390/ijms161226226] [PMID: 26694376]
[80]
Singh, A.; Septiningsih, E.M.; Balyan, H.S.; Singh, N.K.; Rai, V. Genetics, physiological mechanisms and breeding of flood-tolerant rice (Oryza sativa L.). Plant Cell Physiol., 2017, 58(2), 185-197.
[PMID: 28069894]
[81]
Singh, S.; Mackill, D.J.; Ismail, A.M. Tolerance of longer-term partial stagnant flooding is independent of the SUB1 locus in rice. Field Crops Res., 2011, 121(3), 311-323.
[http://dx.doi.org/10.1016/j.fcr.2010.12.021]
[82]
Zhu, G.; Chen, Y.; Ella, E.S.; Ismail, A.M. Mechanisms associated with tiller suppression under stagnant flooding in rice. J. Agron. Crop Sci., 2019, 205(2), 235-247.
[http://dx.doi.org/10.1111/jac.12316]
[83]
Vergara, G.V.; Nugraha, Y.; Esguerra, M.Q.; Mackill, D.J.; Ismail, A.M. Variation in tolerance of rice to long-term stagnant flooding that submerges most of the shoot will aid in breeding tolerant cultivars. AoB Plants, 2014, 6, plu055.
[http://dx.doi.org/10.1093/aobpla/plu055] [PMID: 25202124]
[84]
Kuanar, S.R.; Ray, A.; Sethi, S.K.; Chattopadhyay, K.; Sarkar, R.K. Physiological basis of stagnant flooding tolerance in rice. Rice Sci., 2017, 24(2), 73-84.
[http://dx.doi.org/10.1016/j.rsci.2016.08.008]
[85]
Panda, D.; Ray, A.; Sarkar, R. Yield and photochemical activity of selected rice cultivars from Eastern India under medium depth stagnant flooding. Photosynthetica, 2019, 57(4), 1084-1093.
[http://dx.doi.org/10.32615/ps.2019.126]
[86]
Rice tolerance variation to long-term stagnant flooding and germination ability under an-aerobic environment. IOP Conference Series: Earth and Environmental Science, 2020.
[http://dx.doi.org/10.1088/1755-1315/423/1/012048]
[87]
Sarkar, R.K.; Bhattacharjee, B. Rice genotypes with SUB1 QTL differ in submergence tolerance, elongation ability during submergence and re-generation growth at re-emergence. Rice (N. Y.), 2011, 5(1), 7.
[http://dx.doi.org/10.1007/s12284-011-9065-z]
[88]
Kato, Y.; Collard, B.C.; Septiningsih, E.M.; Ismail, A.M. Physiological analyses of traits associated with tolerance of long-term partial submergence in rice. AoB Plants, 2014, 6, plu058.
[http://dx.doi.org/10.1093/aobpla/plu058] [PMID: 25270231]
[89]
Kawano, R.; Doi, K.; Yasui, H.; Mochizuki, T.; Yoshimura, A. Mapping of QTLs for floating ability in rice. Breed. Sci., 2008, 58(1), 47-53.
[http://dx.doi.org/10.1270/jsbbs.58.47]
[90]
Hattori, Y.; Nagai, K.; Furukawa, S.; Song, X.J.; Kawano, R.; Sakakibara, H.; Wu, J.; Matsumoto, T.; Yoshimura, A.; Kitano, H.; Matsuoka, M.; Mori, H.; Ashikari, M. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature, 2009, 460(7258), 1026-1030.
[http://dx.doi.org/10.1038/nature08258] [PMID: 19693083]
[91]
Vergara, B.; Jackson, B.; De Datta, S. Deep water rice and its response to deep water stress; Climate and Rice International Rice Research Institute: Los Banos, Philippines, 1976, pp. 301-319.
[92]
Jackson, M.B.; Ram, P.C. Physiological and molecular basis of susceptibility and tolerance of rice plants to complete submergence. Ann. Bot., 2003, 91(Spec No), 227-241.
[http://dx.doi.org/10.1093/aob/mcf242] [PMID: 12509343]
[93]
Hattori, Y.; Nagai, K.; Ashikari, M. Rice growth adapting to deepwater. Curr. Opin. Plant Biol., 2011, 14(1), 100-105.
[http://dx.doi.org/10.1016/j.pbi.2010.09.008] [PMID: 20934370]
[94]
Loreti, E.; Perata, P. The many facets of hypoxia in plants. Plants (Basel), 2020, 9(6), 745.
[http://dx.doi.org/10.3390/plants9060745] [PMID: 32545707]
[95]
Minami, A.; Yano, K.; Gamuyao, R.; Nagai, K.; Kuroha, T.; Ayano, M.; Nakamori, M.; Koike, M.; Kondo, Y.; Niimi, Y.; Kuwata, K.; Suzuki, T.; Higashiyama, T.; Takebayashi, Y.; Kojima, M.; Sakakibara, H.; Toyoda, A.; Fujiyama, A.; Kurata, N.; Ashikari, M.; Reuscher, S. Time-course transcriptomics analysis reveals key responses of submerged deepwater rice to flooding. Plant Physiol., 2018, 176(4), 3081-3102.
[http://dx.doi.org/10.1104/pp.17.00858] [PMID: 29475897]
[96]
Rabara, R.C.; Ferrer, M.C.; Diaz, C.L. Phenotypic diversity of farmers’ traditional rice varieties in the Philippines. Agron., 2014, 4(2), 217-241.
[http://dx.doi.org/10.3390/agronomy4020217]
[97]
Jiang, L.; Hou, M-y.; Wang, C-m.; Wan, J-m. Quantitative trait loci and epistatic analysis of seed anoxia germinability in rice (Oryza sativa). Rice Sci., 2004, 11(5-6), 238-244.
[98]
Septiningsih, E.M.; Sanchez, D.L.; Singh, N.; Sendon, P.M.; Pamplona, A.M.; Heuer, S.; Mackill, D.J. Identifying novel QTLs for submergence tolerance in rice cultivars IR72 and Madabaru. Theor. Appl. Genet., 2012, 124(5), 867-874.
[http://dx.doi.org/10.1007/s00122-011-1751-0] [PMID: 22083356]
[99]
Septiningsih, E.M.; Collard, B.C.; Heuer, S. Applying genomics tools for breeding submergence tolerance in rice. In: Translational Genomics for Crop Breeding, Volume II: Abiotic Stress, Yield and Quality; Tuberosa, RKVaR., Ed.; John Wiley & Sons, Inc., 2013; 2, pp. 9-30.
[http://dx.doi.org/10.1002/9781118728482.ch2]
[100]
Toledo, A.M.U.; Ignacio, J.C.I.; Casal, C. Development of improved Ciherang-Sub1 having tolerance to anaerobic germination conditions. Plant Breed. Biotechnol., 2015, 3(2), 77-87.
[http://dx.doi.org/10.9787/PBB.2015.3.2.077]
[101]
Sudeepthi, K.; Srinivas, T.; Kumar, B.N.V.S.R.R.; Jyothula, D.P.B.; Nafeez Umar, S.K. Screening for tolerance to anaerobic germination in rice (Oryza sativa L.). Int. J. Curr. Microbiol. Appl. Sci., 2019, 8(12), 2527-2538.
[102]
Screening for resistance to submergence under greenhouse conditions. 6 Scientific Meeting of the Crop Science Society of the Philippines Bacolod City (Philippines) 8 May 1975, 1975.
[103]
Dwivedi, J. Screening techniques and genetics of elongation ability and submergence tolerance in deep-water rice; International Rice Research Institute: Los Banos, Philippines, 1992.
[104]
HilleRisLambers, H.; Vergara, B Summary results of an international collaboration on screening methods for flood tolerance. Proceedings of the 1981 international deepwater rice workshop 1982, 1982,
[105]
Sarkar, R.; Prasanna, M. An overview on submergence tolerance in rice: farmers’ wisdom and amazing science. J. Plant Biol., 2010, 37(2), 191-199.
[106]
Goswami, S.; Kar, R.K.; Paul, A.; Dey, N. Genetic potentiality of indigenous rice genotypes from Eastern India with reference to submergence tolerance and deepwater traits. Curr. Plant Biol., 2017, 11, 23-32.
[107]
Paul, D.; Bhattacharya, D. Simulation of waterlogged situation in normal field for screening of varieties by engineering skill [rice, India]. Note. Oryza, 1980, 17.
[108]
Sarkar, R.; Reddy, J.; Patnaik, S.; Gautam, P.; Lal, B. Submergence tolerance; ICAR-NRRI, 2017.
[109]
Panda, D.; Sharma, S.; Sarkar, R. Chlorophyll fluorescence transient analysis and its association with submergence tolerance in rice (Oryza sativa). Indian J. Agric. Sci., 2007, 77(6), 344-348.
[110]
Iftekharuddaula, K.M.; Ghosal, S.; Gonzaga, Z.J. Allelic diversity of newly characterized submergence-tolerant rice (Oryza sativa L.) germplasm from Bangladesh. Genet. Resour. Crop Evol., 2016, 63(5), 859-867.
[111]
De Datta, S. Tolerance of rice varieties for stagnant flooding. In: Progress in Rainfed Lowland Rice International Rice Research Institute(IRRI); Phillippines: Los Banos, 1986; pp. 201-206.
[112]
Sakagami, J.; Joho, Y.; Ito, O. Contrasting physiological responses by cultivars of Oryza sativa and O. glaberrima to prolonged submergence. Ann. Bot., 2009, 103(2), 171-180.
[http://dx.doi.org/10.1093/aob/mcn201] [PMID: 18940851]
[113]
Amante, M. Evaluation of rice breeding lines under medium-deep (25-50 cm) water conditions:thesis., 1986.
[114]
Mallik, S. Rice germplasm evaluation and improvement for stagnant flooding. In: Rainfed Lowland Rice Agricultural Research for High Risk Environments; , 1995.
[115]
Mackill, D.J.; Ismail, A.M.; Pamplona, A.M. Stress tolerant rice varieties for adaptation to a changing climate. Zuowu, Huanjing Yu Shengwu Zixun, 2010, 7, 250-259.
[116]
Kato, Y.; Collard, B.C.Y.; Septiningsih, E.M.; Ismail, A.M. Increasing flooding tolerance in rice: combining tolerance of submergence and of stagnant flooding. Ann. Bot., 2020, 124(7), 1199-1210.
[http://dx.doi.org/10.1093/aob/mcz118] [PMID: 31306479]
[117]
Sarkar, R. Stagnant flooding toleranace in rice: endeavours and achivement. 2016.
[118]
Sarkar, R.; Reddy, J. Stagnant flooding tolerance; ICAR-NRRI, 2017.
[119]
Yamauchi, M.; Winn, T. Rice seed vigor and seedling establishment in anaerobic soil. Crop Sci., 1996, 36(3), 680-686.
[http://dx.doi.org/10.2135/cropsci1996.0011183X003600030027x]
[120]
Kretzschmar, T.; Pelayo, M.A.F.; Trijatmiko, K.R.; Gabunada, L.F.; Alam, R.; Jimenez, R.; Mendioro, M.S.; Slamet-Loedin, I.H.; Sreenivasulu, N.; Bailey-Serres, J.; Ismail, A.M.; Mackill, D.J.; Septiningsih, E.M. A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice. Nat. Plants, 2015, 1(9), 15124.
[http://dx.doi.org/10.1038/nplants.2015.124] [PMID: 27250677]
[121]
Loreti, E.; Valeri, M.C.; Novi, G.; Perata, P. Gene regulation and survival under hypoxia requires starch availability and metabolism. Plant Physiol., 2018, 176(2), 1286-1298.
[http://dx.doi.org/10.1104/pp.17.01002] [PMID: 29084901]
[122]
Baltazar, M.D.; Ignacio, J.C.I.; Thomson, M.J. QTL mapping for tolerance of anaerobic germination from IR64 and the aus landrace Nanhi using SNP genotyping. Euphytica, 2014, 197(2), 251-260.
[http://dx.doi.org/10.1007/s10681-014-1064-x]
[123]
Jiang, L.; Liu, S.; Hou, M. Analysis of QTLs for seed low temperature germinability and anoxia germinability in rice (Oryza sativa L.). Field Crops Res., 2006, 98(1), 68-75.
[http://dx.doi.org/10.1016/j.fcr.2005.12.015]
[124]
Baltazar, M.D.; Ignacio, J.C.I.; Thomson, M.J.; Ismail, A.M.; Mendioro, M.S.; Septiningsih, E.M. QTL mapping for tolerance to anaerobic germination in rice from IR64 and the aus landrace Kharsu 80A. Breed. Sci., 2019, 69(2), 227-233.
[http://dx.doi.org/10.1270/jsbbs.18159] [PMID: 31481831]
[125]
Zhang, M.; Lu, Q.; Wu, W.; Niu, X.; Wang, C.; Feng, Y.; Xu, Q.; Wang, S.; Yuan, X.; Yu, H.; Wang, Y.; Wei, X. Association mapping reveals novel genetic loci contributing to flooding tolerance during germination in indica rice. Front. Plant Sci., 2017, 8, 678.
[http://dx.doi.org/10.3389/fpls.2017.00678] [PMID: 28487722]
[126]
Hsu, S-K.; Tung, C-W. Genetic mapping of anaerobic germination-associated QTLs controlling coleoptile elongation in rice. Rice (N. Y.), 2015, 8(1), 38.
[http://dx.doi.org/10.1186/s12284-015-0072-3] [PMID: 26699727]
[127]
Hsu, S-K.; Tung, C-W. RNA-Seq analysis of diverse rice genotypes to identify the genes controlling coleoptile growth during submerged germination. Front. Plant Sci., 2017, 8, 762.
[http://dx.doi.org/10.3389/fpls.2017.00762] [PMID: 28555145]
[128]
Yang, J.; Sun, K.; Li, D.; Luo, L.; Liu, Y.; Huang, M.; Yang, G.; Liu, H.; Wang, H.; Chen, Z.; Guo, T. Identification of stable QTLs and candidate genes involved in anaerobic germination tolerance in rice via high-density genetic mapping and RNA-Seq. BMC Genomics, 2019, 20(1), 355.
[http://dx.doi.org/10.1186/s12864-019-5741-y] [PMID: 31072298]
[129]
Ghosal, S.; Casal, C., Jr; Quilloy, F.A.; Septiningsih, E.M.; Mendioro, M.S.; Dixit, S. Deciphering genetics underlying stable anaerobic germination in rice: phenotyping, QTL identification, and interaction analysis. Rice (N. Y.), 2019, 12(1), 50.
[http://dx.doi.org/10.1186/s12284-019-0305-y] [PMID: 31309351]
[130]
Nishimura, T.; Sasaki, K.; Yamaguchi, T. Detection and characterization of quantitative trait loci for coleoptile elongation under anaerobic conditions in rice. Plant Prod. Sci., 2020, 23(3), 374-383.
[http://dx.doi.org/10.1080/1343943X.2020.1740600]
[131]
Jeong, J.M.; Cho, Y.C.; Jeong, J.U. QTL mapping and effect confirmation for anaerobic germination tolerance derived from the japonica weedy rice landrace PBR. Plant Breed., 2020, 139(1), 83-92.
[http://dx.doi.org/10.1111/pbr.12753]
[132]
Kuya, N.; Sun, J.; Iijima, K.; Venuprasad, R.; Yamamoto, T. Novel method for evaluation of anaerobic germination in rice and its application to diverse genetic collections. Breed. Sci., 2019, 69(4), 633-639.
[http://dx.doi.org/10.1270/jsbbs.19003] [PMID: 31988627]
[133]
Xu, K.; Mackill, D.J. A major locus for submergence tolerance mapped on rice chromosome 9. Mol. Breed., 1996, 2(3), 219-224.
[http://dx.doi.org/10.1007/BF00564199]
[134]
Nandi, S.; Subudhi, P.K.; Senadhira, D.; Manigbas, N.L.; Sen- Mandi, S.; Huang, N. Mapping QTLs for submergence tolerance in rice by AFLP analysis and selective genotyping. Mol. Gen. Genet., 1997, 255(1), 1-8.
[http://dx.doi.org/10.1007/s004380050468] [PMID: 9230893]
[135]
Septiningsih, E.M.; Pamplona, A.M.; Sanchez, D.L.; Neeraja, C.N.; Vergara, G.V.; Heuer, S.; Ismail, A.M.; Mackill, D.J. Development of submergence-tolerant rice cultivars: the Sub1 locus and beyond. Ann. Bot., 2009, 103(2), 151-160.
[http://dx.doi.org/10.1093/aob/mcn206] [PMID: 18974101]
[136]
Bin Rahman, A.R.; Zhang, J. Flood and drought tolerance in rice: opposite but may coexist. Food Energy Secur., 2016, 5(2), 76-88.
[http://dx.doi.org/10.1002/fes3.79]
[137]
Dixit, S.; Singh, A.; Sandhu, N.; Bhandari, A.; Vikram, P.; Kumar, A. Combining drought and submergence tolerance in rice: marker-assisted breeding and QTL combination effects. Mol. Breed., 2017, 37(12), 143.
[http://dx.doi.org/10.1007/s11032-017-0737-2] [PMID: 29151804]
[138]
Gonzaga, Z.J.C.; Carandang, J.; Sanchez, D.L.; Mackill, D.J.; Septiningsih, E.M. Mapping additional QTLs from FR13A to increase submergence tolerance in rice beyond SUB1. Euphytica, 2016, 209(3), 627-636.
[http://dx.doi.org/10.1007/s10681-016-1636-z]
[139]
Siangliw, M.; Toojinda, T.; Tragoonrung, S.; Vanavichit, A. Thai jasmine rice carrying QTLch9 (SubQTL) is submergence tolerant. Ann. Bot., 2003, 91(Spec No), 255-261.
[http://dx.doi.org/10.1093/aob/mcf123] [PMID: 12509345]
[140]
Toojinda, T.; Siangliw, M.; Tragoonrung, S.; Vanavichit, A. Molecular genetics of submergence tolerance in rice: QTL analysis of key traits. Ann. Bot., 2003, 91(Spec No), 243-253.
[http://dx.doi.org/10.1093/aob/mcf072] [PMID: 12509344]
[141]
Xu, K.; Xu, X.; Ronald, P.C.; Mackill, D.J. A high-resolution linkage map of the vicinity of the rice submergence tolerance locus Sub1. Mol. Gen. Genet., 2000, 263(4), 681-689.
[http://dx.doi.org/10.1007/s004380051217] [PMID: 10852491]
[142]
Tiwari, D.N. A critical review of submergence tolerance breeding beyond Sub 1 gene to mega varieties in the context of climate change. IJASRE, 2018, 4(3), 140-148.
[143]
Singh, N.; Dang, T.T.; Vergara, G.V.; Pandey, D.M.; Sanchez, D.; Neeraja, C.N.; Septiningsih, E.M.; Mendioro, M.; Tecson-Mendoza, E.M.; Ismail, A.M.; Mackill, D.J.; Heuer, S. Molecular marker survey and expression analyses of the rice submergence- tolerance gene SUB1A. Theor. Appl. Genet., 2010, 121(8), 1441-1453.
[http://dx.doi.org/10.1007/s00122-010-1400-z] [PMID: 20652530]
[144]
Kurokawa, Y.; Nagai, K.; Huan, P.D.; Shimazaki, K.; Qu, H.; Mori, Y.; Toda, Y.; Kuroha, T.; Hayashi, N.; Aiga, S.; Itoh, J.I.; Yoshimura, A.; Sasaki-Sekimoto, Y.; Ohta, H.; Shimojima, M.; Malik, A.I.; Pedersen, O.; Colmer, T.D.; Ashikari, M. Rice leaf hydrophobicity and gas films are conferred by a wax synthesis gene (LGF1) and contribute to flood tolerance. New Phytol., 2018, 218(4), 1558-1569.
[http://dx.doi.org/10.1111/nph.15070] [PMID: 29498045]
[145]
Colmer, T.D.; Pedersen, O. Underwater photosynthesis and respiration in leaves of submerged wetland plants: gas films improve CO2 and O2 exchange. New Phytol., 2008, 177(4), 918-926.
[http://dx.doi.org/10.1111/j.1469-8137.2007.02318.x] [PMID: 18086222]
[146]
Winkel, A.; Pedersen, O.; Ella, E.; Ismail, A.M.; Colmer, T.D. Gas film retention and underwater photosynthesis during field submergence of four contrasting rice genotypes. J. Exp. Bot., 2014, 65(12), 3225-3233.
[http://dx.doi.org/10.1093/jxb/eru166] [PMID: 24759881]
[147]
Ramiah, K. Floating habit in rice. Indian J. Agric. Sci., 1940, 11, 1-8.
[148]
Hamamura, K.; Kupkanchanakul, T. Inheritance of floating ability in rice. Jpn J Breed., 1979, 29(3), 211-216.
[http://dx.doi.org/10.1270/jsbbs1951.29.211]
[149]
Inouye, J. Relation between elongation ability and internode elongation of floating rice under rising water conditions. Jpn J Trop Agr., 1983, 27(3), 181-186.
[150]
Using the new standard evaluation system to measure elongation ability. Proc 1978 Intl Deepwater Rice Workshop, 1979,
[151]
Tripathi, R.; Rao, M.B. Inheritance studies of characters associated with floating habit and their linkage relationship in rice. Euphytica, 1985, 34(3), 875-881.
[http://dx.doi.org/10.1007/BF00035427]
[152]
Suge, H. Physiological genetics of internodal elongation under submergence in floating rice. Jpn. J. Genet., 1987, 62(1), 69-80.
[http://dx.doi.org/10.1266/jjg.62.69]
[153]
Eiguchi, M.; Hirano, H-Y.; Sano, Y.; Morishima, H. Effects of water depth on internodal elongation and floral induction in a deepwater-tolerant rice line carrying the dw3 gene. Jpn J Breed., 1993, 43(1), 135-139.
[http://dx.doi.org/10.1270/jsbbs1951.43.135]
[154]
Sripongpangkul, K.; Posa, G.; Senadhira, D. Genes/QTLs affecting flood tolerance in rice. Theor. Appl. Genet., 2000, 101(7), 1074-1081.
[http://dx.doi.org/10.1007/s001220051582]
[155]
Nemoto, K.; Ukai, Y.; Tang, D-Q.; Kasai, Y.; Morita, M. Inheritance of early elongation ability in floating rice revealed by diallel and QTL analyses. Theor. Appl. Genet., 2004, 109(1), 42-47.
[http://dx.doi.org/10.1007/s00122-004-1600-5] [PMID: 14985975]
[156]
Hattori, Y.; Miura, K.; Asano, K. A major QTL confers rapid internode elongation in response to water rise in deepwater rice. Breed. Sci., 2007, 57(4), 305-314.
[http://dx.doi.org/10.1270/jsbbs.57.305]
[157]
Hattori, Y.; Nagai, K.; Mori, H. Mapping of three QTLs that regulate internode elongation in deepwater rice. Breed. Sci., 2008, 58(1), 39-46.
[http://dx.doi.org/10.1270/jsbbs.58.39]
[158]
Cho, H-T.; Kende, H. Expression of expansin genes is correlated with growth in deepwater rice. Plant Cell, 1997, 9(9), 1661-1671.
[PMID: 9338967]
[159]
Cho, H-T.; Kende, H. Expansins in deepwater rice internodes. Plant Physiol., 1997, 113(4), 1137-1143.
[http://dx.doi.org/10.1104/pp.113.4.1137] [PMID: 9112771]
[160]
Lee, Y.; Kende, H. Expression of β-expansins is correlated with internodal elongation in deepwater rice. Plant Physiol., 2001, 127(2), 645-654.
[http://dx.doi.org/10.1104/pp.010345] [PMID: 11598238]
[161]
Sauter, M.; Seagull, R.W.; Kende, H. Internodal elongation and orientation of cellulose microfibrils and microtubules in deepwater rice. Planta, 1993, 190(3), 354-362.
[http://dx.doi.org/10.1007/BF00196964]
[162]
Steffens, B.; Geske, T.; Sauter, M. Aerenchyma formation in the rice stem and its promotion by H2O2. New Phytol., 2011, 190(2), 369-378.
[http://dx.doi.org/10.1111/j.1469-8137.2010.03496.x] [PMID: 21039565]
[163]
Steffens, B.; Wang, J.; Sauter, M. Interactions between ethylene, gibberellin and abscisic acid regulate emergence and growth rate of adventitious roots in deepwater rice. Planta, 2006, 223(3), 604-612.
[http://dx.doi.org/10.1007/s00425-005-0111-1] [PMID: 16160845]
[164]
Nagai, K.; Kuroha, T.; Ayano, M.; Kurokawa, Y.; Angeles-Shim, R.B.; Shim, J.H.; Yasui, H.; Yoshimura, A.; Ashikari, M. Two novel QTLs regulate internode elongation in deepwater rice during the early vegetative stage. Breed. Sci., 2012, 62(2), 178-185.
[http://dx.doi.org/10.1270/jsbbs.62.178] [PMID: 23136529]
[165]
Kuroha, T.; Nagai, K.; Kurokawa, Y.; Nagamura, Y.; Kusano, M.; Yasui, H.; Ashikari, M.; Fukushima, A. eQTLs regulating transcript variations associated with rapid internode elongation in deepwater rice. Front. Plant Sci., 2017, 8, 1753.
[http://dx.doi.org/10.3389/fpls.2017.01753] [PMID: 29081784]
[166]
Singh, A.; Carandang, J.; Gonzaga, Z.J.C.; Collard, B.C.Y.; Ismail, A.M.; Septiningsih, E.M. Identification of QTLs for yield and agronomic traits in rice under stagnant flooding conditions. Rice (N. Y.), 2017, 10(1), 15.
[http://dx.doi.org/10.1186/s12284-017-0154-5] [PMID: 28429297]
[167]
Ahmad, F.; Akram, A.; Farman, K. Molecular markers and marker assisted plant breeding. Current status and their applications in agricultural development. J Environ Agric Sci., 2017, 11, 35-50.
[168]
Mantri, N.; Pang, E.C.; Ford, R. Molecular biology for stress management. In: Climate change and management of cool season grain legume crops; Springer, 2010; pp. 377-408.
[169]
Mantri, N.; Patade, V.; Pang, E. Recent advances in rapid and sensitive screening for abiotic stress tolerance. In: Improvement of Crops in the Era of Climatic Changes; Springer, 2014; pp. 37-47.
[170]
Wei, B.; Jing, R.; Wang, C. Dreb1 genes in wheat (Triticum aestivum L.): development of functional markers and gene mapping based on SNPs. Mol. Breed., 2009, 23(1), 13-22.
[http://dx.doi.org/10.1007/s11032-008-9209-z]
[171]
Collard, B.C.; Mackill, D.J. Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2008, 363(1491), 557-572.
[http://dx.doi.org/10.1098/rstb.2007.2170] [PMID: 17715053]
[172]
Kim, S.M.; Kim, C.S.; Jeong, J.U.; Reinke, R.F.; Jeong, J.M. Marker-assisted breeding for improvement of anaerobic germination in japonica rice (Oryza sativa). Plant Breed., 2019, 138(6), 810-819.
[http://dx.doi.org/10.1111/pbr.12719]
[173]
Dar, M.H.; de Janvry, A.; Emerick, K.; Raitzer, D.; Sadoulet, E. Flood-tolerant rice reduces yield variability and raises expected yield, differentially benefitting socially disadvantaged groups. Sci. Rep., 2013, 3, 3315.
[http://dx.doi.org/10.1038/srep03315] [PMID: 24263095]
[174]
MacKill, D.J. Breeding for resistance to abiotic stresses in rice: the value of quantitative trait loci. Plant Breeding: The Arnel R Hallauer International Symposium, 2006.
[175]
Neeraja, C.N.; Maghirang-Rodriguez, R.; Pamplona, A.; Heuer, S.; Collard, B.C.; Septiningsih, E.M.; Vergara, G.; Sanchez, D.; Xu, K.; Ismail, A.M.; Mackill, D.J. A marker-assisted backcross approach for developing submergence-tolerant rice cultivars. Theor. Appl. Genet., 2007, 115(6), 767-776.
[http://dx.doi.org/10.1007/s00122-007-0607-0] [PMID: 17657470]
[176]
Xu, K.; Deb, R.; Mackill, D.J. A microsatellite marker and a codominant PCR-based marker for marker-assisted selection of submergence tolerance in rice. Crop Sci., 2004, 44(1), 248-253.
[177]
Sarkar, R; Panda, D; Reddy, J Performance of submergence tolerant rice (Oryza sativa) genotypes carrying the Sub1 quantitative trait locus under stressed and non-stressed natural field conditions. 2009.
[178]
Septiningsih, E.M.; Hidayatun, N.; Sanchez, D.L. Accelerating the development of new submergence tolerant rice varieties: the case of Ciherang-Sub1 and PSB Rc18-Sub1. Euphytica, 2015, 202(2), 259-268.
[http://dx.doi.org/10.1007/s10681-014-1287-x]
[179]
Singh, N.; Jayaswal, P.K.; Panda, K.; Mandal, P.; Kumar, V.; Singh, B.; Mishra, S.; Singh, Y.; Singh, R.; Rai, V.; Gupta, A.; Raj Sharma, T.; Singh, N.K. Single-copy gene based 50 K SNP chip for genetic studies and molecular breeding in rice. Sci. Rep., 2015, 5, 11600.
[http://dx.doi.org/10.1038/srep11600] [PMID: 26111882]
[180]
Singh, R.; Singh, Y.; Xalaxo, S.; Verulkar, S.; Yadav, N.; Singh, S.; Singh, N.; Prasad, K.S.N.; Kondayya, K.; Rao, P.V.R.; Rani, M.G.; Anuradha, T.; Suraynarayana, Y.; Sharma, P.C.; Krishnamurthy, S.L.; Sharma, S.K.; Dwivedi, J.L.; Singh, A.K.; Singh, P.K.; Nilanjay, ; Singh, N.K.; Kumar, R.; Chetia, S.K.; Ahmad, T.; Rai, M.; Perraju, P.; Pande, A.; Singh, D.N.; Mandal, N.P.; Reddy, J.N.; Singh, O.N.; Katara, J.L.; Marandi, B.; Swain, P.; Sarkar, R.K.; Singh, D.P.; Mohapatra, T.; Padmawathi, G.; Ram, T.; Kathiresan, R.M.; Paramsivam, K.; Nadarajan, S.; Thirumeni, S.; Nagarajan, M.; Singh, A.K.; Vikram, P.; Kumar, A.; Septiningshih, E.; Singh, U.S.; Ismail, A.M.; Mackill, D.; Singh, N.K. From QTL to variety-harnessing the benefits of QTLs for drought, flood and salt tolerance in mega rice varieties of India through a multi-institutional network. Plant Sci., 2016, 242, 278-287.
[http://dx.doi.org/10.1016/j.plantsci.2015.08.008] [PMID: 26566845]
[181]
Khanh, T.D.; Linh, T.H.; Xuan, T.D. Rapid and high-precision marker assisted backcrossing to introgress the SUB1 QTL into the Vietnamese elite rice variety. J. Plant Breed. Crop Sci., 2013, 5(2), 26-33.
[http://dx.doi.org/10.5897/JPBCS12.052]
[182]
Lang, N.T.; Tao, N.; Buu, B.C. Marker-assisted backcrossing (MAB) for rice submergence tolerance in Mekong delta. Omonrice., 2011, 18, 11-21.
[183]
Toojinda, T.; Tragoonrung, S.; Vanavichit, A. Molecular breeding for rainfed lowland rice in the Mekong region. Plant Prod. Sci., 2005, 8(3), 330-333.
[http://dx.doi.org/10.1626/pps.8.330]
[184]
Manzanilla, D.; Paris, T.; Vergara, G. Submergence risks and farmers’ preferences: implications for breeding Sub1 rice in Southeast Asia. Agric. Syst., 2011, 104(4), 335-347.
[http://dx.doi.org/10.1016/j.agsy.2010.12.005]
[185]
Sarkar, R.K.; Panda, D. Distinction and characterisation of submergence tolerant and sensitive rice cultivars, probed by the fluorescence OJIP rise kinetics. Funct. Plant Biol., 2009, 36(3), 222-233.
[http://dx.doi.org/10.1071/FP08218] [PMID: 32688641]
[186]
Kuanar, S.R.; Molla, K.A.; Chattopadhyay, K.; Sarkar, R.K.; Mohapatra, P.K. Introgression of Sub1 (SUB1) QTL in mega rice cultivars increases ethylene production to the detriment of grain- filling under stagnant flooding. Sci. Rep., 2019, 9(1), 18567.
[http://dx.doi.org/10.1038/s41598-019-54908-2] [PMID: 31811177]
[187]
Shon, J. Physio-biochemical characterization and transcript profiling of hypoxia-and anoxia-tolerant rice during germination and early seedling growth. The graduate school of Chonbuk National University, 2011.
[188]
Islam, M.K.; Islam, M.S.; Biswas, J.K. Screening of rice varieties for direct seeding method. Aust. J. Crop Sci., 2014, 8(4), 536.
[189]
Miro, B.; Longkumer, T.; Entila, F.D.; Kohli, A.; Ismail, A.M. Rice seed germination underwater: morpho-physiological responses and the bases of differential expression of alcoholic fermentation enzymes. Front. Plant Sci., 2017, 8, 1857.
[http://dx.doi.org/10.3389/fpls.2017.01857] [PMID: 29123541]
[190]
Lafitte, H.; Ismail, A.; Bennett, J. Abiotic stress tolerance in rice for Asia: progress and the future. Proceeding of 4th International Crop Science Congress, Brisbane, Australia, 2004.
[191]
Mackill, D.; Amante, M.; Vergara, B.; Sarkarung, S. Improved semidwarf rice lines with tolerance to submergence of seedlings. Crop Sci., 1993, 33(4), 749-753.
[http://dx.doi.org/10.2135/cropsci1993.0011183X003300040023x]
[192]
Tang, D-Q.; Kasai, Y.; Miyamoto, N.; Ukai, Y.; Nemoto, K. Comparison of QTLs for early elongation ability between two floating rice cultivars with a different phylogenetic origin. Breed. Sci., 2005, 55(1), 1-5.
[http://dx.doi.org/10.1270/jsbbs.55.1]
[193]
Angaji, S.A. Mapping QTLs for submergence tolerance during germination in rice. Afr. J. Biotechnol., 2008, 7(15), 2551-2558.
[194]
Luu, M.C.; Luu, T.N.H.; Pham, T.M.H. Application of marker assisted backcrossing to introgress the submergence tolerance QTL SUB1 into the Vietnam elite rice variety-AS996. Am. J. Plant Sci., 2012, 3, 528-536.
[http://dx.doi.org/10.4236/ajps.2012.34063]
[195]
Linh, T-H.; Linh, L-H.; Cuc, D-T.K.; Ham, L-H.; Khanh, T-D. Improving submergence tolerance of Vietnamese rice cultivar by molecular breeding. J. Plant Breed. Genet., 2013, 1(3), 157-168.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy