Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

The Molecular Diversity Scope of Oxindole Derivatives in Organic Synthesis

Author(s): Ghodsi Mohammadi Ziarani*, Fatemeh Javadi and Fatemeh Mohajer

Volume 25, Issue 7, 2021

Published on: 11 January, 2021

Page: [779 - 818] Pages: 40

DOI: 10.2174/1385272825666210111112814

Price: $65

Abstract

The role of oxindole derivatives is discussed as starting materials in diverse organic reactions, including two and more components, between the years 2014 until 2020. Oxindoles are famous because of their biological properties. For instance, chromanone-fused polycyclic pyrrolidinyl-dispirooxindoles, functionalized polycyclic spiro-fused carbocyclicoxindole, and 3,3-disubstituted oxindoles have anti-cancer, anti-tumor, and anti-microbial properties, respectively. Therefore, various methods for synthesizing the oxindole structures have received much attention in organic chemistry.

Keywords: Oxindole derivatives, multi-component reactions (MCR), Spiro-oxindole, organic synthesis, Spiro-oxindoles, chroman oxindoles, Amino-oxindoles, alkoxy-oxindoles.

Graphical Abstract
[1]
Kaur, M. Oxindole: a nucleus enriched with multitargeting potential against complex disorders. In: Key Heterocycle Cores for Designing Multitargeting Molecules; Silakari, O., Ed.; Elsevier, 2018; pp. 211-246.
[http://dx.doi.org/10.1016/B978-0-08-102083-8.00006-6]
[2]
Kaiser, S.; Carvalho, Â.R.; Pittol, V.; Dietrich, F.; Manica, F.; Machado, M.M.; de Oliveira, L.F.; Oliveira Battastini, A.M.; Ortega, G.G. Genotoxicity and cytotoxicity of oxindole alkaloids from Uncaria tomentosa (cat’s claw): chemotype relevance. J. Ethnopharmacol., 2016, 189, 90-98.
[http://dx.doi.org/10.1016/j.jep.2016.05.026] [PMID: 27180878]
[3]
Kaiser, S.; Verza, S.G.; Moraes, R.C.; Resende, P.E.d.; Pavei, C.; Ortega, G.G.; Barreto, F. Cat’s claw oxindole alkaloid isomerization induced by common extraction methods. Quim. Nova, 2013, 36, 808-814.
[http://dx.doi.org/10.1590/S0100-40422013000600012]
[4]
Peñaloza, E.M.C.; Kaiser, S.; Resende, P.E.d.; Pittol, V.; Carvalho, Â.R.; Ortega, G.G. Chemical composition variability in the Uncaria tomentosa (cat’s claw) wild population. Quim. Nova, 2015, 38, 378-386.
[http://dx.doi.org/10.5935/0100-4042.20150007 ]
[5]
Reinhard, K.H. Uncaria tomentosa (Willd.) D.C.: cat’s claw, uña de gato, or savéntaro. J. Altern. Complement. Med., 1999, 5(2), 143-151.
[http://dx.doi.org/10.1089/acm.1999.5.143] [PMID: 10328636]
[6]
Chang, C-W.; Yeh, Y-Y.; Chang, L-C.; Hsu, M-C.; Wu, Y-T. Rapid determination of oxindole alkaloids in cat’s claw by HPLC using ionic liquid-based microwave-assisted extraction and silica monolithic column. Biomed. Chromatogr., 2017, 31(8), e3925.
[http://dx.doi.org/10.1002/bmc.3925] [PMID: 28009448]
[7]
Calvo, A.; Dévényi, D.; Kószó, B.; Sanz, S.; Oelbermann, A.L.; Maier, M.; Keve, T.; Komka, K.; Gamse, T.; Weidner, E.; Székely, E. Controlling concentration of bioactive components in cat’s claw based products with a hybrid separation process. J. Supercrit. Fluids, 2017, 125, 50-55.
[http://dx.doi.org/10.1016/j.supflu.2017.01.018]
[8]
Tan, M.A.; An, S.S.A. Neuroprotective potential of the oxindole alkaloids isomitraphylline and mitraphylline in human neuroblastoma SH-SY5Y cells. 3 Biotech, 2020, 10(12), 517.http://dx.doi.org/110.1007/s13205-020-02535-4
[9]
Lima, V.; Melo, I.M.; Taira, T.M.; Buitrago, L.Y.W.; Fonteles, C.S.R.; Leal, L.K.A.M.; Souza, A.S.Q.; Almeida, T.S.; Costa, R.N.D.F.; Moraes, M.O.; Cunha, F.Q.; Fukada, S.Y. Uncaria tomentosa reduces osteoclastic bone loss in vivo. Phytomedicine, 2020, 79, 153327.
[http://dx.doi.org/10.1016/j.phymed.2020.153327] [PMID: 32920290]
[10]
Yuvaraj, P.; Singh, H.B.; Kandapalam, A.P.L.; Kathirvelan, D.; Nagarajan, S. Highly efficient endo’- selective synthesis of (dispiro 3,2′-pyrrolidinyl) bisoxindoles containing three contiguous chiral stereocenters with two contiguous quaternary spirostereocenters. J. Chem. Sci., 2020, 132(1), 76.
[http://dx.doi.org/10.1007/s12039-020-01772-7]
[11]
Mei, G.J.; Shi, F. Catalytic asymmetric synthesis of spirooxindoles: recent developments. Chem. Commun. (Camb.), 2018, 54(50), 6607-6621.
[http://dx.doi.org/10.1039/C8CC02364F] [PMID: 29770377]
[12]
Marchese, A.D.; Larin, E.M.; Mirabi, B.; Lautens, M. Metal-catalyzed approaches toward the oxindole core. Acc. Chem. Res., 2020, 53(8), 1605-1619.
[http://dx.doi.org/10.1021/acs.accounts.0c00297] [PMID: 32706589]
[13]
Christodoulou, M.S.; Nicoletti, F.; Mangano, K.; Chiacchio, M.A.; Facchetti, G.; Rimoldi, I.; Beccalli, E.M.; Giofrè, S. Novel 3,3-disubstituted oxindole derivatives. Synthesis and evaluation of the anti-proliferative activity. Bioorg. Med. Chem. Lett., 2020, 30(2), 126845.
[http://dx.doi.org/10.1016/j.bmcl.2019.126845] [PMID: 31831381]
[14]
Kaur, M.; Singh, M.; Chadha, N.; Silakari, O. Oxindole: a chemical prism carrying plethora of therapeutic benefits. Eur. J. Med. Chem., 2016, 123, 858-894.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.011] [PMID: 27543880]
[15]
Thakur, G.A.; Kadu, R.K.; Patil, V.R.; Thakur, P.B. Progress in the synthesis of oxindole-naphthoquinone molecular hybrid scaffolds: a concise review. ChemistrySelect, 2020, 5(43), 13628-13643.
[http://dx.doi.org/10.1002/slct.202002961]
[16]
Sakla, A.P.; Kansal, P.; Shankaraiah, N. Syntheses and reactivity of spiro-epoxy/aziridine oxindole cores: developments in the past decade. Org. Biomol. Chem., 2020, 18(42), 8572-8596.
[http://dx.doi.org/10.1039/D0OB01726D] [PMID: 33044473]
[17]
Yu, B.; Yu, D.Q.; Liu, H.M. Spirooxindoles: promising scaffolds for anticancer agents. Eur. J. Med. Chem., 2015, 97, 673-698.
[http://dx.doi.org/10.1016/j.ejmech.2014.06.056] [PMID: 24994707]
[18]
Lotfy, G.; Aziz, Y.M.A.; Said, M.M.; El Ashry, E.S.H.; El Tamany, E.S.H.; Barakat, A.; Ghabbour, H.A.; Yousuf, S.; Ul-Haq, Z.; Choudhary, M.I. Synthesis of oxindole analogues, biological activity, and in silico studies. ChemistrySelect, 2019, 4(35), 10510-10516.
[http://dx.doi.org/10.1002/slct.201901228]
[19]
Liu, T.; Feng, J.; Chen, C.; Deng, Z.; Kotagiri, R.; Zhou, G.; Zhang, X.; Cai, Q. Copper(I)-catalyzed intramolecular asymmetric double C-arylation for the formation of chiral spirocyclic bis-oxindoles. Org. Lett., 2019, 21(12), 4505-4509.
[http://dx.doi.org/10.1021/acs.orglett.9b01373] [PMID: 31184179]
[20]
Liu, M.M.; Yang, X.C.; Hua, Y.Z.; Chang, J.B.; Wang, M.C. Synthesis of chiral bispirotetrahydrofuran oxindoles by cooperative bimetallic-catalyzed asymmetric cascade reaction. Org. Lett., 2019, 21(7), 2111-2115.
[http://dx.doi.org/10.1021/acs.orglett.9b00386] [PMID: 30865463]
[21]
Li, C.B.; Huang, L.S.; Wu, R.S.; Xu, D.Z. Bridged alkyl ionic liquid-catalyzed tandem reaction for synthesis of spiro[4H-pyran-3,3′-oxindoles] in aqueous ethanol solution. ChemistrySelect, 2019, 4(5), 1635-1639.
[http://dx.doi.org/10.1002/slct.201803905]
[22]
Yang, X.; Wang, X.; Wang, T.; Wang, W.; Zhang, J.; Ma, Y. A highly efficient and recyclable solid acid catalyst for synthesis of spiro-oxindole dihydroquinazolinones under ultrasound irradiation. Chem. Res. Chin. Univ., 2019, 35(1), 33-40.
[http://dx.doi.org/10.1007/s40242-018-8248-1]
[23]
Rottmann, M.; McNamara, C.; Yeung, B.K.S.; Lee, M.C.S.; Zou, B.; Russell, B.; Seitz, P.; Plouffe, D.M.; Dharia, N.V.; Tan, J.; Cohen, S.B.; Spencer, K.R.; González-Páez, G.E.; Lakshminarayana, S.B.; Goh, A.; Suwanarusk, R.; Jegla, T.; Schmitt, E.K.; Beck, H-P.; Brun, R.; Nosten, F.; Renia, L.; Dartois, V.; Keller, T.H.; Fidock, D.A.; Winzeler, E.A.; Diagana, T.T. Spiroindolones, a potent compound class for the treatment of malaria. Science, 2010, 329(5996), 1175-1180.
[http://dx.doi.org/10.1126/science.1193225] [PMID: 20813948]
[24]
Zhao, Y.; Yu, S.; Sun, W.; Liu, L.; Lu, J.; McEachern, D.; Shargary, S.; Bernard, D.; Li, X.; Zhao, T.; Zou, P.; Sun, D.; Wang, S. A potent small-molecule inhibitor of the MDM2-p53 interaction (MI-888) achieved complete and durable tumor regression in mice. J. Med. Chem., 2013, 56(13), 5553-5561.
[http://dx.doi.org/10.1021/jm4005708] [PMID: 23786219]
[25]
Paprocki, D.; Madej, A.; Koszelewski, D.; Brodzka, A.; Ostaszewski, R. Multicomponent reactions accelerated by aqueous micelles. Front Chem., 2018, 6(502), 502.
[http://dx.doi.org/10.3389/fchem.2018.00502] [PMID: 30406083]
[26]
Konda, S.; Jakkampudi, S.; Arman, H.D.; Zhao, J.C.G. Enantioselective synthesis of spiro[4H-pyran-3,3′-oxindole] derivatives catalyzed by cinchona alkaloid thioureas: significant water effects on the enantioselectivity. Synth. Commun., 2019, 49(21), 2971-2982.
[http://dx.doi.org/10.1080/00397911.2019.1651866] [PMID: 33012850]
[27]
Patil, A.; Mane, A.; Kamat, S.; Lohar, T.; Salunkhe, R. Aqueous hydrotropic solution: green reaction medium for synthesis of pyridopyrimidine carbonitrile and spiro-oxindole dihydroquinazolinone derivatives. Res. Chem. Intermediat, 2019, 45(6), 3441-3452.
[http://dx.doi.org/10.1007/s11164-019-03801-8 ]
[28]
Shi, T.; Teng, S.; Wei, Y.; Guo, X.; Hu, W. Synthesis of spiro[2,3-dihydrofuran-3,3′-oxindole] derivatives: via a multi-component cascade reaction of α-diazo esters, water, isatins and malononitrile/ethyl cyanoacetate. Green Chem., 2019, 21(18), 4936-4940.
[http://dx.doi.org/10.1039/C9GC01751H]
[29]
Saranya, S.; Rohit, K.R.; Radhika, S.; Anilkumar, G. Palladium-catalyzed multicomponent reactions: an overview. Org. Biomol. Chem., 2019, 17(35), 8048-8061.
[http://dx.doi.org/10.1039/C9OB01538H] [PMID: 31410440]
[30]
de Marigorta, E.M.; Santos, J.M.L.; Ochoa de Retana, A.M.; Vicario, J.; Palacios, F. Multicomponent reactions (MCRs): a useful access to the synthesis of benzo-fused γ-lactams. Beilstein J. Org. Chem., 2019, 15, 1065-1085.
[http://dx.doi.org/10.3762/bjoc.15.104] [PMID: 31164944]
[31]
Touré, B.B.; Hall, D.G. Natural product synthesis using multicomponent reaction strategies. Chem. Rev., 2009, 109(9), 4439-4486.
[http://dx.doi.org/10.1021/cr800296p] [PMID: 19480390]
[32]
Mohajer, F.; Mohammadi Ziarani, G.; Moradi, R. The study of several synthesis methods of indolizidine (±)-209I and (±)-209B as natural alkaloids. Curr. Org. Chem., 2020, 24(5), 516-535.
[http://dx.doi.org/10.2174/1385272824666200226113022]
[33]
Mohammadi Ziarani, G.; Mohajer, F.; Kheilkordi, Z. Recent progress towards synthesis of the indolizidine alkaloid 195B. Curr. Org. Synth., 2020, 17(2), 82-90.
[http://dx.doi.org/10.2174/1570179417666200124104010] [PMID: 31976841]
[34]
Kakuchi, R. The dawn of polymer chemistry based on multicomponent reactions. Polym. J., 2019, 51(10), 945-953.
[http://dx.doi.org/10.1038/s41428-019-0209-0]
[35]
Mohajer, F.; Mohammad, G.Z. An overview of quantitative and qualitative approaches on the synthesis of heterocyclic kojic acid scaffolds through the multi-component reactions. Heterocycles, 2020, 102(03)
[http://dx.doi.org/10.3987/REV-20-936]]
[36]
Gholamzadeh, P.; Mohammadi Ziarani, G.; Badiei, A.; Soorki, A.A.; Lashgari, N. Efficient green synthesis of isoindigo derivatives using sulfonic-acid-functionalized nanoporous silica (SBA-Pr-SO3H) catalyst and study of their antimicrobial properties. Res. Chem. Intermed., 2013, 39(9), 3925-3936.
[http://dx.doi.org/10.1007/s11164-012-0909-y]
[37]
Mohammadi, G.Z.; Hajiabbasi, P. Recent application of 4-hydroxycoumarin in multi-component reactions. Heterocycles, 2013, 87(7), 1415-1439.
[http://dx.doi.org/10.3987/REV-13-768]
[38]
Mohammadi, G.Z.; Mohajer, F.; Mali, S.N. The molecular diversity of 1, 8-diaminonaphthalene in organic chemistry. Comb. Chem. High Throughput Screen., 2020, 2020, 1.
[http://dx.doi.org/10.2174/1386207323666201110144014]
[39]
Mohammad, G.Z.; Moradi, R.; Ahmadi, T.; Lashgari, N. Recent advances in the application of indoles in multicomponent reactions. RSC Adv., 2018, 8, 12069-12103.
[http://dx.doi.org/10.1039/C7RA13321A]
[40]
Mohammadi, G.Z.; Mohajer, F.; Jamali, S.M.; Ebrahim, N.A. Quantitative and qualitative bibliometric scope toward the synthesis of rose oxide as a natural product in perfumery. Curr. Org. Synth., 2020, 17(15), 610-624.
[http://dx.doi.org/10.2174/1872208314666200722161044]]
[41]
Mohammadi, G.Z.; Moradi, R.; Lashgari, N. Asymmetric synthesis of chiral oxindoles using isatin as starting material. Tetrahedron, 2018, 74(13), 1323-1353.
[http://dx.doi.org/10.1016/j.tet.2018.01.025]
[42]
Mohammadi, G.Z.; Mohajer, F.; Moradi, M.; Mofatehnia, P. The molecular diversity scope of urazole in the synthesis of organic compounds. Curr. Org. Synth., 2019, 16(15), 953-967.
[http://dx.doi.org/10.2174/1570179416666190925162215]]
[43]
Rezvanian, A.; Noorakhtar, F.; Mohammadi, G.Z.; Mahajer, F. Quinoline conjugated imidazopyridine and pyridopyrimidine synthesis in water as highly selective fluoride sensors via a catalyst-free four-component reaction. Monatsh. Chem., 2020, 151, 1581-1589.
[http://dx.doi.org/10.1007/s00706-020-02681-8]]
[44]
Mohammadi, G.Z.; Kheilkordi, Z.; Mohajer, F. Recent advances in the application of acetophenone in heterocyclic compounds synthesis. J. Iran. Chem. Soc., 2020, 17, 247-282.
[http://dx.doi.org/10.1007/s13738-019-01774-4]]
[45]
Mohammadi, G.Z.; Mofatehnia, P.; Mohajer, F.; Moradi, R. The synthesis of heterocyclic compounds based on 3-formylchromone via organic reactions. Heterocycles, 2020, 100(7), 993-1008.
[http://dx.doi.org/10.3987/REV-20-926]
[46]
Yazdani, H.; Bazgir, A. Lewis acid catalyzed regio- and diastereoselective synthesis of spiroisoxazolines via one-pot sequential Knoevenagel condensation/1,3-dipolar cycloaddition reaction. Synthesis (Germany), 2019, 51(7), 1669-1679.
[http://dx.doi.org/10.1055/s-0037-1610676]
[47]
Wang, Y.M.; Zhang, H.H.; Li, C.; Fan, T.; Shi, F. Catalytic asymmetric chemoselective 1,3-dipolar cycloadditions of an azomethine ylide with isatin-derived imines: diastereo- and enantioselective construction of a spiro[imidazolidine-2,3′-oxindole] framework. Chem. Commun. (Camb.), 2016, 52(9), 1804-1807.
[http://dx.doi.org/10.1039/C5CC07924A] [PMID: 26530257]
[48]
Periyaraja, S.; Shanmugam, P.; Mandal, A.B. A copper-catalyzed one-pot, three-component diastereoselective synthesis of 3-spiroazetidinimine-2-oxindoles and their synthetic transformation into fluorescent conjugated indolones. Eur. J. Org. Chem., 2014, 2014(5), 954-965.
[http://dx.doi.org/10.1002/ejoc.201301244]
[49]
Qian, Y-L.; Li, B.; Xia, P-J.; Wang, J.; Xiang, H-Y.; Yang, H. Diastereospecific entry to pyrrolidinyldispirooxindole skeletons via three-component 1,3-dipolar cycloadditions. Tetrahedron, 2018, 74(47), 6821-6828.
[http://dx.doi.org/10.1016/j.tet.2018.09.055]
[50]
Murarka, S.; Golz, C.; Strohmann, C.; Antonchick, A.P.; Waldmann, H. Biology-oriented synthesis of 3,3-spiro(2-tetrahydrofuranyl)oxindoles. Synthesis, 2017, 49(1), 87-95.
[http://dx.doi.org/10.1055/s-0035-1561665 ]
[51]
Min, B.K.; Kim, G.; Roh, H.J.; Seo, D.Y.; Kim, J.N. Synthesis of spirooxindoles bearing 2,3-(or 2,5-)dihydrothiophene-2-thione moiety via [3+2] annulation of carbon disulfide with Morita-Baylis-Hillman carbonates of isatins. Tetrahedron Lett., 2018, 59(17), 1674-1678.
[http://dx.doi.org/10.1016/j.tetlet.2018.03.056]
[52]
Su, S.; Li, C.; Jia, X.; Li, J. Isocyanide-based multicomponent reactions: concise synthesis of spirocyclic oxindoles with molecular complexity by using a [1,5]-hydrogen shift as the key step. Chemistry, 2014, 20(20), 5905-5909.
[http://dx.doi.org/10.1002/chem.201402576] [PMID: 24700458]
[53]
Jatoi, W.B.; Puget, P.; Jatoi, A.H.; Shar, G.Q. Synthesis of spirooxindoles: compounds of wide therapeutical applications. Pharm. Chem. J., 2014, 48(4), 288-291.
[http://dx.doi.org/10.1007/s11094-014-1096-5]
[54]
Kotha, S.; Lahiri, K.; Sreevani, G. Design and synthesis of aromatics through [2+2+2] cyclotrimerization. Synlett, 2018, 29(18), 2342-2361.
[http://dx.doi.org/10.1055/s-0037-1609584]
[55]
Fang, X.; Deng, Z.; Zheng, W.; Antilla, J.C. Catalytic one-pot double asymmetric Cascade reaction: synthesis of chlorinated oxindoles and geminal diamines. ACS Catal., 2019, 9(3), 1748-1752.
[http://dx.doi.org/10.1021/acscatal.8b05019]
[56]
Liu, X.L.; Gong, Y.; Chen, S.; Zuo, X.; Yao, Z.; Zhou, Y. Bifunctional oxindole-chromone 4C building block directed asymmetric synthesis of bispirocyclic hexahydroxanthones featuring five contiguous stereocenters and two side-by-side oxindoles. Org. Chem. Front., 2019, 6(10), 1603-1607.
[http://dx.doi.org/10.1039/C9QO00127A]
[57]
Ren, J.W.; Zheng, L.; Ye, Z.P.; Deng, Z.X.; Xie, Z.Z.; Xiao, J.A.; Zhu, F.W.; Xiang, H.Y.; Chen, X.Q.; Yang, H. Organocatalytic, enantioselective, polarity-matched ring-reorganization domino sequence based on the 3-oxindole scaffold. Org. Lett., 2019, 21(7), 2166-2170.
[http://dx.doi.org/10.1021/acs.orglett.9b00477] [PMID: 30908056]
[58]
Chaudhari, P.D.; Hong, B.C.; Wen, C.L.; Lee, G.H. Asymmetric synthesis of spirocyclopentane oxindoles containing four consecutive stereocenters and quaternary α-nitro esters via organocatalytic enantioselective Michael-Michael Cascade reactions. ACS Omega, 2019, 4(1), 655-667.
[http://dx.doi.org/10.1021/acsomega.8b03049] [PMID: 31459355]
[59]
Wang, C.; Wen, D.; Chen, H.; Deng, Y.; Liu, X.; Liu, X.; Wang, L.; Gao, F.; Guo, Y.; Sun, M.; Wang, K.; Yan, W. The catalytic asymmetric synthesis of CF3-containing spiro-oxindole-pyrrolidine-pyrazolone compounds through squaramide-catalyzed 1,3-dipolar cycloaddition. Org. Biomol. Chem., 2019, 17(22), 5514-5519.
[http://dx.doi.org/10.1039/C9OB00720B] [PMID: 31115424]
[60]
Xiao, J.A.; Cheng, X.L.; Li, Y.C.; He, Y.M.; Li, J.L.; Liu, Z.P.; Xia, P.J.; Su, W.; Yang, H. Palladium-catalysed ring-opening [3 + 2]-annulation of spirovinylcyclopropyl oxindole to diastereoselectively access spirooxindoles. Org. Biomol. Chem., 2018, 17(1), 103-107.
[http://dx.doi.org/10.1039/C8OB02859A] [PMID: 30520921]
[61]
Yoshio, H.; Takaaki, S.; Hiroshi, K. Fluoride-induced 1,2-elimination of O-trimethylsilylphenyl triflate to benzyne under mild conditions. Chem. Lett., 1983, 12(8), 1211-1214.
[http://dx.doi.org/10.1246/cl.1983.1211]
[62]
Kalvacherla, B.; Batthula, S.; Balasubramanian, S.; Palakodety, R.K. Transition-metal-free cyclization of propargylic alcohols with aryne: synthesis of 3-benzofuranyl-2-oxindole and 3-spirooxindole benzofuran derivatives ⊥. Org. Lett., 2018, 20(13), 3824-3828.
[http://dx.doi.org/10.1021/acs.orglett.8b01414] [PMID: 29920110]
[63]
Jin, Q.; Zhang, J.; Hu, S. Tributylphosphane-promoted [3 + 2] annulation of 3-hydroxyoxindoles with acrylates: synthesis of spirocyclic oxindole-lactones. J. Saudi Chem. Soc., 2018, 22(1), 27-33.
[http://dx.doi.org/10.1016/j.jscs.2017.06.001]
[64]
Dalsgaard, P.W.; Blunt, J.W.; Munro, M.H.; Frisvad, J.C.; Christophersen, C. Communesins G and H, new alkaloids from the psychrotolerant fungus Penicillium rivulum. J. Nat. Prod., 2005, 68(2), 258-261.
[http://dx.doi.org/10.1021/np049646l] [PMID: 15730257]
[65]
Jadulco, R.; Edrada, R.A.; Ebel, R.; Berg, A.; Schaumann, K.; Wray, V.; Steube, K.; Proksch, P. New communesin derivatives from the fungus Penicillium sp. derived from the Mediterranean sponge Axinella verrucosa. J. Nat. Prod., 2004, 67(1), 78-81.
[http://dx.doi.org/10.1021/np030271y] [PMID: 14738391]
[66]
Li, G.; Huang, L.; Xu, J.; Sun, W.; Xie, J.; Hong, L.; Wang, R. Sodium iodide/hydrogen peroxide-mediated oxidation/lactonization for the construction of spirocyclic oxindole-lactones. Adv. Synth. Catal., 2016, 358(18), 2873-2877.
[http://dx.doi.org/10.1002/adsc.201600441]
[67]
Hostetler, G.; Dunn, D.; McKenna, B.A.; Kopec, K.; Chatterjee, S. 1-Thia-4,7-diaza-spiro[4.4]nonane-3,6-dione: a structural motif for 5-hydroxy-tryptamine 6 receptor antagonism. Chem. Biol. Drug Des., 2014, 83(2), 149-153.
[http://dx.doi.org/10.1111/cbdd.12240] [PMID: 24119217]
[68]
Cui, B.; Chen, Y.; Shan, J.; Qin, L.; Yuan, C.; Wang, Y.; Han, W.; Wan, N.; Chen, Y. An enantioselective synthesis of spiro-oxindole-based 3,4-dihydropyrroles via a Michael/cyclization cascade of 3-aminooxindoles with 2-enoylpyridines. Org. Biomol. Chem., 2017, 15(40), 8518-8522.
[http://dx.doi.org/10.1039/C7OB02138K] [PMID: 28956054]
[69]
Du, D.; Xu, Q.; Li, X.G.; Shi, M. Construction of spirocyclic oxindoles through regio- and stereoselective [3+2] or [3+2]/[4+2] Cascade reaction of α,β-unsaturated imines with 3-isothiocyanato oxindole. Chemistry, 2016, 22(14), 4733-4737.
[http://dx.doi.org/10.1002/chem.201600497] [PMID: 26853427]
[70]
Matsugi, A.; Nunokawa, S.; Watanabe, N.; Nakata, Y.; Nakano, K.; Ichikawa, Y.; Kotsuki, H. An organocatalytic asymmetric Diels-Alder strategy for the enantioselective synthesis of spirocyclic oxindole-cyclohexenones. Heterocycles, 2016, 92(11), 1953-1961.
[http://dx.doi.org/10.3987/COM-16-13562]
[71]
You, Y.; Cui, B.D.; Zhou, M.Q.; Zuo, J.; Zhao, J.Q.; Xu, X.Y.; Zhang, X.M.; Yuan, W.C. Organocatalytic asymmetric Michael/Friedel-crafts Cascade reaction of 3-pyrrolyl-oxindoles and α, β-unsaturated aldehydes for the construction of chiral spiro[5,6-dihydropyrido[1,2- a ]pyrrole-3,3′-oxindoles]. J. Org. Chem., 2015, 80(11), 5951-5957.
[http://dx.doi.org/10.1021/acs.joc.5b00597] [PMID: 25984596]
[72]
Zhou, P.; Cai, Y.; Lin, L.; Lian, X.; Xia, Y.; Liu, X.; Feng, X. Asymmetric synthesis of spirocyclic oxindole-fused tetrahydrothiophenes via n,n-dioxide-nickel(II) catalyzed domino reaction of 1,4-dithiane-2,5-diol with 3-alkenyloxindoles. Adv. Synth. Catal., 2015, 357(4), 695-700.
[http://dx.doi.org/10.1002/adsc.201400964]
[73]
Huang, X.F.; Zhang, Y.F.; Qi, Z.H.; Li, N.K.; Geng, Z.C.; Li, K.; Wang, X.W. Organocatalytic enantioselective construction of multi-functionalized spiro oxindole dienes. Org. Biomol. Chem., 2014, 12(25), 4372-4385.
[http://dx.doi.org/10.1039/c4ob00545g] [PMID: 24840651]
[74]
Fu, Z.K.; Pan, J.Y.; Xu, D.C.; Xie, J.W. Organocatalytic domino Michael/cyclization reaction: efficient synthesis of multi-functionalized tetracyclic spirooxindoles with multiple stereocenters. RSC Adv., 2014, 4(93), 51548-51557.
[http://dx.doi.org/10.1039/C4RA07860H]
[75]
Ivanov, K.L.; Kravtsova, A.A.; Kirillova, E.A.; Melnikov, M.Y.; Budynina, E.M. Domino Michael/aza-Wittig reaction in the diastereoselective construction of spiro. Tetrahedron Lett., 2019, 60(30), 1952-1955.
[http://dx.doi.org/10.1016/j.tetlet.2019.06.037]
[76]
Akaev, A.A.; Villemson, E.V.; Vorobyeva, N.S.; Majouga, A.G.; Budynina, E.M.; Melnikov, M.Y. 3-(2-Azidoethyl)oxindoles: advanced building blocks for one-pot assembly of spiro[pyrrolidine-3,3′-oxindoles]. J. Org. Chem., 2017, 82(11), 5689-5701.
[http://dx.doi.org/10.1021/acs.joc.7b00529] [PMID: 28481090]
[77]
Ivanov, K.L.; Villemson, E.V.; Budynina, E.M.; Ivanova, O.A.; Trushkov, I.V.; Melnikov, M.Y. Ring opening of donor-acceptor cyclopropanes with the azide ion: a tool for construction of N-heterocycles. Chemistry, 2015, 21(13), 4975-4987.
[http://dx.doi.org/10.1002/chem.201405551] [PMID: 25573783]
[78]
Ren, W.; Wang, X-Y.; Li, J-J.; Tian, M.; Liu, J.; Ouyang, L.; Wang, J-H. Efficient construction of biologically important functionalized polycyclic spiro-fused carbocyclicoxindoles via an asymmetric organocatalytic quadruple-cascade reaction. RSC Adv., 2017, 7(4), 1863-1868.
[http://dx.doi.org/10.1039/C6RA24910H]
[79]
Lang, J.; Li, Y.; Kang, T.; Feng, X.; Liu, X. Organocatalytic asymmetric Michael/Dieckmann cyclization reaction of alkynones to construct spirocyclopentene oxindoles. Org. Lett., 2019, 21(17), 6897-6902.
[http://dx.doi.org/10.1021/acs.orglett.9b02519] [PMID: 31418578]
[80]
Huang, J.Z.; Zhang, C.L.; Zhu, Y.F.; Li, L.L.; Chen, D.F.; Han, Z.Y.; Gong, L.Z. Organocatalytic highly enantioselective substitution of 3-(1-tosylalkyl)indoles with oxindoles enables the first total synthesis of (+)-trigolutes B. Chemistry, 2015, 21(23), 8389-8393.
[http://dx.doi.org/10.1002/chem.201500349] [PMID: 25916808]
[81]
Du, T.; Du, F.; Ning, Y.; Peng, Y. Organocatalytic enantioselective 1,3-dipolar cycloadditions between Seyferth-Gilbert reagent and isatylidene malononitriles: synthesis of chiral spiro-phosphonylpyrazoline-oxindoles. Org. Lett., 2015, 17(5), 1308-1311.
[http://dx.doi.org/10.1021/acs.orglett.5b00311] [PMID: 25710384]
[82]
Zhou, J.; Wang, Q.L.; Peng, L.; Tian, F.; Xu, X.Y.; Wang, L.X. An organocatalytic domino Michael-alkylation reaction: highly enantioselective construction of spiro-cyclopentanoneoxindoles and tetronic acid scaffolds. Chem. Commun. (Camb.), 2014, 50(93), 14601-14604.
[http://dx.doi.org/10.1039/C4CC05207B] [PMID: 25307364]
[83]
Feng, T-T.; Gong, Y.; Wei, Q-D.; Wang, G-L.; Liu, H-H.; Tian, M-Y.; Liu, X-L.; Chen, Z-Y.; Zhou, Y. Diversity-oriented construction of chromanone-fused polycyclic pyrrolidinyl-dispirooxindoles. J. Heterocycl. Chem., 2018, 55(5), 1136-1146.
[http://dx.doi.org/10.1002/jhet.3145]
[84]
Zuo, X.; Liu, X.L.; Wang, J.X.; Yao, Y.M.; Zhou, Y.Y.; Wei, Q.D.; Gong, Y.; Zhou, Y. Organocatalytic reaction of chromone-oxindole synthon: access to chromanone-based spirocyclohexaneoxindoles with five adjacent stereocenters. J. Org. Chem., 2019, 84(11), 6679-6688.
[http://dx.doi.org/10.1021/acs.joc.9b00326] [PMID: 31083948]
[85]
You, Y.; Quan, B.X.; Wang, Z.H.; Zhao, J.Q.; Yuan, W.C. Divergent synthesis of oxindole derivatives via controllable reactions of isatin-derived para-quinone methides with sulfur ylides. Org. Biomol. Chem., 2020, 18(24), 4560-4565.
[http://dx.doi.org/10.1039/D0OB00979B] [PMID: 32495795]
[86]
Jin, Q.; Zhang, D.; Zhang, J.A. [3 + 2] cycloaddition/C-arylation of isatin: N, N ′-cyclic azomethine imine 1,3-dipole with arynes. RSC Adv., 2020, 10(51), 30620-30623.
[http://dx.doi.org/10.1039/D0RA06404A]
[87]
Jin, Q.; Zhang, J.; Jiang, C.; Zhang, D.; Gao, M.; Hu, S. Self [3 + 4] cycloadditions of isatin N, N′-cyclic azomethine imine 1,3-dipole with N-(o-chloromethyl)aryl amides. J. Org. Chem., 2018, 83(15), 8410-8416.
[http://dx.doi.org/10.1021/acs.joc.8b01055] [PMID: 29846070]
[88]
Wang, X.; Wu, L.; Yang, P.; Song, X.J.; Ren, H.X.; Peng, L.; Wang, L.X.; Isatin, N.; Isatin, N. N′-cyclic azomethine imine 1,3-dipole and base catalyzed Michael addition with β-nitrostyrene via C3 umpolung of oxindole. Org. Lett., 2017, 19(12), 3051-3054.
[http://dx.doi.org/10.1021/acs.orglett.7b01063] [PMID: 28571319]
[89]
Song, Y.X.; Lin, Y.; Yan, L.; Du, D.M. An organocatalytic domino Michael addition strategy: construction of bispiro[oxindole-thiazolidinone-hexahydro-xanthone]s with five contiguous stereocenters. Org. Biomol. Chem., 2020, 18(37), 7373-7378.
[http://dx.doi.org/10.1039/D0OB01613F] [PMID: 32926035]
[90]
Dong, S.; Lei, Y.; Jia, S.; Gao, L.; Li, J.; Zhu, T.; Liu, S.; Hu, W. Discovery of core-structurally novel PTP1B inhibitors with specific selectivity containing oxindole-fused spirotetrahydrofurochroman by one-pot reaction. Bioorg. Med. Chem. Lett., 2017, 27(4), 1105-1108.
[http://dx.doi.org/10.1016/j.bmcl.2016.11.055] [PMID: 28111140]
[91]
Qiu, L.; Wang, D.; Lei, Y.; Gao, L.; Liu, S.; Li, J.; Hu, W. Diastereoselective three-component cascade reaction to construct oxindole-fused spirotetrahydrofurochroman scaffolds for drug discovery. Eur. J. Org. Chem., 2016, 2016(15), 2671-2680.
[http://dx.doi.org/10.1002/ejoc.201600315]
[92]
Zhou, R.; Wu, Q.; Guo, M.; Huang, W.; He, X.; Yang, L.; Peng, F.; He, G.; Han, B. Organocatalytic cascade reaction for the asymmetric synthesis of novel chroman-fused spirooxindoles that potently inhibit cancer cell proliferation. Chem. Commun. (Camb.), 2015, 51(66), 13113-13116.
[http://dx.doi.org/10.1039/C5CC04968G] [PMID: 26186061]
[93]
Feng, J.; Li, X. Enantioselective vinylogous Michael-Michael Cascade reactions of 3-alkylidene oxindoles and nitroolefin enoates. J. Org. Chem., 2017, 82(14), 7317-7323.
[http://dx.doi.org/10.1021/acs.joc.7b00938] [PMID: 28650159]
[94]
Jia, S.; Lei, Y.; Song, L.; Krishna Reddy, A.G.; Xing, D.; Hu, W. Diastereoselective intramolecular aldol-type trapping of zwitterionic intermediates by ketones for the synthesis of spiro[chroman-4,3′-oxindole] derivatives. Adv. Synth. Catal., 2017, 359(1), 58-63.
[http://dx.doi.org/10.1002/adsc.201600998]
[95]
Ahdenov, R.; Mohammadi, A.A.; Taheri, S.; Ghaderi, P.; Saadat, M. An efficient synthesis for some new heterocyclic compound-fused oxindole derivatives. J. Heterocycl. Chem., 2017, 54(1), 789-793.
[http://dx.doi.org/10.1002/jhet.2560]
[96]
He, Q.; Wu, L.; Kou, X.; Butt, N.; Yang, G.; Zhang, W. Pd(II)-Catalyzed asymmetric addition of arylboronic acids to isatin-derived ketimines. Org. Lett., 2016, 18(2), 288-291.
[http://dx.doi.org/10.1021/acs.orglett.5b03458] [PMID: 26720106]
[97]
Rodríguez-Rodríguez, M.; Maestro, A.; Andrés, J.M.; Pedrosa, R. Supported bifunctional chiral thioureas as catalysts in the synthesis of 3-amino-2-oxindoles through enantioselective aza-Friedel-Crafts reaction: application in continuous flow processes. Adv. Synth. Catal., 2020, 362(13), 2744-2754.
[http://dx.doi.org/10.1002/adsc.202000238]
[98]
Song, X.J.; Ren, H.X.; Xiang, M.; Li, C.Y.; Zou, Y.; Li, X.; Huang, Z.C.; Tian, F.; Wang, L.X. Organocatalytic enantioselective Michael addition between 3-(3-hydroxy-1H-pyrazol-1-yl)oxindole and β-nitrostyrene for the preparation of chiral disubstituted oxindoles. J. Org. Chem., 2020, 85(14), 9290-9300.
[http://dx.doi.org/10.1021/acs.joc.9b03337] [PMID: 32583669]
[99]
Ma, C.; Zhou, J.Y.; Zhang, Y.Z.; Jiao, Y.; Mei, G.J.; Shi, F. Synergistic-catalysis-enabled reaction of 2-indolymethanols with oxonium ylides for the construction of 3-indolyl-3-alkoxy oxindole frameworks. Chem. Asian J., 2018, 13(17), 2549-2558.
[http://dx.doi.org/10.1002/asia.201800620] [PMID: 29791067]
[100]
Jia, S.K.; Lei, Y.B.; Song, L.L.; Liu, S.Y.; Hu, W.H. Enantioselective trapping of oxonium ylide intermediates by N-benzhydryl-α-imino ester: synthesis of β-tetrasubstituted α-amino acids. Chin. Chem. Lett., 2017, 28(2), 213-217.
[http://dx.doi.org/10.1016/j.cclet.2016.06.053]
[101]
Rajarathinam, B.; Kumaravel, K.; Vasuki, G. Green chemistry oriented multi-component strategy to hybrid heterocycles. RSC Adv., 2016, 6(77), 73848-73852.
[http://dx.doi.org/10.1039/C6RA11543H]
[102]
Yao, D.; Ruhan, A.; Jiang, J.; Huang, J.; Wang, J.; Han, W. Design, synthesis and biological evaluation of 2-indolinone derivatives as PAK1 inhibitors in MDA-MB-231 cells. Bioorg. Med. Chem. Lett., 2020, 30(17), 127355.
[http://dx.doi.org/10.1016/j.bmcl.2020.127355] [PMID: 32738980]
[103]
Majumder, S.; Bhuyan, P.J. One-pot multi-component synthesis of pyrimido 4,5-b indoles in solvent-free condition. J. Iran Chem. Soc., 2014, 11(4), 993-996.
[http://dx.doi.org/10.1007/s13738-013-0366-6]
[104]
Zou, L.H.; Philipps, A.R.; Raabe, G.; Enders, D. Asymmetric synthesis of fully substituted cyclopentane-oxindoles through an organocatalytic triple Michael domino reaction. Chemistry, 2015, 21(3), 1004-1008.
[http://dx.doi.org/10.1002/chem.201406047] [PMID: 25470781]
[105]
Baharfar, R.; Shariati, N. Solvent-free synthesis of novel benzothiazole-substituted 4-thiazolidinones using nano silica-bonded 5-n-propyl-octahydro-pyrimido[1,2-a]azepinium chloride as catalyst. Aust. J. Chem., 2014, 67, 1646-1655.
[http://dx.doi.org/10.1071/CH13712]
[106]
Baharfar, R.; Shariati, N. Synthesis of new oxindole derivatives containing benzothiazole and thiazolidinone moieties using nano silica-bonded 5-n-propyl-octahydro-pyrimido[1,2-a]azepinium chloride (NSB-DBU) as catalyst. Turk. J. Chem., 2015, 39(2), 235-243.
[http://dx.doi.org/10.3906/kim-1408-26]
[107]
Muthusamy, S.; Karikalan, T. Rhodium(II) catalyzed synthesis of macrocycles incorporating oxindole via O-H/N-H insertion reactions. Org. Biomol. Chem., 2014, 12(45), 9243-9256.
[http://dx.doi.org/10.1039/C4OB01671H] [PMID: 25302664]
[108]
Gu, J.; Xiao, B.X.; Ouyang, Q.; Du, W.; Chen, Y.C. Phosphine-catalyzed interrupted Morita–Baylis–Hillman reaction and switchable domino reactions of α-substituted activated olefins with formaldehyde and mechanism elucidation. Chin. J. Chem., 2019, 37(2), 155-160.
[http://dx.doi.org/10.1002/cjoc.201800466]
[109]
Jia, S.K.; Song, L.L.; Lei, Y.B.; Gopi Krishna Reddy, A.; Xing, D.; Hu, W.H.A. Rh(II)-catalyzed three-component reaction of 3-diazooxindoles with N,N-disubstituted anilines and glyoxylates for the synthesis of 3-aryl-3-substituted oxindoles. Org. Biomol. Chem., 2016, 14(43), 10157-10160.
[http://dx.doi.org/10.1039/C6OB01907B] [PMID: 27731463]
[110]
Zhu, D.; Sun, J.; Yan, C.G. Convenient synthesis of 2-[2-aryl-2-oxo-1-(2-oxoindolin-3-ylidene)ethyl]fumarates via a one-pot, two-step reaction. Synthesis (Germany), 2015, 47(2), 193-198.
[http://dx.doi.org/10.1002/chin.201524128]
[111]
Muthusamy, S.; Kesavan, V. Asymmetric cycloaddition reactions of oxindole α-keto esters via Cascade dienamine-enamine and trienamine strategies. Eur. J. Org. Chem., 2019, 2019(25), 4046-4055.
[http://dx.doi.org/10.1002/ejoc.201900567]
[112]
Poomathi, N.; Balaji, R.; Maheswari, N.U.; Mathivanan, N.; Perumal, P.T.; Balasubramanian, K.K.; Barathi, V.A.; Ramakrishna, S. Brønsted acid catalysed ecofriendly synthesis of quaternary centred C-3 functionalized oxindole derivatives. New J. Chem., 2018, 42(18), 14817-14826.
[http://dx.doi.org/10.1039/C8NJ02276C]
[113]
Khoshneviszadeh, M.; Yahagh, A.; Soheilizad, M.; Mahdavi, M. A simple one-pot synthesis of 2,4-diaryl- 9H-pyrido[2,3-b]indoles under solvent-free conditions. Heterocycl. Commun., 2017, 23(4), 293-296.
[http://dx.doi.org/10.1515/hc-2016-0222]
[114]
Chen, L.; You, Y.; Zhang, M.L.; Zhao, J.Q.; Zuo, J.; Zhang, X.M.; Yuan, W.C.; Xu, X.Y. Organocatalytic asymmetric Michael addition of 3-substituted oxindoles to α,β-unsaturated acyl phosphonates for the synthesis of 3,3′-disubstituted oxindoles with chiral squaramides. Org. Biomol. Chem., 2015, 13(15), 4413-4417.
[http://dx.doi.org/10.1039/C5OB00317B] [PMID: 25765465]
[115]
Liu, Y.; Zhang, Q.; Du, Y.; Yu, A.; Zhang, K.; Meng, X. Convenient synthesis of substituted tetrahydrofuran via Lewis base catalyzed [3 + 2] domino reactions. RSC Adv., 2014, 4(95), 52629-52632.
[http://dx.doi.org/10.1039/C4RA09249J]
[116]
Heravi, M.M.; Feiz, A.; Notash, B.; Bazgir, A. Synthesis of oxindolyl-pyrimidines and oxindolyl-furopyrimidines from isatin-derived propargylic alcohols. Iran. Chem. Soc., 2020, 17(7), 1743-1751.
[http://dx.doi.org/10.1007/s13738-020-01893-3]
[117]
Hou, K.Q.; Zhou, F.; Chen, X.P.; Ge, Y.; Chan, A.S.C.; Xiong, X.F. Asymmetric synthesis of oxindole-derived vicinal tetrasubstituted acyclic amino acid derivatives by the Mannich-type reaction. J. Org. Chem., 2020, 85(15), 9661-9671.
[http://dx.doi.org/10.1021/acs.joc.0c00981] [PMID: 32603113]
[118]
Ma, C.; Sheng, F.T.; Wang, H.Q.; Deng, S.; Zhang, Y.C.; Jiao, Y.; Tan, W.; Shi, F. Atroposelective access to oxindole-based axially chiral styrenes via the strategy of catalytic kinetic resolution. J. Am. Chem. Soc., 2020, 142(37), 15686-15696.
[http://dx.doi.org/10.1021/jacs.0c00208] [PMID: 32845127]
[119]
Liu, X.W.; Chang, S.Q.; Wang, Q.L.; Chen, S.; Wang, J.X.; Zhou, W.; Zhou, Y. Decarboxylative-mediated regioselective 1,3-dipolar cycloaddition for diversity-oriented synthesis of structurally exo ′-selective spiro[oxindole-pyrrolidine-dihydrocoumarin] hybrids. Synthesis, 2020, 52(2), 3018-3028.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy