Review Article

Nanocarriers for Photodynamic Therapy Intended to Cutaneous Tumors

Author(s): Maria B.R. Pierre*

Volume 22, Issue 10, 2021

Published on: 01 January, 2021

Page: [1090 - 1107] Pages: 18

DOI: 10.2174/1389450122999210101230743

Price: $65

Abstract

Photodynamic Therapy (PDT) is a therapeutic modality used for several malignant and premalignant skin disorders, including Bowen's disease skin cancers and Superficial Basal Cell Carcinoma (BCC). Several photosensitizers (PSs) have been explored for tumor destruction of skin cancers, after their activation by a light source of appropriate wavelength. Topical release of PSs avoids prolonged photosensitization reactions associated with systemic administration; however, its clinical usefulness is influenced by its poor tissue penetration and the stability of the active agent. Nanotechnology-based drug delivery systems are promising tool to enhance the efficiency for PDT of cancer. This review focuses on PSs encapsulated in nanocarriers explored for PDT of skin tumors.

Keywords: Photodynamic Therapy, skin cancers, nanotechnology, topical delivery, nanocarriers, photosensitizers.

Graphical Abstract
[1]
Agostinis P, Berg K, Cengel KA, et al. Photodynamic therapy of cancer: an update. CA Cancer J Clin 2011; 61(4): 250-81.
[http://dx.doi.org/10.3322/caac.20114] [PMID: 21617154]
[2]
Zhou Z, Song J, Nie L, Chen X. Reactive oxygen species generating systems meeting challenges of photodynamic cancer therapy. Chem Soc Rev 2016; 45(23): 6597-626.
[http://dx.doi.org/10.1039/C6CS00271D] [PMID: 27722328]
[3]
Plaetzer K, Krammer B, Berlanda J, Berr F, Kiesslich T. Photophysics and photochemistry of photodynamic therapy: fundamental aspects. Lasers Med Sci 2009; 24(2): 259-68.
[http://dx.doi.org/10.1007/s10103-008-0539-1] [PMID: 18247081]
[4]
Dysart JS, Patterson MS. Characterization of Photofrin photobleaching for singlet oxygen dose estimation during photodynamic therapy of MLL cells in vitro. Phys Med Biol 2005; 50(11): 2597-616.
[http://dx.doi.org/10.1088/0031-9155/50/11/011] [PMID: 15901957]
[5]
van Straten D, Mashayekhi V, de Bruijn HS, Oliveira S, Robinson DJ. Oncologic photodynamic therapy: basic principles, current clinical status and future directions. Cancers (Basel) 2017; 9(2): 19.
[http://dx.doi.org/10.3390/cancers9020019] [PMID: 28218708]
[6]
Haddadi A, Madiyalakan R, Woo T. Quest Pharmatech Inc, assignee. Polymeric nanoparticles for photosensitizers. US patent US 8,916,205, 2014.
[7]
Calixto GM, Bernegossi J, de Freitas LM, Fontana CR, Chorilli M. Nanotechnology-based drug delivery systems for photodynamic therapy of cancer: a review. Molecules 2016; 21(3): 342.
[http://dx.doi.org/10.3390/molecules21030342] [PMID: 26978341]
[8]
Cohen DK, Lee PK. Photodynamic therapy for non-melanoma skin cancers. Cancers (Basel) 2016; 8(10): 90.
[http://dx.doi.org/10.3390/cancers8100090] [PMID: 27782043]
[9]
Ng KW, Lau WM. Skin deep: the basics of human skin structure and drug penetration.Percutaneous penetration enhancers chemical methods in penetration enhancement. Heidelberg 2015; pp. 3-11.
[10]
Hadgraft J, Lane ME. Skin: the ultimate interface. Phys Chem Chem Phys 2011; 13(12): 5215-22.
[http://dx.doi.org/10.1039/c0cp02943b] [PMID: 21350740]
[11]
Michaels AS, Chandrasekaran SK, Shaw JE. Drug permeation through human skin: theory and in vitro experimental measurement. AIChE J 1975; 21(5): 985-96.
[http://dx.doi.org/10.1002/aic.690210522]
[12]
Yardley HJ, Summerly R. Lipid composition and metabolism in normal and diseased epidermis. Pharmacol Ther 1981; 13(2): 357-83.
[http://dx.doi.org/10.1016/0163-7258(81)90006-1] [PMID: 6169098]
[13]
Trommer H, Neubert RH. Overcoming the stratum corneum: the modulation of skin penetration. A review. Skin Pharmacol Physiol 2006; 19(2): 106-21.
[http://dx.doi.org/10.1159/000091978] [PMID: 16685150]
[14]
Lademann J, Richter H, Schanzer S, et al. Penetration and storage of particles in human skin: perspectives and safety aspects. Eur J Pharm Biopharm 2011; 77(3): 465-8.
[http://dx.doi.org/10.1016/j.ejpb.2010.10.015] [PMID: 21056659]
[15]
D’Orazio J, Jarrett S, Amaro-Ortiz A, Scott T. UV radiation and the skin. Int J Mol Sci 2013; 14(6): 12222-48.
[http://dx.doi.org/10.3390/ijms140612222] [PMID: 23749111]
[16]
Gordon R. Skin cancer: an overview of epidemiology and risk factors.Seminars in oncology nursing Ed WB Saunders. 2013; 29: pp. (3)160-9.
[http://dx.doi.org/10.1016/j.soncn.2013.06.002]
[17]
Simões MCF, Sousa JJS, Pais AACC. Skin cancer and new treatment perspectives: a review. Cancer Lett 2015; 357(1): 8-42.
[http://dx.doi.org/10.1016/j.canlet.2014.11.001] [PMID: 25444899]
[18]
Hyter S, Indra AK. Nuclear hormone receptor functions in keratinocyte and melanocyte homeostasis, epidermal carcinogenesis and melanomagenesis. FEBS Lett 2013; 587(6): 529-41.
[http://dx.doi.org/10.1016/j.febslet.2013.01.041] [PMID: 23395795]
[19]
Baskaran R, Lee J, Yang SG. Clinical development of photodynamic agents and therapeutic applications. Biomater Res 2018; 22(1): 25.
[http://dx.doi.org/10.1186/s40824-018-0140-z] [PMID: 30275968]
[20]
Gomes ATPC, Neves MGPMS, Cavaleiro JAS. Cancer, photodynamic therapy and porphyrin-type derivatives. An Acad Bras Cienc 2018; 90(1)(Suppl. 2): 993-1026.
[http://dx.doi.org/10.1590/0001-3765201820170811] [PMID: 29873666]
[21]
Blume JE, Oseroff AR. Aminolevulinic acid photodynamic therapy for skin cancers. Dermatol Clin 2007; 25(1): 5-14.
[http://dx.doi.org/10.1016/j.det.2006.09.005] [PMID: 17126737]
[22]
Zhang J, Jiang C, Figueiró Longo JP, Azevedo RB, Zhang H, Muehlmann LA. An updated overview on the development of new photosensitizers for anticancer photodynamic therapy. Acta Pharm Sin B 2018; 8(2): 137-46.
[http://dx.doi.org/10.1016/j.apsb.2017.09.003] [PMID: 29719775]
[23]
Sekkat N, van den Bergh H, Nyokong T, Lange N. Like a bolt from the blue: phthalocyanines in biomedical optics. Molecules 2011; 17(1): 98-144.
[http://dx.doi.org/10.3390/molecules17010098] [PMID: 22198535]
[24]
Ormond AB, Freeman HS. Dye sensitizers for photodynamic therapy. Materials (Basel) 2013; 6(3): 817-40.
[http://dx.doi.org/10.3390/ma6030817] [PMID: 28809342]
[25]
Yano S, Hirohara S, Obata M, et al. Current states and future views in photodynamic therapy. J Photoch Photobio C: Photobio C 2011; 12(1): 46-67.
[http://dx.doi.org/10.1016/j.jphotochemrev.2011.06.001]
[26]
Taber SW, Fingar VH, Coots CT, Wieman TJ. Photodynamic therapy using mono-L-aspartyl chlorin e6 (Npe6) for the treatment of cutaneous disease: a Phase I clinical study. Clin Cancer Res 1998; 4(11): 2741-6.
[PMID: 9829737]
[27]
Nunes SM, Sguilla FS, Tedesco AC. Photophysical studies of zinc phthalocyanine and chloroaluminum phthalocyanine incorporated into liposomes in the presence of additives. Braz J Med Biol Res 2004; 37(2): 273-84.
[http://dx.doi.org/10.1590/S0100-879X2004000200016] [PMID: 14762584]
[28]
Kolarova H, Nevrelova P, Bajgar R, Jirova D, Kejlova K, Strnad M. In vitro photodynamic therapy on melanoma cell lines with phthalocyanine. Toxicol In Vitro 2007; 21(2): 249-53.
[http://dx.doi.org/10.1016/j.tiv.2006.09.020] [PMID: 17092686]
[29]
De Annunzio SR, Costa NCS, Mezzina RD, Graminha MAS, Fontana CR. Chlorin, phthalocyanine, and porphyrin types derivatives in phototreatment of cutaneous manifestations: A review. Int J Mol Sci 2019; 20(16): 3861.
[http://dx.doi.org/10.3390/ijms20163861] [PMID: 31398812]
[30]
Kinsella TJ, Baron ED, Colussi VC, et al. Preliminary clinical and pharmacologic investigation of photodynamic therapy with the silicon phthalocyanine photosensitizer pc 4 for primary or metastatic cutaneous cancers. Front Oncol 2011; 1: 14.
[http://dx.doi.org/10.3389/fonc.2011.00014] [PMID: 22649754]
[31]
Kennedy JC, Pottier RH, Pross DC. Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience. J Photochem Photobiol B 1990; 6(1-2): 143-8.
[http://dx.doi.org/10.1016/1011-1344(90)85083-9] [PMID: 2121931]
[32]
Wachowska M, Muchowicz A, Firczuk M, et al. Aminolevulinic acid (ALA) as a prodrug in photodynamic therapy of cancer. Molecules 2011; 16(5): 4140-64.
[http://dx.doi.org/10.3390/molecules16054140]
[33]
Ochsner M. Photophysical and photobiological processes in the photodynamic therapy of tumours. J Photochem Photobiol B 1997; 39(1): 1-18.
[http://dx.doi.org/10.1016/S1011-1344(96)07428-3] [PMID: 9210318]
[34]
Silva JN, Filipe P, Morlière P, et al. Photodynamic therapies: principles and present medical applications. Biomed Mater Eng 2006; 16(4)(Suppl.): S147-54.
[PMID: 16823106]
[35]
Gold MH, Nestor MS. Current treatments of actinic keratosis. J Drugs Dermatol 2006; 5(2)(Suppl.): 17-25.
[PMID: 16485877]
[36]
Wan MT, Lin JY. Current evidence and applications of photodynamic therapy in dermatology. Clin Cosmet Investig Dermatol 2014; 7: 145-63.
[PMID: 24899818]
[37]
Kim M, Jung HY, Park HJ. Topical PDT in the treatment of benign skin diseases: principles and new applications. Int J Mol Sci 2015; 16(10): 23259-78.
[http://dx.doi.org/10.3390/ijms161023259] [PMID: 26404243]
[38]
Donnelly RF, McCarron PA, Woolfson DA. Derivatives of 5-aminolevulinic acid for photodynamic therapy. Perspect Medicin Chem 2007.
[39]
Zhao B, He YY. Recent advances in the prevention and treatment of skin cancer using photodynamic therapy. Expert Rev Anticancer Ther 2010; 10(11): 1797-809.
[http://dx.doi.org/10.1586/era.10.154] [PMID: 21080805]
[40]
Jendželovská Z, Jendželovský R, Kuchárová B, Fedoročko P. Hypericin in the light and in the dark: two sides of the same coin. Front Plant Sci 2016; 7: 560.
[http://dx.doi.org/10.3389/fpls.2016.00560] [PMID: 27200034]
[41]
Wölfle U, Seelinger G, Schempp CM. Topical application of St. Johnʼs wort (Hypericum perforatum). Planta med 2014; 80(02/03): 109-20.
[42]
Maduray K, Davids LM. The anticancer activity of hypericin in photodynamic therapy. J Bioanal Biomed 2011.
[43]
Kleemann B, Loos B, Scriba TJ, Lang D, Davids LM. St John’s Wort (Hypericum perforatum L.) photomedicine: hypericin-photodynamic therapy induces metastatic melanoma cell death. PLoS One 2014; 9(7): e103762.
[http://dx.doi.org/10.1371/journal.pone.0103762] [PMID: 25076130]
[44]
Sharma KV, Davids LM. Hypericin-PDT-induced rapid necrotic death in human squamous cell carcinoma cultures after multiple treatment. Cell Biol Int 2012; 36(12): 1261-6.
[http://dx.doi.org/10.1042/CBI20120108] [PMID: 23005701]
[45]
Kacerovská D, Pizinger K, Majer F, Smíd F. Photodynamic therapy of nonmelanoma skin cancer with topical hypericum perforatum extract--a pilot study. Photochem Photobiol 2008; 84(3): 779-85.
[http://dx.doi.org/10.1111/j.1751-1097.2007.00260.x] [PMID: 18179625]
[46]
Lima AM, Pizzol CD, Monteiro FB, et al. Hypericin encapsulated in solid lipid nanoparticles: phototoxicity and photodynamic efficiency. J Photochem Photobiol B 2013; 125: 146-54.
[http://dx.doi.org/10.1016/j.jphotobiol.2013.05.010] [PMID: 23816959]
[47]
Tao R, Zhang F, Tang QJ, Xu CS, Ni ZJ, Meng XH. Effects of curcumin-based photodynamic treatment on the storage quality of fresh-cut apples. Food Chem 2019; 274: 415-21.
[http://dx.doi.org/10.1016/j.foodchem.2018.08.042] [PMID: 30372959]
[48]
Aggarwal BB, Sundaram C, Malani N, Ichikawa H. The Indian solid gold.Curcumin: The molecular targets and therapeutic uses of curcumin in health and disease Springer Science & Business Media. 2007; pp. 1-75.
[http://dx.doi.org/10.1007/978-0-387-46401-5_1]
[49]
LoTempio MM, Veena MS, Steele HL, et al. Curcumin suppresses growth of head and neck squamous cell carcinoma. Clin Cancer Res 2005; 11(19 Pt 1): 6994-7002.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0301] [PMID: 16203793]
[50]
Thangapazham RL, Sharma A, Maheshwari RK. Beneficial role of curcumin in skin diseases.The molecular targets and therapeutic uses of curcumin in health and disease. Boston, MA: Springer Science & Business Media 2007; pp. 343-57.
[http://dx.doi.org/10.1007/978-0-387-46401-5_15]
[51]
Urbanska K, Romanowska-Dixon B, Matuszak Z, Oszajca J, Nowak-Sliwinska P, Stochel G. Indocyanine green as a prospective sensitizer for photodynamic therapy of melanomas. Acta Biochim Pol 2002; 49(2): 387-91.
[http://dx.doi.org/10.18388/abp.2002_3797] [PMID: 12362980]
[52]
Mamoon AM, Gamal-Eldeen AM, Ruppel ME, Smith RJ, Tsang T, Miller LM. In vitro efficiency and mechanistic role of indocyanine green as photodynamic therapy agent for human melanoma. Photodiagn Photodyn Ther 2009; 6(2): 105-16.
[http://dx.doi.org/10.1016/j.pdpdt.2009.05.002] [PMID: 19683211]
[53]
Simplicio FI, Maionchi F, Hioka N. Terapia fotodinâmica: aspectos farmacológicos, aplicações e avanços recentes no desenvolvimento de medicamentos. Quim Nova 2002; 25(5): 801-7.
[http://dx.doi.org/10.1590/S0100-40422002000500016]
[54]
Deda DK, Araki K. Nanotechnology, light and chemical action: an effective combination to kill cancer cells. J Braz Chem Soc 2015; 26(12): 2448-70.
[http://dx.doi.org/10.5935/0103-5053.20150316]
[55]
Dragieva G, Schärer L, Dummer R, Kempf W. Photodynamic therapy--a new treatment option for epithelial malignancies of the skin. Onkologie 2004; 27(4): 407-11.
[PMID: 15347900]
[56]
Braathen LR, Szeimies RM, Basset-Seguin N, et al. International Society for Photodynamic Therapy in Dermatology. Guidelines on the use of photodynamic therapy for nonmelanoma skin cancer: an international consensus. International Society for Photodynamic Therapy in Dermatology, 2005. J Am Acad Dermatol 2007; 56(1): 125-43.
[http://dx.doi.org/10.1016/j.jaad.2006.06.006] [PMID: 17190630]
[57]
Wen X, Li Y, Hamblin MR. Photodynamic therapy in dermatology beyond non-melanoma cancer: An update. Photodiagn Photodyn Ther 2017; 19: 140-52.
[http://dx.doi.org/10.1016/j.pdpdt.2017.06.010] [PMID: 28647616]
[58]
Boer M, Duchnik E, Maleszka R, Marchlewicz M. Structural and biophysical characteristics of human skin in maintaining proper epidermal barrier function. Postepy Dermatol Alergol 2016; 33(1): 1-5.
[http://dx.doi.org/10.5114/pdia.2015.48037] [PMID: 26985171]
[59]
Peng Q, Berg K, Moan J, Kongshaug M, Nesland JM. 5-Aminolevulinic acid-based photodynamic therapy: principles and experimental research. Photochem Photobiol 1997; 65(2): 235-51.
[http://dx.doi.org/10.1111/j.1751-1097.1997.tb08549.x] [PMID: 9066303]
[60]
Huang YY, Sharma SK, Dai T, et al. Can nanotechnology potentiate photodynamic therapy? Nanotechnol Rev 2012; 1(2): 111-46.
[http://dx.doi.org/10.1515/ntrev-2011-0005] [PMID: 26361572]
[61]
Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 2010; 75(1): 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[62]
Uchechi O, Ogbonna JD, Attama AA. Nanoparticles for dermal and transdermal drug delivery. Application of Nanotechnology in Drug Delivery 2014; 4: 193-227.
[http://dx.doi.org/10.5772/58672]
[63]
Rezvantalab S, Drude NI, Moraveji MK, et al. PLGA-based nanoparticles in cancer treatment. Front Pharmacol 2018; 9: 1260.
[http://dx.doi.org/10.3389/fphar.2018.01260] [PMID: 30450050]
[64]
Vilos C. Nanotechnology in preclinical and clinical drug development. Int J Med Surg Sci 2014; 1(1): 73-93.
[http://dx.doi.org/10.32457/ijmss.2014.011]
[65]
Park J, Mattessich T, Jay SM, Agawu A, Saltzman WM, Fahmy TM. Enhancement of surface ligand display on PLGA nanoparticles with amphiphilic ligand conjugates. J Control Release 2011; 156(1): 109-15.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.025] [PMID: 21723893]
[66]
Zhang Z, Tsai PC, Ramezanli T, Michniak-Kohn BB. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2013; 5(3): 205-18.
[http://dx.doi.org/10.1002/wnan.1211] [PMID: 23386536]
[67]
Papakostas D, Rancan F, Sterry W, Blume-Peytavi U, Vogt A. Nanoparticles in dermatology. Arch Dermatol Res 2011; 303(8): 533-50.
[http://dx.doi.org/10.1007/s00403-011-1163-7] [PMID: 21837474]
[68]
Barua S, Mitragotri S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today 2014; 9(2): 223-43.
[http://dx.doi.org/10.1016/j.nantod.2014.04.008] [PMID: 25132862]
[69]
da Silva CL, Del Ciampo JO, Rossetti FC, Bentley MV, Pierre MB. Improved in vitro and in vivo cutaneous delivery of protoporphyrin IX from PLGA-based nanoparticles. Photochem Photobiol 2013; 89(5): 1176-84.
[http://dx.doi.org/10.1111/php.12121] [PMID: 23800045]
[70]
da Silva CL, Del Ciampo JO, Rossetti FC, Bentley MV, Pierre MB. PLGA nanoparticles as delivery systems for protoporphyrin IX in topical PDT: cutaneous penetration of photosensitizer observed by fluorescence microscopy. J Nanosci Nanotechnol 2013; 13(10): 6533-40.
[http://dx.doi.org/10.1166/jnn.2013.7789] [PMID: 24245111]
[71]
de Oliveira Miguel J, da Silva DB, da Silva GC, et al. Polymeric nanoparticles favor the in vitro dermal accumulation of Protoporphyrin IX (PpIX) with optimal biocompatibility and cellular recovery in culture of healthy dermal fibroblasts after Photodynamic Therapy. J Photochem Photobiol Chem 2020; 386: 112109.
[http://dx.doi.org/10.1016/j.jphotochem.2019.112109]
[72]
Shi L, Wang X, Zhao F, et al. In vitro evaluation of 5-aminolevulinic acid (ALA) loaded PLGA nanoparticles. Int J Nanomedicine 2013; 8: 2669-76.
[http://dx.doi.org/10.2147/IJN.S45821] [PMID: 23926429]
[73]
Wang X, Shi L, Tu Q, et al. Treating cutaneous squamous cell carcinoma using 5-aminolevulinic acid polylactic-co-glycolic acid nanoparticle-mediated photodynamic therapy in a mouse model. Int J Nanomedicine 2015; 10: 347-55.
[PMID: 25609949]
[74]
Siqueira-Moura MP, Primo FL, Espreafico EM, Tedesco AC. Development, characterization, and photocytotoxicity assessment on human melanoma of chloroaluminum phthalocyanine nanocapsules. Mater Sci Eng C 2013; 33(3): 1744-52.
[http://dx.doi.org/10.1016/j.msec.2012.12.088] [PMID: 23827632]
[75]
Sebak AA, Gomaa IEO, ElMeshad AN, AbdelKader MH. Targeted photodynamic-induced singlet oxygen production by peptide-conjugated biodegradable nanoparticles for treatment of skin melanoma. Photodiagn Photodyn Ther 2018; 23: 181-9.
[http://dx.doi.org/10.1016/j.pdpdt.2018.05.017] [PMID: 29885810]
[76]
van Nostrum CF. Polymeric micelles to deliver photosensitizers for photodynamic therapy. Adv Drug Deliv Rev 2004; 56(1): 9-16.
[http://dx.doi.org/10.1016/j.addr.2003.07.013] [PMID: 14706442]
[77]
Li L, Huh KM. Polymeric nanocarrier systems for photodynamic therapy. Biomater Res 2014; 18(1): 19.
[http://dx.doi.org/10.1186/2055-7124-18-19] [PMID: 26331070]
[78]
Makhmalzade BS, Chavoshy F. Polymeric micelles as cutaneous drug delivery system in normal skin and dermatological disorders. J Adv Pharm Technol Res 2018; 9(1): 2-8.
[http://dx.doi.org/10.4103/japtr.JAPTR_314_17] [PMID: 29441317]
[79]
Pucelik B, Arnaut LG, Stochel G, Dąbrowski JM. Design of Pluronic-based formulation for enhanced redaporfin-photodynamic therapy against pigmented melanoma. ACS Appl Mater Interfaces 2016; 8(34): 22039-55.
[http://dx.doi.org/10.1021/acsami.6b07031] [PMID: 27492026]
[80]
Nagpal K, Singh SK, Mishra DN. Chitosan nanoparticles: a promising system in novel drug delivery. Chem Pharm Bull (Tokyo) 2010; 58(11): 1423-30.
[http://dx.doi.org/10.1248/cpb.58.1423] [PMID: 21048331]
[81]
Kim S. Competitive biological activities of chitosan and its derivatives: Antimicrobial, antioxidant, anticancer, and anti-inflammatory activities. Int J Polym Sci 2018; 19: 2018.
[http://dx.doi.org/10.1155/2018/1708172]
[82]
Ferreira DM, Saga YY, Aluicio-Sarduy E, Tedesco AC. Chitosan nanoparticles for melanoma cancer treatment by Photodynamic Therapy and electrochemotherapy using aminolevulinic acid derivatives. Curr Med Chem 2013; 20(14): 1904-11.
[http://dx.doi.org/10.2174/0929867311320140007] [PMID: 23409713]
[83]
Keyal U, Luo Q, Bhatta AK, et al. Zinc pthalocyanine-loaded chitosan/mPEG-PLA nanoparticles-mediated photodynamic therapy for the treatment of cutaneous squamous cell carcinoma. J Biophotonics 2018; 11(11): e201800114.
[http://dx.doi.org/10.1002/jbio.201800114] [PMID: 29893047]
[84]
Couleaud P, Morosini V, Frochot C, Richeter S, Raehm L, Durand JO. Silica-based nanoparticles for photodynamic therapy applications. Nanoscale 2010; 2(7): 1083-95.
[http://dx.doi.org/10.1039/c0nr00096e] [PMID: 20648332]
[85]
Zhao B, Yin JJ, Bilski PJ, Chignell CF, Roberts JE, He YY. Enhanced photodynamic efficacy towards melanoma cells by encapsulation of Pc4 in silica nanoparticles. Toxicol Appl Pharmacol 2009; 241(2): 163-72.
[http://dx.doi.org/10.1016/j.taap.2009.08.010] [PMID: 19695274]
[86]
Dam DH, Zhao L, Jelsma SA, Zhao Y, Paller AS. Folic acid functionalized hollow nanoparticles for selective photodynamic therapy of cutaneous squamous cell carcinoma. Mater Chem Front 2019; 3(6): 1113-22.
[http://dx.doi.org/10.1039/C9QM00144A]
[87]
Narayan R, Nayak UY, Raichur AM, Garg S. Mesoporous silica nanoparticles: A comprehensive review on synthesis and recent advances. Pharmaceutics 2018; 10(3): 118.
[http://dx.doi.org/10.3390/pharmaceutics10030118] [PMID: 30082647]
[88]
Ma X, Qu Q, Zhao Y. Targeted delivery of 5-aminolevulinic acid by multifunctional hollow mesoporous silica nanoparticles for photodynamic skin cancer therapy. ACS Appl Mater Interfaces 2015; 7(20): 10671-6.
[89]
Rizzi M, Tonello S, Estevão BM, Gianotti E, Marchese L, Renò F. Verteporfin based silica nanoparticle for in vitro selective inhibition of human highly invasive melanoma cell proliferation. J Photochem Photobiol B 2017; 167: 1-6.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.12.021] [PMID: 28039784]
[90]
Huang X, El-Sayed MA. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 2010; 1(1): 13-28.
[http://dx.doi.org/10.1016/j.jare.2010.02.002]
[91]
Amini SM, Kharrazi S, Hadizadeh M, Fateh M, Saber R. Effect of gold nanoparticles on photodynamic efficiency of 5-aminolevolenic acid photosensitiser in epidermal carcinoma cell line: an in vitro study. IET Nanobiotechnol 2013; 7(4): 151-6.
[http://dx.doi.org/10.1049/iet-nbt.2013.0021] [PMID: 24206772]
[92]
Hadizadeh M, Fateh M. Synergistic cytotoxic effect of gold nanoparticles and 5-aminolevulinic acid-mediated photodynamic therapy against skin cancer cells. Iran J Med Sci 2014; 39(5): 452-8.
[PMID: 25242844]
[93]
Chi YF, Qin JJ, Li Z, Ge Q, Zeng WH. Enhanced anti-tumor efficacy of 5-aminolevulinic acid-gold nanoparticles-mediated photodynamic therapy in cutaneous squamous cell carcinoma cells. Braz J Med Biol Res 2020; 53(5): e8457.
[http://dx.doi.org/10.1590/1414-431x20208457] [PMID: 32348428]
[94]
Camerin M, Moreno M, Marín MJ, et al. Delivery of a hydrophobic phthalocyanine photosensitizer using PEGylated gold nanoparticle conjugates for the in vivo photodynamic therapy of amelanotic melanoma. Photochem Photobiol Sci 2016; 15(5): 618-25.
[http://dx.doi.org/10.1039/C5PP00463B] [PMID: 27064601]
[95]
Chen ZA, Kuthati Y, Kankala RK, et al. Encapsulation of palladium porphyrin photosensitizer in layered metal oxide nanoparticles for photodynamic therapy against skin melanoma. Sci Technol Adv Mater 2015; 16(5): 054205.
[http://dx.doi.org/10.1088/1468-6996/16/5/054205] [PMID: 27877834]
[96]
Naidoo C, Kruger CA, Abrahamse H. Targeted photodynamic therapy treatment of in vitro A375 metastatic melanoma cells. Oncotarget 2019; 10(58): 6079-95.
[http://dx.doi.org/10.18632/oncotarget.27221] [PMID: 31692760]
[97]
Akbarzadeh A, Samiei M, Davaran S. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 2012; 7(1): 144.
[http://dx.doi.org/10.1186/1556-276X-7-144] [PMID: 22348683]
[98]
McCarthy JR, Kelly KA, Sun EY, Weissleder R. Targeted delivery of multifunctional magnetic nanoparticles. Nanomedicine (Lond) 2007; 2(2): 153-67.
[http://dx.doi.org/10.2217/17435889.2.2.153] [PMID: 17716118]
[99]
Guo R, Peng H, Tian Y, Shen S, Yang W. Mitochondria‐targeting magnetic composite nanoparticles for enhanced phototherapy of cancer. Small 2016; 12(33): 4541-52.
[http://dx.doi.org/10.1002/smll.201601094] [PMID: 27390093]
[100]
Fudimura KA, Seabra AB, Santos MC, Haddad PS. Synthesis and characterization of methylene blue-containing silica-coated magnetic nanoparticles for photodynamic therapy. J Nanosci Nanotechnol 2017; 17(1): 133-42.
[http://dx.doi.org/10.1166/jnn.2017.12715] [PMID: 29617094]
[101]
Matlou GG, Oluwole DO, Prinsloo E, Nyokong T. Photodynamic therapy activity of zinc phthalocyanine linked to folic acid and magnetic nanoparticles. J Photochem Photobiol B 2018; 186: 216-24.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.07.025] [PMID: 30077918]
[102]
Haimov-Talmoud E, Harel Y, Schori H, et al. Magnetic Targeting of mTHPC To Improve the Selectivity and Efficiency of Photodynamic Therapy. ACS Appl Mater Interfaces 2019; 11(49): 45368-80.
[http://dx.doi.org/10.1021/acsami.9b14060] [PMID: 31755692]
[103]
Mbakidi JP, Drogat N, Granet R, et al. Hydrophilic chlorin-conjugated magnetic nanoparticles--potential anticancer agent for the treatment of melanoma by PDT. Bioorg Med Chem Lett 2013; 23(9): 2486-90.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.039] [PMID: 23541648]
[104]
Madheswaran T, Kandasamy M, Bose RJ, Karuppagounder V. Current potential and challenges in the advances of liquid crystalline nanoparticles as drug delivery systems. Drug Discov Today 2019; 24(7): 1405-12.
[http://dx.doi.org/10.1016/j.drudis.2019.05.004] [PMID: 31102731]
[105]
Chen Y, Ma P, Gui S. Cubic and hexagonal liquid crystals as drug delivery systems. BioMed Res Int 2014; 2014: 815981.
[http://dx.doi.org/10.1155/2014/815981] [PMID: 24995330]
[106]
Gabboun NH, Najib NM, Ibrahim HG, Assaf S. Release of salicylic acid, diclofenac acid and diclofenac acid salts from isotropic and anisotropic nonionic surfactant systems across rat skin. Int J Pharm 2001; 212(1): 73-80.
[http://dx.doi.org/10.1016/S0378-5173(00)00585-8] [PMID: 11165822]
[107]
Silva Garcia Praca F, Silva Garcia Medina W, Petrilli R, Vitoria Lopes Badra Bentley M. Liquid crystal nanodispersions enable the cutaneous delivery of photosensitizer for topical PDT: fluorescence microscopy study of skin penetration. Curr Nanosci 2012; 8(4): 535-40.
[http://dx.doi.org/10.2174/157341312801784203]
[108]
Petrilli R. SG Praca F, H Carollo AR, SG Medina W, de Oliveira KT, CA Fantini M, PMS Neves MD, AS Cavaleiro J, A Serra O, Iamamoto Y, LB Bentley MV. Nanoparticles of lyotropic liquid crystals: A novel strategy for the topical delivery of a chlorin derivative for photodynamic therapy of skin cancer. Curr Nanosci 2013; 9(4): 434-41.
[http://dx.doi.org/10.2174/1573413711309040003]
[109]
Rossetti FC, Depieri LV, Praça FG, et al. Optimization of protoporphyrin IX skin delivery for topical photodynamic therapy: Nanodispersions of liquid-crystalline phase as nanocarriers. Eur J Pharm Sci 2016; 83: 99-108.
[http://dx.doi.org/10.1016/j.ejps.2015.12.003] [PMID: 26657201]
[110]
de Salis GV, Praça FS, de Araújo MM, Eloy JO, Medina WS. Lipid-based nanocarriers improved ZnPcSO4 cellular uptake in human keratinocytes for use in topical photodynamic therapy. Indian J Med Res Pharm Sci 2017; 4(5): 23-32.
[111]
Rajpoot K. Solid lipid nanoparticles: a promising nanomaterial in drug delivery. Curr Pharm Des 2019; 25(37): 3943-59.
[http://dx.doi.org/10.2174/1381612825666190903155321] [PMID: 31481000]
[112]
Goto PL, Siqueira-Moura MP, Tedesco AC. Application of aluminum chloride phthalocyanine-loaded solid lipid nanoparticles for photodynamic inactivation of melanoma cells. Int J Pharm 2017; 518(1-2): 228-41.
[http://dx.doi.org/10.1016/j.ijpharm.2017.01.004] [PMID: 28063902]
[113]
Almeida EDP, Dipieri LV, Rossetti FC, et al. Skin permeation, biocompatibility and antitumor effect of chloroaluminum phthalocyanine associated to oleic acid in lipid nanoparticles. Photodiagn Photodyn Ther 2018; 24: 262-73.
[http://dx.doi.org/10.1016/j.pdpdt.2018.10.002] [PMID: 30290231]
[114]
Selvamuthukumar S, Velmurugan R. Nanostructured lipid carriers: a potential drug carrier for cancer chemotherapy. Lipids Health Dis 2012; 11(1): 159.
[http://dx.doi.org/10.1186/1476-511X-11-159] [PMID: 23167765]
[115]
Beloqui A, Solinís MÁ, Rodríguez-Gascón A, Almeida AJ, Préat V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine (Lond) 2016; 12(1): 143-61.
[http://dx.doi.org/10.1016/j.nano.2015.09.004] [PMID: 26410277]
[116]
Sharma G, Thakur K, Raza K, Singh B, Katare OP. Nanostructured lipid carriers: a new paradigm in topical delivery for dermal and transdermal applications. Crit Rev Ther Drug Carrier Syst 2017; 34(4): 355-86.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2017019047] [PMID: 29199589]
[117]
Qidwai A, Khan S, Md S, et al. Nanostructured lipid carrier in photodynamic therapy for the treatment of basal-cell carcinoma. Drug Deliv 2016; 23(4): 1476-85.
[http://dx.doi.org/10.3109/10717544.2016.1165310] [PMID: 26978275]
[118]
Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine 2015; 10: 975-99.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[119]
Derycke AS, de Witte PA. Liposomes for photodynamic therapy. Adv Drug Deliv Rev 2004; 56(1): 17-30.
[http://dx.doi.org/10.1016/j.addr.2003.07.014] [PMID: 14706443]
[120]
Düzgüneş N, Piskorz J, Skupin-Mrugalska P, Goslinski T, Mielcarek J, Konopka K. Photodynamic therapy of cancer with liposomal photosensitizers. Ther Deliv 2018; 9(11): 823-32.
[http://dx.doi.org/10.4155/tde-2018-0050] [PMID: 30444459]
[121]
Dragicevic-Curic N, Fahr A. Liposomes in topical photodynamic therapy. Expert Opin Drug Deliv 2012; 9(8): 1015-32.
[http://dx.doi.org/10.1517/17425247.2012.697894] [PMID: 22731896]
[122]
Lin MW, Huang YB, Chen CL, et al. A formulation study of 5-aminolevulinic encapsulated in DPPC liposomes in melanoma treatment. Int J Med Sci 2016; 13(7): 483-9.
[http://dx.doi.org/10.7150/ijms.15411] [PMID: 27429584]
[123]
Besic Gyenge E, Forny P, Lüscher D, Laass A, Walt H, Maake C. Effects of hypericin and a chlorin based photosensitizer alone or in combination in squamous cell carcinoma cells in the dark. Photodiagn Photodyn Ther 2012; 9(4): 321-31.
[http://dx.doi.org/10.1016/j.pdpdt.2012.03.006] [PMID: 23200013]
[124]
Samy NA, Salah MM, Ali MF, Sadek AM. Effect of methylene blue-mediated photodynamic therapy for treatment of basal cell carcinoma. Lasers Med Sci 2015; 30(1): 109-15.
[http://dx.doi.org/10.1007/s10103-014-1609-1] [PMID: 25030404]
[125]
Grandi V, Baldi I, Cappugi P, Mori M, Pimpinelli N. Indole 3-acetic acid-photodynamic therapy in the treatment of multiple actinic keratoses: A proof of concept pilot study. Photodiagn Photodyn Ther 2016; 16: 17-22.
[http://dx.doi.org/10.1016/j.pdpdt.2016.08.006] [PMID: 27565032]
[126]
Garg V, Singh H, Bimbrawh S, et al. Ethosomes and transfersomes: principles, perspectives and practices. Curr Drug Deliv 2017; 14(5): 613-33.
[http://dx.doi.org/10.2174/1567201813666160520114436] [PMID: 27199229]
[127]
Oh EK, Jin SE, Kim JK, Park JS, Park Y, Kim CK. Retained topical delivery of 5-aminolevulinic acid using cationic ultradeformable liposomes for photodynamic therapy. Eur J Pharm Sci 2011; 44(1-2): 149-57.
[http://dx.doi.org/10.1016/j.ejps.2011.07.003] [PMID: 21782942]
[128]
Nasr S, Rady M, Gomaa I, et al. Ethosomes and lipid-coated chitosan nanocarriers for skin delivery of a chlorophyll derivative: A potential treatment of squamous cell carcinoma by photodynamic therapy. Int J Pharm 2019; 568: 118528.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118528] [PMID: 31323373]
[129]
Fadel M, Samy N, Nasr M, Alyoussef AA. Topical colloidal indocyanine green-mediated photodynamic therapy for treatment of basal cell carcinoma. Pharm Dev Technol 2017; 22(4): 545-50.
[http://dx.doi.org/10.3109/10837450.2016.1146294] [PMID: 26895257]
[130]
Gomaa I, Sebak A, Afifi N, Abdel-Kader M. Liposomal delivery of ferrous chlorophyllin: A novel third generation photosensitizer for in vitro PDT of melanoma. Photodiagn Photodyn Ther 2017; 18: 162-70.
[http://dx.doi.org/10.1016/j.pdpdt.2017.01.186] [PMID: 28242435]
[131]
Barbugli PA, Alves CP, Espreafico EM, Tedesco AC. Photodynamic therapy utilizing liposomal ClAlPc in human melanoma 3D cell cultures. Exp Dermatol 2015; 24(12): 970-2.
[http://dx.doi.org/10.1111/exd.12815] [PMID: 26194528]
[132]
Lee EH, Lim SJ, Lee MK. Chitosan-coated liposomes to stabilize and enhance transdermal delivery of indocyanine green for photodynamic therapy of melanoma. Carbohydr Polym 2019; 224: 115143.
[http://dx.doi.org/10.1016/j.carbpol.2019.115143] [PMID: 31472877]
[133]
Wang S, Liu H, Xin J, et al. Chlorin-based photoactivable galectin-3-inhibitor nanoliposome for enhanced photodynamic therapy and NK cell-related immunity in melanoma. ACS Appl Mater Interfaces 2019; 11(45): 41829-41.
[http://dx.doi.org/10.1021/acsami.9b09560] [PMID: 31617343]
[134]
de Morais FAP, Gonçalves RS, Vilsinski BH, et al. Hypericin photodynamic activity in DPPC liposomes - part II: stability and application in melanoma B16-F10 cancer cells. Photochem Photobiol Sci 2020; 19(5): 620-30.
[http://dx.doi.org/10.1039/C9PP00284G] [PMID: 32248218]
[135]
Passos SK, de Souza PE, Soares PK, et al. Quantitative approach to skin field cancerization using a nanoencapsulated photodynamic therapy agent: a pilot study. Clin Cosmet Investig Dermatol 2013; 6: 51-9.
[PMID: 23450821]
[136]
Zhang LW, Al-Suwayeh SA, Hung CF, Chen CC, Fang JY. Oil components modulate the skin delivery of 5-aminolevulinic acid and its ester prodrug from oil-in-water and water-in-oil nanoemulsions. Int J Nanomedicine 2011; 6: 693-704.
[PMID: 21556344]
[137]
Szeimies RM, Radny P, Sebastian M, et al. Photodynamic therapy with BF-200 ALA for the treatment of actinic keratosis: results of a prospective, randomized, double-blind, placebo-controlled phase III study. Br J Dermatol 2010; 163(2): 386-94.
[http://dx.doi.org/10.1111/j.1365-2133.2010.09873.x] [PMID: 20518784]
[138]
Reinhold U, Dirschka T, Ostendorf R, et al. A randomized, double-blind, phase III, multicentre study to evaluate the safety and efficacy of BF-200 ALA (Ameluz(®)) vs. placebo in the field-directed treatment of mild-to-moderate actinic keratosis with photodynamic therapy (PDT) when using the BF-RhodoLED(®) lamp. Br J Dermatol 2016; 175(4): 696-705.
[http://dx.doi.org/10.1111/bjd.14498] [PMID: 26921093]
[139]
Dirschka T, Radny P, Dominicus R, et al. AK-CT002 Study Group. Photodynamic therapy with BF-200 ALA for the treatment of actinic keratosis: results of a multicentre, randomized, observer-blind phase III study in comparison with a registered methyl-5-aminolaevulinate cream and placebo. Br J Dermatol 2012; 166(1): 137-46.
[http://dx.doi.org/10.1111/j.1365-2133.2011.10613.x] [PMID: 21910711]
[140]
Neittaanmäki-Perttu N, Karppinen TT, Grönroos M, Tani TT, Snellman E. Daylight photodynamic therapy for actinic keratoses: a randomized double-blinded nonsponsored prospective study comparing 5-aminolaevulinic acid nanoemulsion (BF-200) with methyl-5-aminolaevulinate. Br J Dermatol 2014; 171(5): 1172-80.
[http://dx.doi.org/10.1111/bjd.13326] [PMID: 25109244]
[141]
Fu C, Kuang BH, Qin L, Zeng XY, Wang BC. Efficacy and safety of photodynamic therapy with amino-5-laevulinate nanoemulsion versus methyl-5-aminolaevulinate for actinic keratosis: A meta-analysis. Photodiagn Photodyn Ther 2019; 27: 408-14.
[http://dx.doi.org/10.1016/j.pdpdt.2019.07.009] [PMID: 31310826]
[142]
Räsänen JE, Neittaanmäki N, Ylitalo L, et al. 5-aminolaevulinic acid nanoemulsion is more effective than methyl-5-aminolaevulinate in daylight photodynamic therapy for actinic keratosis: a nonsponsored randomized double-blind multicentre trial. Br J Dermatol 2019; 181(2): 265-74.
[http://dx.doi.org/10.1111/bjd.17311] [PMID: 30329163]
[143]
Morton CA, Dominicus R, Radny P, et al. A randomized, multinational, noninferiority, phase III trial to evaluate the safety and efficacy of BF-200 aminolaevulinic acid gel vs. methyl aminolaevulinate cream in the treatment of nonaggressive basal cell carcinoma with photodynamic therapy. Br J Dermatol 2018; 179(2): 309-19.
[http://dx.doi.org/10.1111/bjd.16441] [PMID: 29432644]
[144]
Maisch T, Santarelli F, Schreml S, Babilas P, Szeimies RM. Fluorescence induction of protoporphyrin IX by a new 5-aminolevulinic acid nanoemulsion used for photodynamic therapy in a full-thickness ex vivo skin model. Exp Dermatol 2010; 19(8): e302-5.
[http://dx.doi.org/10.1111/j.1600-0625.2009.01001.x] [PMID: 19845760]
[145]
Schmitz L, Novak B, Hoeh AK, Luebbert H, Dirschka T. Epidermal penetration and protoporphyrin IX formation of two different 5-aminolevulinic acid formulations in ex vivo human skin. Photodiagn Photodyn Ther 2016; 14: 40-6.
[http://dx.doi.org/10.1016/j.pdpdt.2015.11.004] [PMID: 26607556]
[146]
Primo FL, Bentley MV, Tedesco AC. Photophysical studies and in vitro skin permeation/retention of Foscan/nanoemulsion (NE) applicable to photodynamic therapy skin cancer treatment. J Nanosci Nanotechnol 2008; 8(1): 340-7.
[http://dx.doi.org/10.1166/jnn.2008.18137] [PMID: 18468080]
[147]
Primo FL, Rodrigues MM, Simioni AR, Bentley MV, Morais PC, Tedesco AC. In vitro studies of cutaneous retention of magnetic nanoemulsion loaded with zinc phthalocyanine for synergic use in skin cancer treatment. J Magn Magn Mater 2008; 320(14): e211-4.
[http://dx.doi.org/10.1016/j.jmmm.2008.02.050]
[148]
de Menezes Furtado C, de Faria FS, Azevedo RB, et al. Tectona grandis leaf extract, free and associated with nanoemulsions, as a possible photosensitizer of mouse melanoma B16 cell. J Photochem Photobiol B 2017; 167: 242-8.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.01.004] [PMID: 28088105]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy