Generic placeholder image

Anti-Inflammatory & Anti-Allergy Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5230
ISSN (Online): 1875-614X

Research Article

Changes in Essential Oil Profile of Thymus daenensis Celak., Thymus fedtschenkoi Ronniger., and Thymus vulgaris L. Under Methyl Jasmonate Treatment

Author(s): Alireza Shayganfar* and Davod Akhzari

Volume 20, Issue 4, 2021

Published on: 14 January, 2021

Page: [353 - 358] Pages: 6

DOI: 10.2174/1871523020666210114093325

Price: $65

Abstract

Background: TThymus plants are well-known medicinal plants and it is believed that the pharmaceutical and therapeutical properties of these plants are related to their essential oils. The quality and quantity of the essential oils, as a secondary metabolite of an aromatic plant, are directly related to the physiological state of the plant. The role of jasmonates in the plant as signal molecules in mediation and up-regulation of plant defense and secondary metabolism processes is well recognized.

Objective: With the aim of increasing the performance and stimulating secondary metabolites, this study evaluates the influence of the foliar application of MJ on essential oil content and composition of three different Thymus species, whether as an elicitor or an activator

Method: The experiment was arranged in a randomized block design with MJ treatments in four levels (0, 30, 60, 100 mM) and three replications

Results: Compared to the control, the essential oil content of all three species increased in all treatment levels. However, the changes in essential oil composition were different. Under MJ treatments, the amount of sesquiterpenes (especially caryophyllene oxide) increased in T. daenensis and T. fedtschenkoi. In addition, the amount of thymol in T. daenensis, thymol, and γ-terpinene in T. vulgaris increased, whereas carvacrol methyl ether in T. daenensis and p-cymene in T. vulgaris decreased.

Conclusion: IIt seems the type of plant species has a specific role in determining the response. There were no interpretable changes between treatment levels

Keywords: Methyl jasmonate, Thymus daenensis, Thymus fedtschenkoi, Thymus vulgaris, oil profile, aromatic plants.

Graphical Abstract
[1]
Škrinjar, M.M.; Nemet, N.T. Antimicrobial Effects of Spices and Herbs Essential Oils. Acta Period. Technol., 2009, (40), 195-209.
[http://dx.doi.org/10.2298/APT0940195S]
[2]
Boligon, A.A.; Feltrin, A.C.; Athayde, M.L. Determination of Chemical Composition, Antioxidant and Antimicrobial Properties of Guzuma Ulmifolia Essential Oil. Am. J. Essent. Oils Nat. Prod., 2013, 1(1), 23-27.
[3]
Złotek, U.; Michalak-Majewska, M.; Szymanowska, U. Effect of jasmonic acid elicitation on the yield, chemical composition, and antioxidant and anti-inflammatory properties of essential oil of lettuce leaf basil (Ocimum basilicum L.). Food Chem., 2016, 213, 1-7.
[http://dx.doi.org/10.1016/j.foodchem.2016.06.052] [PMID: 27451148]
[4]
Amin, G.R. Popular Medicinal Plants of Iran, Vice Chancellorship of Research. Tehran Univ. Med. Sci. Press. Tehran, Iran, 2005.
[5]
Shayganfar, A.; Azizi, M.; Rasouli, M. Various Strategies Elicited and Modulated by Elevated UV-B Radiation and Protectant Compounds in Thymus Species: Differences in Response over Treatments, Acclimation and Interaction. Ind. Crops Prod., 2018, 113, 298-307.
[http://dx.doi.org/10.1016/j.indcrop.2018.01.056]
[6]
Bernath, J. Production Ecology of Secondary Plant Products.Herbs, spices, and medicinal plants: Recent advances in botany, horticulture, and pharmacology; Craker, L.; Simon, J., Eds.; Oryx Press: Phoenix, 1986, Vol. 1, pp. 185-234.
[7]
Oliveira, M.B.; Junior, M.L.; Grossi-de-Sá, M.F.; Petrofeza, S. Exogenous application of methyl jasmonate induces a defense response and resistance against Sclerotinia sclerotiorum in dry bean plants. J. Plant Physiol., 2015, 182, 13-22.
[http://dx.doi.org/10.1016/j.jplph.2015.04.006] [PMID: 26037694]
[8]
Dar, T.A.; Uddin, M.; Khan, M.M.A.; Hakeem, K.R.; Jaleel, H. Jasmonates Counter Plant Stress: A Review. Environ. Exp. Bot., 2015, 115, 49-57.
[http://dx.doi.org/10.1016/j.envexpbot.2015.02.010]
[9]
Per, T.S.; Khan, M.I.R.; Anjum, N.A.; Masood, A.; Hussain, S.J.; Khan, N.A. Jasmonates in Plants under Abiotic Stresses: Crosstalk with Other Phytohormones Matters. Environ. Exp. Bot., 2018, 145, 104-120.
[http://dx.doi.org/10.1016/j.envexpbot.2017.11.004]
[10]
Zhao, J.; Davis, L.C.; Verpoorte, R. Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol. Adv., 2005, 23(4), 283-333.
[http://dx.doi.org/10.1016/j.biotechadv.2005.01.003] [PMID: 15848039]
[11]
Davies, N.W. Gas Chromatographic Retention Indices of Monoterpenes and Sesquiterpenes on Methyl Silicon and Carbowax 20M Phases. J. Chromatogr. A, 1990, 503, 1-24.
[http://dx.doi.org/10.1016/S0021-9673(01)81487-4]
[12]
Shibamoto, T. Retention Indices in Essential Oil Analysis.Capillary Gas Chromatography in Essential oil analysis; Sandra, P.; Bicchi, C., Eds.; Alfred Heuthig-Verlag.: New York, 1987, pp. 259-275.
[13]
Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured publishing corporation Carol Stream.: Illinois, USA., 2007, 456, .
[14]
Stenhagen, E.; Abrahamsson, S.; McLafferty, F.W. Registry of Mass Spectral Data; Wiley: New York, USA, 1974.
[15]
Wasternack, C.; Strnad, M. Jasmonate signaling in plant stress responses and development - active and inactive compounds. N. Biotechnol., 2016, 33(5 Pt B)(5, Part B), 604-613.
[http://dx.doi.org/10.1016/j.nbt.2015.11.001] [PMID: 26581489]
[16]
Piotrowska, A.; Bajguz, A.; Godlewska-Żyłkiewicz, B.; Czerpak, R.; Kamińska, M. Jasmonic Acid as Modulator of Lead Toxicity in Aquatic Plant Wolffia Arrhiza (Lemnaceae). Environ. Exp. Bot., 2009, 66(3), 507-513.
[http://dx.doi.org/10.1016/j.envexpbot.2009.03.019]
[17]
Kaya, A.; Doganlar, Z.B. Exogenous jasmonic acid induces stress tolerance in tobacco (Nicotiana tabacum) exposed to imazapic. Ecotoxicol. Environ. Saf., 2016, 124, 470-479.
[http://dx.doi.org/10.1016/j.ecoenv.2015.11.026] [PMID: 26629659]
[18]
Cheong, J-J.; Choi, Y.D. Methyl jasmonate as a vital substance in plants. Trends Genet., 2003, 19(7), 409-413.
[http://dx.doi.org/10.1016/S0168-9525(03)00138-0] [PMID: 12850447]
[19]
Palmer-Young, E.C.; Veit, D.; Gershenzon, J.; Schuman, M.C. The Sesquiterpenes(E)-ß-Farnesene and (E)-α-Bergamotene Quench Ozone but Fail to Protect the Wild Tobacco Nicotiana attenuata from Ozone, UVB, and Drought Stresses. PLoS One, 2015, 10(6), e0127296.
[http://dx.doi.org/10.1371/journal.pone.0127296] [PMID: 26030663]
[20]
Copolovici, L.; Kännaste, A.; Pazouki, L.; Niinemets, U. Emissions of green leaf volatiles and terpenoids from Solanum lycopersicum are quantitatively related to the severity of cold and heat shock treatments. J. Plant Physiol., 2012, 169(7), 664-672.
[http://dx.doi.org/10.1016/j.jplph.2011.12.019] [PMID: 22341571]
[21]
Copolovici, L.; Niinemets, Ü. Temperature dependencies of Henry’s law constants for different plant sesquiterpenes. Chemosphere, 2015, 138, 751-757.
[http://dx.doi.org/10.1016/j.chemosphere.2015.07.075] [PMID: 26291755]
[22]
Rustaiee, A.; Fazel Mirahmadi, S.; Sefidkon, F.; Tabatabaei, M.F.; Omidbaigi, R. Essential Oil Content and Composition of Thymus Fedtschenkoi Ronniger at Different Phenological Stages. J. Essent. Oil Res., 2011, 14(5), 2011-2625.
[http://dx.doi.org/10.1080/0972060X.2011.10643981]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy