Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Biomimetic Copper Oxide Nanoparticles and its Validation Through In-silico Approach on Cardiac Enzymes

Author(s): Jacquline Rosy P, VenkatKumar Shanmugam*, Jebastin Sonia Jas and Santhoshkumar Jayakodi

Volume 18, Issue 1, 2022

Published on: 01 January, 2021

Page: [86 - 93] Pages: 8

DOI: 10.2174/1573413716666210101161139

Abstract

Background: The present study outlines the green synthesis of copper oxide (GS-CuO) nanoparticles using Magnolia champaca plant floral extract for the first time. Computational analysis showed the role of GS-CuO nanoparticles on cardiac enzymes ACE2 and SOD1 functional expression through hydrogen bond interaction with amino acid residues

Method: The synthesized GS-CuO nanoparticles were characterized by various techniques like XRay Diffraction, UV-Vis Spectrophotometer, Fourier Transform Infrared Spectroscopy, Scanning Electron Microscopy and Transmission Electron Microscopy

Results: Nanoparticles demonstrate the presence of spherical shape and size 20 nm. The particles have many active sites as compared to the bulk materials, and thus, computational analysis was conducted against angiotensin-converting enzyme and superoxide dismutase to visualize the cardioprotective effects

Conclusion: The in-silico approach established valuable information on the cardioprotective effects of green synthesized oxide nanoparticles using Magnolia champaca.

Keywords: GS-CuO nanoparticles, magnolia champaca, GCMS, TEM, in-silico approach, LigPlot

« Previous
Graphical Abstract
[1]
Narayanan, K.B.; Sakthivel, N. Biological synthesis of metal nanoparticles by microbes. Adv. Colloid Interface Sci., 2010, 156(1-2), 1-13.
[http://dx.doi.org/10.1016/j.cis.2010.02.001] [PMID: 20181326]
[2]
Sankar, R.; Manikandan, P.; Malarvizhi, V.; Fathima, T.; Shivashangari, K.S.; Ravikumar, V. Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 121, 746-750.
[http://dx.doi.org/10.1016/j.saa.2013.12.020] [PMID: 24388701]
[3]
Mohan Kumar, K.; Sinha, M.; Mandal, B.K.; Ghosh, A.R.; Siva Kumar, K.; Sreedhara Reddy, P. Green synthesis of silver nanoparticles using Terminalia chebula extract at room temperature and their antimicrobial studies. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 91, 228-233.
[http://dx.doi.org/10.1016/j.saa.2012.02.001] [PMID: 22381795]
[4]
Sahooli, M.; Sabbaghi, S.; Saboori, R. Synthesis and characterization of mono sized CuO nanoparticles. Mater. Lett., 2012, 81, 169-172.
[http://dx.doi.org/10.1016/j.matlet.2012.04.148]
[5]
Khashan, K.S.; Sulaiman, G.M.; Abdulameer, F.A. Synthesis and antibacterial activity of CuO nanoparticles suspension induced by laser ablation in liquid. Arab. J. Sci. Eng., 2016, 41(1), 301-310.
[http://dx.doi.org/10.1007/s13369-015-1733-7]
[6]
Chang, H.; Jwo, C.; Lo, C.; Tsung, T.; Kao, M.; Lin, H. Rheology of CuO nanoparticle suspension prepared by ASNSS. Rev. Adv. Mater. Sci., 2005, 10(2), 128-132.
[7]
Ahamed, M.; Siddiqui, M.A.; Akhtar, M.J.; Ahmad, I.; Pant, A.B.; Alhadlaq, H.A. Genotoxic potential of copper oxide nanoparticles in human lung epithelial cells. Biochem. Biophys. Res. Commun., 2010, 396(2), 578-583.
[http://dx.doi.org/10.1016/j.bbrc.2010.04.156] [PMID: 20447378]
[8]
Mortimer, M.; Kasemets, K.; Kahru, A. Toxicity of ZnO and CuO nanoparticles to ciliated protozoa Tetrahymena thermophila. Toxicology, 2010, 269(2-3), 182-189.
[http://dx.doi.org/10.1016/j.tox.2009.07.007] [PMID: 19622384]
[9]
Awual, M.R.; Hasan, M.M.; Shahat, A.; Naushad, M.; Shiwaku, H.; Yaita, T. Investigation of ligand immobilized nano-composite adsorbent for efficient cerium (III) detection and recovery. Chem. Eng. J., 2015, 265, 210-218.
[http://dx.doi.org/10.1016/j.cej.2014.12.052]
[10]
Grigore, M.E.; Biscu, E.R.; Holban, A.M.; Gestal, M.C.; Grumezescu, A.M. Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals (Basel), 2016, 9(4), 75.,
[http://dx.doi.org/10.3390/ph9040075] [PMID: 27916867]
[11]
Katwal, R.; Kaur, H.; Sharma, G.; Naushad, M.; Pathania, D. Electrochemical synthesized copper oxide nanoparticles for enhanced photocatalytic and antimicrobial activity. J. Ind. Eng. Chem., 2015, 31, 173-184.
[http://dx.doi.org/10.1016/j.jiec.2015.06.021]
[12]
Ghidan, A.Y.; Al-Antary, T.M.; Awwad, A.M. .Green synthesis of copper oxide nanoparticles using Punica granatum peels extract: Effect on green peach Aphid. Environ. Nanotechnol. Monit. Manag., 2016, 6, 95-98.,
[http://dx.doi.org/10.1016/j.enmm.2016.08.002]
[13]
Zhang, Q.; Zhang, K.; Xu, D.; Yang, G.; Huang, H.; Nie, F.; Liu, C.; Yang, S. CuO nanostructures: synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci., 2014, 60, 208-337.
[http://dx.doi.org/10.1016/j.pmatsci.2013.09.003]
[14]
Borkow, G.; Gabbay, J. Copper, an ancient remedy returning to fight microbial, fungal and viral infections. Curr. Chem. Biol., 2009, 3(3), 272-278.
[15]
Monisha, S.I.; Leela, G.D.J.; Immaculate, A.A.; Vimala, J.R. GC-MS analysis and green synthesis of copper nano particles using Vitex negundo L leaf extract. Int. J. Sci. Eng. Res., 7(8), 154-161.
[16]
Safarifard, V.; Morsali, A. Sonochemical syntheses of a nano-sized copper(II) supramolecule as a precursor for the synthesis of copper(II) oxide nanoparticles. Ultrason. Sonochem., 2012, 19(4), 823-829.
[http://dx.doi.org/10.1016/j.ultsonch.2011.12.013] [PMID: 22261473]
[17]
Pandiyarajan, T.; Udayabhaskar, R.; Vignesh, S.; James, R.A.; Karthikeyan, B. Synthesis and concentration dependent antibacterial activities of CuO nanoflakes. Mater. Sci. Eng. C, 2013, 33(4), 2020-2024.
[http://dx.doi.org/10.1016/j.msec.2013.01.021] [PMID: 23498227]
[18]
Kayani, Z.N.; Umer, M.; Riaz, S.; Naseem, S. Characterization of copper oxide nanoparticles fabricated by the sol–gel method. J. Electron. Mater., 2015, 44(10), 3704-3709.,
[http://dx.doi.org/10.1007/s11664-015-3867-5]
[19]
Outokesh, M.; Hosseinpour, M.; Ahmadi, S.; Mousavand, T.; Sadjadi, S.; Soltanian, W. Hydrothermal synthesis of CuO nanoparticles: study on effects of operational conditions on yield, purity, and size of the nanoparticles. Ind. Eng. Chem. Res., 2011, 50(6), 3540-3554.
[http://dx.doi.org/10.1021/ie1017089]
[20]
Jiang, T.; Wang, Y.; Meng, D.; Yu, M. Facile synthesis and photocatalytic performance of self-assembly CuO microspheres. Superlattices Microstruct., 2015, 85, 1-6.
[http://dx.doi.org/10.1016/j.spmi.2015.05.014]
[21]
Karthik, A.D.; Geetha, K. Synthesis of copper precursor, copper and its oxide nanoparticles by green chemical reduction method and its antimicrobial activity. J. Appl. Pharm. Sci., 2013, 3(5), 16.
[22]
Chen, J.; Zhang, F.; Wang, J.; Zhang, G.; Miao, B.; Fan, X.; Yan, D.; Yan, P. CuO nanowires synthesized by thermal oxidation route. J. Alloys Compd., 2008, 454(1-2), 268-273.,
[http://dx.doi.org/10.1016/j.jallcom.2006.12.032]
[23]
Li, X.; Liang, J.; Kishi, N.; Soga, T. Synthesis of cupric oxide nanowires on spherical surface by thermal oxidationmethod. Mater. Lett., 2013, 96, 192-194.
[http://dx.doi.org/10.1016/j.matlet.2013.01.056]
[24]
Fairushin, I.; Saifutdinov, A.; Sofronitskiy, A. Numerical and experimental studies of the synthesis of copper nanoparticles in a high-pressure discharge. High Energy Chem., 2020, 54(2), 150-153.
[http://dx.doi.org/10.1134/S0018143920020071]
[25]
Yang, C.; Xiao, F.; Wang, J.; Su, X. Synthesis and microwave modification of CuO nanoparticles: crystallinity and morphological variations, catalysis, and gas sensing. J. Colloid Interface Sci., 2014, 435, 34-42.
[http://dx.doi.org/10.1016/j.jcis.2014.08.044] [PMID: 25217728]
[26]
Gunalan, S.; Sivaraj, R.; Venckatesh, R. Aloe barbadensis Miller mediated green synthesis of mono-disperse copper oxide nanoparticles: optical properties. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 97, 1140-1144.
[http://dx.doi.org/10.1016/j.saa.2012.07.096] [PMID: 22940049]
[27]
Kumar, P.V.; Shameem, U.; Kollu, P.; Kalyani, R.; Pammi, S. Green synthesis of copper oxide nanoparticles using Aloe vera leaf extract and its antibacterial activity against fish bacterial pathogens. Bionanoscience, 2015, 5(3), 135-139.
[http://dx.doi.org/10.1007/s12668-015-0171-z]
[28]
Thekkae Padil, V.V.; Černík, M. Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int. J. Nanomedicine, 2013, 8, 889-898.
[PMID: 23467397]
[29]
Taran, M.; Rad, M.; Alavi, M. Antibacterial activity of copper oxide (CuO) nanoparticles biosynthesized by Bacillus sp. FU4: optimization of experiment design. Pharm. Sci., 2017, 23(3), 198-206.
[http://dx.doi.org/10.15171/PS.2017.30]
[30]
Alex, S.; Rani, P.; Soni, K.; Nair, D.S.; Reghunath, B. Biosynthesis of silver nanoparticles with antibacterial activity using leaf extract of Michelia Champaca. J. Plant Sci. Res., 2012, 28(1), 121-126.
[31]
Altikatoglu, M.; Attar, A.; Erci, F.; Cristache, C.M.; Isildak, I. Green synthesis of copper oxide nanoparticles using Ocimum basilicum extract and their antibacterial activity. Fresenius Environ. Bull., 2017, 25(12), 7832-7837.
[32]
Prakash, S.; Elavarasan, N.; Venkatesan, A.; Subashini, K.; Sowndharya, M.; Sujatha, V. Green synthesis of copper oxide nanoparticles and its effective applications in Biginelli reaction, BTB photodegradation and antibacterial activity. Adv. Powder Technol., 2018, 29(12), 3315-3326.
[http://dx.doi.org/10.1016/j.apt.2018.09.009]
[33]
Awwad, A.; Albiss, B.; Salem, N. Antibacterial activity of synthesized copper oxide nanoparticles using Malva sylvestris leaf extract. SMU Med J, 2015, 2(1), 91-101.
[34]
Ijaz, F.; Shahid, S.; Khan, S.A.; Ahmad, W.; Zaman, S. Green synthesis of copper oxide nanoparticles using Abutilon indicum leaf extract: Antimicrobial, antioxidant and photocatalytic dye degradation activitie. Trop. J. Pharm. Res., 2017, 16(4), 743-753.
[http://dx.doi.org/10.4314/tjpr.v16i4.2]
[35]
Naika, H.R.; Lingaraju, K.; Manjunath, K.; Kumar, D.; Nagaraju, G.; Suresh, D.; Nagabhushana, H. Green synthesis of CuO nanoparticles using Gloriosa superba L. extract and their antibacterial activity. J. Taibah Univ. Sci., 2015, 9(1), 7-12.
[http://dx.doi.org/10.1016/j.jtusci.2014.04.006]
[36]
Sukumar, S.; Rudrasenan, A.; Padmanabhan, N.D. Green-synthesized rice-shaped copper oxide nanoparticles using Caesalpinia bonducella seed extract and their applications. ACS Omega, 2020, 5(2), 1040-1051.
[http://dx.doi.org/10.1021/acsomega.9b02857] [PMID: 31984260]
[37]
Yugandhar, P.; Vasavi, T.; Devi, P.U.M.; Savithramma, N. Bioinspired green synthesis of copper oxide nanoparticles from Syzygium alternifolium (Wt.) Walp: characterization and evaluation of its synergistic antimicrobial and anticancer activity. Appl. Nanosci., 2017, 7(7), 417-427.
[http://dx.doi.org/10.1007/s13204-017-0584-9]
[38]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[39]
Kumari, P.; Panda, P.K.; Jha, E.; Kumari, K.; Nisha, K.; Mallick, M.A.; Verma, S.K. Mechanistic insight to ROS and Apoptosis regulated cytotoxicity inferred by green synthesized CuO nanoparticles from Calotropis gigantea to embryonic Zebrafish. Sci. Rep., 2017, 7(1), 16284.
[http://dx.doi.org/10.1038/s41598-017-16581-1] [PMID: 29176605]
[40]
Yedurkar, S.; Maurya, C.; Mahanwar, P. A biological approach for the synthesis of copper oxide nanoparticles by Ixora coccinea leaf extract. J. Mat. Environ. Sci., 2017, 8(4), 1173-1178.
[41]
Mohamed, E.A. Green synthesis of copper & copper oxide nanoparticles using the extract of seedless dates. Heliyon, 2020, 6(1)e03123
[http://dx.doi.org/10.1016/j.heliyon.2019.e03123] [PMID: 32042937]

© 2024 Bentham Science Publishers | Privacy Policy