Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Nanomaterials for Fuel Cell and Corrosion Inhibition: A Comprehensive Review

Author(s): Malini S. and K.S. Anantharaju*

Volume 17, Issue 4, 2021

Published on: 01 January, 2021

Page: [591 - 611] Pages: 21

DOI: 10.2174/1573413716666210101121907

Price: $65

Abstract

A transforming society towards sustainable industrial practices and products chooses to implement “Green Nanomaterial”, with high energy efficiency, minimizing the damage to the environment and exploitation of non-renewable energy resources. A combined overview of recent developments in green nanostructured fuel cells with enhanced durability and activity is presented in this review along with the advancements of green nano materials in the area of corrosion inhibition.

Fuel cells being the next generation ecofriendly energy source, the modification to the solid oxide, microbial and alkaline fuel cell through green nanomaterial are discussed with an emphasis on electrodes, electrolyte, electrode catalysts and membrane components. In addition, the role of green nanomaterial in the form of nano metal oxides, hydroxides, grains, dendrimers, gels, composites, functionalized graphene, halloysite nanotubes and ionic liquids in greening the phenomenon of corrosion inhibition, investigated by various researchers is briefly addressed.

As no single engineered green nanomaterial is emerging as unparalleled and most viable, they are evaluated according to their economic impact, diverse properties, durability and stability. Eventually, these materials with improvement in biocompatibility, solubility, fabrication and handling techniques are predicted to change the environmental and occupational scenario, with some of them already have been found to impact upon the altering global energy needs.

Keywords: Green nano-material, eco-friendly nanomaterial, green nano technology, corrosion inhibition, fuel cell, nano material applications.

Graphical Abstract
[1]
Nadagouda, M.N.; Speth, T.F.; Varma, R.S. Microwave-assisted green synthesis of silver nanostructures. Acc. Chem. Res., 2011, 44(7), 469-478.
[http://dx.doi.org/10.1021/ar1001457] [PMID: 21526846]
[2]
Vinayan, B.P.; Rupali, N.S. Ramaprabhu, Solar light assisted green synthesis of palladium nanoparticle decorated nitrogen doped graphene for hydrogen storage application. J. Mater. Chem., 2013, 1, 11192-11199.
[http://dx.doi.org/10.1039/c3ta12016c]
[3]
Aminuzzaman, M.; Ying, L.P.; Goh, W-S.; Watanabe, A. Green synthesis of zinc oxide nanoparticles using aqueous extract of Garcinia mangostana fruit pericarp and their photocatalytic activity. Bull. Mater. Sci., 2018, 41(50), 1-10.
[http://dx.doi.org/10.1007/s12034-018-1568-4]
[4]
Pandiyan, N.; Murugesan, B.; Sonamuthu, J.; Samayanan, S.; Mahalingam, S. Facile biological synthetic strategy to morphologically aligned CeO2/ZrO2 core nanoparticles using Justicia adhatoda extract and ionic liquid: Enhancement of its bio-medical properties. J. Photochem. Photobiol. B, 2018, 178, 481-488.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.11.036] [PMID: 29232572]
[5]
Liu, Y.; Gu, J.; Zhang, J.; Nie, N.; Fu, Y.; Li, W.; Yu, F. Controllable synthesis of nano-sized LiFePO4/C via a high shear mixer facilitated hydrothermal method for high rate Li-ion batteries. Electrochim. Acta, 2015, 173, 448-457.
[http://dx.doi.org/10.1016/j.electacta.2015.05.103]
[6]
Shivakrishna, P.; Ram, P.M.; Krishna, G.; Singara, C.M.A. Synthesis of silver nano particles from marine bacteria pseudomonas aerogenosa. Octa J. Biosciences, 2013, 1, 1108-1114.
[7]
Raliya, R.; Tarafdar, J.C. Biosynthesis and characterization of zinc, magnesium and titanium nanoparticles: An eco-friendly approach. Int. Nano Lett., 2014, 4, 93-99.
[http://dx.doi.org/10.1007/s40089-014-0093-8]
[8]
Prasad, T.N.V.K.V.; Venkata, S.R.K.; Naidu, R. Phyconanotechnology: synthesis of silver nanoparticles using brown marine algae Cystophora moniliformis and their characterisation. J. Appl. Phycol., 2013, 25, 177-182.
[http://dx.doi.org/10.1007/s10811-012-9851-z]
[9]
Chen, P-Y.; Dang, X.; Klug, M.T.; Noémie-Manuelle, D.C.; Qi, J.; Hyder, M.N.; Belcher, A.M.; Hammond, P.T. M13 virus-enabled synthesis of titanium dioxide nanowires for tunable mesoporous semiconducting networks. Chem. Mater., 2015, 27, 1531-1540.
[http://dx.doi.org/10.1021/cm503803u]
[10]
Zhao, Y.; Cao, B.; Lin, Z.; Su, X. Synthesis of CoFe2O4/C nano-catalyst with excellent performance by molten salt method and its application in 4-nitrophenol reduction. Environ. Pollut., 2019, 254. (Pt A)
[http://dx.doi.org/10.1016/j.envpol.2019.112961] [PMID: 31398635]
[11]
Abdolrezaei, F.; Sabet, M. In situ green synthesis of highly fluorescent Fe2O3 @CQD/graphene oxide using hard pistachio shells via the hydrothermal-assisted ball milling method. Luminescence, 2020, 35(5), 684-693.
[http://dx.doi.org/10.1002/bio.3773] [PMID: 31918455]
[12]
Kamali, M.; Costa, M.E.V.; Otero-Irurueta, G.; Capela, I. Ultrasonic irradiation as a green production route for coupling crystallinity and high specific surface area in iron nanomaterials. J. Clean. Prod., 2019, 211, 185-197.
[http://dx.doi.org/10.1016/j.jclepro.2018.11.127]
[13]
Gangapuram, B.R.; Bandi, R.; Alle, M.; Dadigala, R.; Kotu, G.M.; Guttena, V. Microwave assisted rapid green synthesis of gold nanoparticles using Annona squamosa L peel extract for the efficient catalytic reduction of organic pollutants. J. Mol. Struct., 2018, 1167, 305-315.
[http://dx.doi.org/10.1016/j.molstruc.2018.05.004]
[14]
Mohaghegh, F.; Akhbari, K.; Phuruangrat, A. Preparation of thallium nanomaterials from thallium(I) coordination polymers precursors synthesized by green sonochemical and mechanochemical processes. Ultrason. Sonochem., 2018, 40(Pt A), 594-600.
[http://dx.doi.org/10.1016/j.ultsonch.2017.08.009] [PMID: 28946464 ]
[15]
Xu, Y.; Yan, Y.; He, T.; Zhan, K.; Yang, J.; Zhao, B.; Qi, K.; Bao, Y.X. Supercritical CO2-Assisted synthesis of NiFe2O4/vertically-aligned carbon nanotube arrays hybrid as a bifunctional electrocatalyst for efficient overall water splitting. Carbon, 2019, 145, 201-208.
[http://dx.doi.org/10.1016/j.carbon.2019.01.011]
[16]
Kumar, S.; Bhanjana, G.; Sharma, A.; Dilbaghi, N.; Sidhu, M.C.; Kim, K.H. Development of nanoformulation approaches for the control of weeds. Sci. Total Environ., 2017, 586, 1272-1278.
[http://dx.doi.org/10.1016/j.scitotenv.2017.02.138] [PMID: 28236485]
[17]
Shan, L.; Gao, G.; Wang, W.; Tang, W.; Wang, Z.; Yang, Z.; Fan, W.; Zhu, G.; Zhai, K.; Jacobson, O.; Dai, Y.; Chen, X. Self-assembled green tea polyphenol-based coordination nanomaterials to improve chemotherapy efficacy by inhibition of carbonyl reductase 1. Biomaterials, 2019, 210, 62-69.
[http://dx.doi.org/10.1016/j.biomaterials.2019.04.032] [PMID: 31075724]
[18]
Gautam, R.K.; Tiwari, I. Humic acid functionalized magnetic nanomaterials for remediation of dye wastewater under ultrasonication: Application in real water samples, recycling and reuse of nanosorbents. Chemosphere, 2020, •••, 245.
[http://dx.doi.org/10.1016/j.chemosphere.2019.125553] [PMID: 31862552]
[19]
Das, P.; Roy, A.; Chakrabarti, S. Photocatalytic degradation of the nanocomposite film comprising polyvinyl chloride (PVC) and sonochemically synthesized iron-doped zinc oxide: a comparative study of performances between sunlight and UV radiation. J. Polym. Environ., 2017, 25, 1231-1241.
[http://dx.doi.org/10.1007/s10924-016-0894-0]
[20]
Chu, L.; Zhang, J.; Liu, W.; Zhang, R.; Yang, J.; Hu, R.; Xing’ao, L.; Huang, W. A facile and green approach to synthesize mesoporous anatase TiO2 nanomaterials for efficient dye-sensitized and hole-conductor-free perovskite solar cells. ACS Sustain. Chem.& Eng., 2018, 6, 5588-5597.
[http://dx.doi.org/10.1021/acssuschemeng.8b00607]
[21]
Rathnasamy, R.; Thangasamy, P.; Thangamuthu, R.; Sampath, S.; Alagan, V. Green synthesis of ZnO nanoparticles using Carica papaya leaf extracts for photocatalytic and photovoltaic applications. J. Mater. Sci. Mater. Electron., 2017, 28, 10374-10381.
[http://dx.doi.org/10.1007/s10854-017-6807-8]
[22]
Wang, H.; Sun, P.; Cong, S.; Wu, J.; Gao, L.; Wang, Y.; Dai, X.; Yi, Q.; Zou, G. Nitrogen-doped carbon dots for “green” quantum dot solar cells. Nanoscale Res. Lett., 2016, 11(1), 27-33.
[http://dx.doi.org/10.1186/s11671-016-1231-1] [PMID: 26781285]
[23]
Liu, L.; Zeng, G.; Chen, J.; Bi, L.; Dai, L.; Wen, Z. N-doped porous carbon nanosheets as pH-universal ORR electrocatalyst in various fuel cell devices. Nano Energy, 2018, 49, 393-402.
[http://dx.doi.org/10.1016/j.nanoen.2018.04.061]
[24]
Ramezanzadeh, B.; Karimi, B.; Ramezanzadeh, M.; Rostami, M. Synthesis and characterization of polyaniline tailored graphene oxide quantum dot as an advance and highly crystalline carbon-based luminescent nanomaterial for fabrication of an effective anti-corrosion epoxy system on mild steel. J. Taiwan Inst. Chem. Eng., 2019, 95, 369-382.
[http://dx.doi.org/10.1016/j.jtice.2018.07.041]
[25]
Guiné, J.B. Heijungs, R.; Vijver, M.G.; Peijnenburg, W.J.G.M. Setting the stage for debating the roles of risk assessment and life-cycle assessment of engineered nanomaterial. Nat. Nanotechnol., 2017, 12, 727-733.
[http://dx.doi.org/10.1038/nnano.2017.135]
[26]
Kobayashia, Y.; Petersa, G.M.; Khana, S.J. Towards more holistic environmental impact assessment: Hybridisation of life cycle assessment and quantitative risk assessment. The 22nd CIRP conference on Life Cycle Engineering, 2015, 29, 378-383.
[27]
Wiek, A.; Bernstein, M.J.; Laubichler, M.; Caniglia, G. A global classroom for international sustainability education. Creat. Educ., 2013, 4, 19-28.
[http://dx.doi.org/10.4236/ce.2013.44A004]
[28]
Hartmann, N.B.; Ågerstrand, M.; Lützhøft, H-C.H. NanoCRED: A transparent framework to assess the regulatory adequacy of ecotoxicity data for nanomaterials- Relevance and reliability revisited. NanoImpact, 2017, 6, 81-89.
[http://dx.doi.org/10.1016/j.impact.2017.03.004]
[29]
YukiSaito Effects of patent protection on economic growth and welfare in a two-R&D-sector economy. Econ. Model., 2017, 62, 124-129.
[http://dx.doi.org/10.1016/j.econmod.2017.01.015]
[30]
Yogendra, K.M.; Arul, M.N.; Kotakoski, J.; Adam, J. Progress in electronics and photonics with nanomaterials. Vacuum, 2017, 146, 304-307.
[http://dx.doi.org/10.1016/j.vacuum.2017.09.035]
[31]
Oke, A.E.; Aigbavboa, C.O.; Semenya, K.; Savings, E.; Construction, S. Examining the advantages of nanotechnology. Energy Procedia, 2017, 142, 3839-3843.
[http://dx.doi.org/10.1016/j.egypro.2017.12.285]
[32]
Mostafalou, S.; Mohammadi, H.; Ramazani, A.; Abdollahi, M. Different biokinetics of nanomedicines linking to their toxicity; an overview. Daru, 2013, 21(1), 14.
[http://dx.doi.org/10.1186/2008-2231-21-14] [PMID: 23432813]
[33]
Malik, P.; Tapan, K.M.; Singh, M. Biomedical nano toxicology and concerns with environment: A prospective approach for merger with green chemistry enabled physicochemical characterization. J. Microb. Biochem. Technol., 2017, 9, 100-109.
[34]
Guan, R.; Kang, T.; Lu, F.; Zhang, Z.; Shen, H.; Liu, M. Cytotoxicity, oxidative stress, and genotoxicity in human hepatocyte and embryonic kidney cells exposed to ZnO nanoparticles. Nanoscale Res. Lett., 2012, 7(1), 602-607.
[http://dx.doi.org/10.1186/1556-276X-7-602] [PMID: 23110934]
[35]
Albukhaty, S.; Naderi-Manesh, H.; Tiraihi, T. In vitro labeling of neural stem cells with poly-L-lysine coated super paramagnetic nanoparticles for green fluorescent protein transfection. Iran. Biomed. J., 2013, 17(2), 71-76.
[PMID: 23567848]
[36]
Huang, X.; Lan, Y.; Liu, Z.; Huang, W.; Guo, Q.; Liu, L.; Hu, M.; Sui, Y.; Wu, F.; Lu, W.; Wang, Y. XizhiHuang. Salinity mediates the toxic effect of nano-TiO2 on the juvenile olive flounder Paralichthys olivaceus. Sci. Total Environ., 2018, 640-641, 726-735.
[http://dx.doi.org/10.1016/j.scitotenv.2018.05.350] [PMID: 29879661]
[37]
Adams, T.A.; Nease, J.; Tucker, D.; Barton, P.I. Energy conversion with solid oxide fuel cell systems: A review of concepts and outlooks for the short- and long-term. Ind. Eng. Chem. Res., 2013, 52, 3089-3111.
[http://dx.doi.org/10.1021/ie300996r]
[38]
Zhan, Z.; Bierschenk, D.M. Croninb, J.S.; Barnett, S.A. A reduced temperature solid oxidefuel cell with nanostructured anodes. Energy Environ. Sci., 2011, 4, 3951-3954.
[http://dx.doi.org/10.1039/c1ee01982a]
[39]
Adijanto, L.; Sampath, A.; Yu, A.S.; Cargnello, M.; Fornasiero, P.; Gorte, R.J.; Vohs, J.M. Synthesis and stability of Pd@CeO2 core-shell catalyst films in solid oxide fuel cell anodes. ACS Catal., 2013, 3, 1801-1809.
[http://dx.doi.org/10.1021/cs4004112]
[40]
Sun, C.; Liab, H.; Chen, L. Nanostructured ceria-based materials: Synthesis, properties, and applications. Energy Environ. Sci., 2012, 5, 8475-8505.
[http://dx.doi.org/10.1039/c2ee22310d]
[41]
WooChul J.; Kevin, L.; Gu, Y.C.; Haile, S.M. Robust nanostructures with exceptionally high electrochemical reaction activity for high temperature fuel cell electrodes. Energy Environ. Sci., 2014, 7, 1685-1692.
[http://dx.doi.org/10.1039/C3EE43546F]
[42]
WooChul Jung; Julien, O.; William, D.; Hao, C.Y.; Haile, S.M. High electrode activity of nanostructured, columnar ceria films for solid oxidefuel cells. Energy Environ. Sci., 2012, 5, 8682-8689.
[http://dx.doi.org/10.1039/c2ee22151a]
[43]
Highly durable nano-oxide dispersed ferritic stainless steel interconnects for intermediate temperature solid oxide fuel cells. J. Power Sources, 2019, 439, 227109-2271115.
[http://dx.doi.org/10.1016/j.jpowsour.2019.227109]
[44]
Gao, Z.; Wang, H.; Miller, E.; Liu, Q.; Senn, D.; Barnett, S. Tape casting of high-performance low-temperature solid oxide cells with thin La0.8Sr0.2Ga0.8Mg0.2O3−δ electrolytes and impregnated nano anodes. App. Mat. Interfaces., 2017, 9, 7115-7124.
[45]
Nicholas, J.D.; Wang, L.; Call, A.V.; Barnett, S.A. Use of the Simple Infiltrated Microstructure Polarization Loss Estimation (SIMPLE) model to describe the performance of nano-composite solid oxide fuel cell cathodes. Phys. Chem. Chem. Phys., 2012, 14(44), 15379-15392.
[http://dx.doi.org/10.1039/c2cp43370b] [PMID: 23060257]
[46]
Gandavarapu, S.R. KatarzynaSabolsky, Kirk Gerdes, Edward M.Sabolsky, Direct foamed and nano-catalyst impregnated solid-oxide fuel cell (SOFC) cathodes. Mater. Lett., 2013, 95, 131-134.
[http://dx.doi.org/10.1016/j.matlet.2012.12.099]
[47]
Gong, Y.; Palacio, D.; Song, X.; Patel, R.L.; Liang, X.; Zhao, X.; Goodenough, J.B.; Huang, K. Stabilizing nanostructured solid oxide fuel cell cathode with atomic layer deposition. Nano Lett., 2013, 13(9), 4340-4345.
[http://dx.doi.org/10.1021/nl402138w] [PMID: 23924170]
[48]
Chanquía, C.M. AlejandraMontenegro-Hernández, Horacio E.Troiani, Alberto Caneiro, A bottom-up building process of nanostructured La0.75Sr0.25Cr0.5Mn0.5O3−δ electrodes for symmetrical-solid oxide fuel cell: Synthesis, characterization and electrocatalytic testing. J. Power Sources, 2014, 245, 377-388.
[http://dx.doi.org/10.1016/j.jpowsour.2013.06.124]
[49]
Saleem Mumtaz, M. Ashfaq Ahmad, Rizwan Raza, M. Sarfraz Arshad, Bashir Ahmed, M. NaeemAshiq, Ghazanfar Abbas, Nano grained Sr and Zr co-doped BaCeO3 electrolytes for intermediate temperature solid oxide fuel cells. Ceram. Int., 2017, 43, 14354-14360.
[http://dx.doi.org/10.1016/j.ceramint.2017.07.192]
[50]
An, J.; Kim, Y-B.; Park, J.; Gür, T.M.; Prinz, F.B. Three-dimensional nanostructured bilayer solid oxide fuel cell with 1.3 W/cm(2) at 450 °C. Nano Lett., 2013, 13(9), 4551-4555.
[http://dx.doi.org/10.1021/nl402661p] [PMID: 23977845]
[51]
Wang, Y.; Huang, J.; Su, T.; Liu, W.; Qi, H.; Yang, J. Synthesis, microstructure and electrical properties of BaZr0.9Y0.1O3−δ: BaCe0.86Y0.1Zn0.04O3−δ proton conductors. Mater. Sci. Eng. B, 2015, 196, 35-39.
[http://dx.doi.org/10.1016/j.mseb.2015.03.001]
[52]
Lim, D-K.; Kim, J-H.; Chavan, A.U.; Lee, T-R. Young-Sung, Y.; Sun-Ju S. Performance of proton-conducting ceramic-electrolyte fuel cell with BZCY40 electrolyte and BSCF5582 cathode. Ceram. Int., 2016, 42, 3776-3785.
[http://dx.doi.org/10.1016/j.ceramint.2015.11.038]
[53]
Bin, Z.; Liangdong, F.; Peter, L. Breakthrough fuel cell technology using ceria-based multi-functional nanocomposites. Appl. Energy, 2013, 106, 163-175.
[http://dx.doi.org/10.1016/j.apenergy.2013.01.014]
[54]
Zhang, G.; Chen, D.; Zhao, W.; Zhao, H. Lina, W.; Weijing W.; Tao Q. A novel D2EHPA-based synergistic extraction system for the recovery of chromium (III). Chem. Eng. J., 2016, 302, 233-238.
[http://dx.doi.org/10.1016/j.cej.2016.05.063]
[55]
Long, M.; Zhou, C.; Xia, S.; Guadiea, A.; Cr, C. (VI) reduction and Cr(III) precipitation with nitrate in a methane/oxygen-based membrane biofilm reactor. Chem. Eng. J., 2017, 315, 58-66.
[http://dx.doi.org/10.1016/j.cej.2017.01.018]
[56]
Xie, B.; Shan, C.; Xu, Z.; Li, X.; Zhang, X.; Chen, J.; Pan, B. One-step removal of Cr (VI) at alkaline pH by UV/sulfite process: Reduction to Cr(III) and in situ Cr(III) precipitation. Chem. Eng. J., 2017, 308, 791-797.
[http://dx.doi.org/10.1016/j.cej.2016.09.123]
[57]
Commault, A.S.; Lear, G.; Weld, R.J. Maintenance of Geobacter-dominated biofilms in microbial fuel cells treating synthetic wastewater. Bioelectrochemistry., 2015, 106(Pt A), 150-158.
[http://dx.doi.org/10.1016/j.bioelechem.2015.04.011] [PMID: 25935865 ]
[58]
Karimi, A.M.; Yaghmaei, S.; Mardanpour, M.M. A combined model for large scale batch culture MFC-digester with various wastewaters through different populations. Bioelectrochemistry, 2015, 106(Pt B), 298-307.
[http://dx.doi.org/10.1016/j.bioelechem.2015.07.003] [PMID: 26253388 ]
[59]
Mitov, M.; Bardarov, I.; Mandjukov, P.; Hubenova, Y. Chemometrical assessment of the electrical parameters obtained by long-term operating freshwater sediment microbial fuel cells. Bioelectrochemistry, 2015, 106(Pt A), 105-114.
[http://dx.doi.org/10.1016/j.bioelechem.2015.05.017] [PMID: 26073675 ]
[60]
Thung, W.E.; Ong, S.A.; Ho, L.N.; Wong, Y.S.; Ridwan, F.; Oon, Y.L.; Oon, Y.S.; Lehl, H.K. A highly efficient single chambered up-flow membrane-less microbial fuel cell for treatment of azo dye Acid Orange 7-containing wastewater. Bioresour. Technol., 2015, 197, 284-288.
[http://dx.doi.org/10.1016/j.biortech.2015.08.078] [PMID: 26342340]
[61]
Xu, Z.; Liu, B.; Dong, Q.; Lei, Y.; Li, Y.; Ren, J.; McCutcheon, J.; Li, B. Flat microliter membrane-based microbial fuel cell as “on-line sticker sensor” for self-supported in situ monitoring of wastewater shocks. Bioresour. Technol., 2015, 197, 244-251.
[http://dx.doi.org/10.1016/j.biortech.2015.08.081] [PMID: 26342335]
[62]
Hassan, S.H.A.; Sanaa, M.F. Gad El-Rab, Mostafa Rahimnejad, Electricity generation from rice straw using a microbial fuel cell. Int. J. Hydrogen Energy, 2014, 39, 9490-9496.
[http://dx.doi.org/10.1016/j.ijhydene.2014.03.259]
[63]
Cui, H-F.; Du, L.; Guo, P-B. Controlled modification of carbon nanotubes and polyaniline on macroporous graphite felt for high-performance microbial fuel cell anode. J. Power Sources, 2015, 283, 46-53.
[http://dx.doi.org/10.1016/j.jpowsour.2015.02.088]
[64]
Wang, Y.; Li, B.; Cui, D.; Xiang, X.; Li, W. Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell. Biosens. Bioelectron., 2014, 51, 349-355.
[http://dx.doi.org/10.1016/j.bios.2013.07.069] [PMID: 23994845]
[65]
Ci, S.; Wen, Z.; Chen, J. Decorating anode with bamboo-like nitrogen-doped carbon nanotubes for microbial fuel cells. Electrochem. Commun., 2012, 71-74.
[http://dx.doi.org/10.1016/j.elecom.2011.11.006]
[66]
Mehdinia, A.; Ziaei, E.; Jabbari, A.; Multi-walled, C. Nanotube/SnO2 nanocomposite: a novel anode material for microbial fuel cells. Electrochim. Acta, 2014, 130, 512-518.
[http://dx.doi.org/10.1016/j.electacta.2014.03.011]
[67]
Tang, X.; Li, H. Conductive polypyrrole hydrogels and carbon nanotubes composite as an anode for microbial fuel cells. RSC Advances, 2015, 5, 50968-50974.
[http://dx.doi.org/10.1039/C5RA06064H]
[68]
Wei, H.; Wu, X-S.; Zou, L. Amine-terminated ionic liquid functionalized carbon nanotubes for enhanced interfacial electron transfer of Shewanella putrefaciens anode in microbial fuel cells. J. Power Sources, 2016, 315, 192-198.
[http://dx.doi.org/10.1016/j.jpowsour.2016.03.033]
[69]
Zhao, N.; Ma, Z.; Song, H. Enhancement of bioelectricity generation by synergistic modification of vertical carbon nanotubes/polypyrrole for the carbon fibers anode in microbial fuel cell. Electrochim. Acta, 2019, 296, 69-74.
[http://dx.doi.org/10.1016/j.electacta.2018.11.039]
[70]
Zhang, C.; Liang, P.; Yang, X.; Jiang, Y.; Bian, Y.; Chen, C.; Zhang, X.; Huang, X. Binder-free graphene and manganese oxide coated carbon felt anode for high-performance microbial fuel cell. Biosens. Bioelectron., 2016, 81, 32-38.
[http://dx.doi.org/10.1016/j.bios.2016.02.051] [PMID: 26918615]
[71]
Paul, D.; Noori, M.T.; Rajesh, P.P. Modification of carbon felt anode with graphene oxide-zeolite composite for enhancing the performance of microbial fuel cell. Sustain. Energy Technol. Assessments, 2018, 26, 77-82.
[http://dx.doi.org/10.1016/j.seta.2017.10.001]
[72]
Yu, F.; Wang, C.; Ma, J. Capacitance-enhanced 3D graphene anode for microbial fuel cell with long-time electricity generation stability. Electrochim. Acta, 2018, 259, 1059-1067.
[http://dx.doi.org/10.1016/j.electacta.2017.11.038]
[73]
Wang, R.; Yan, M.; Li, H.; Zhang, L.; Peng, B.; Sun, J.; Liu, D.; Liu, S. FeS2 Nanoparticles decorated graphene as microbial-fuel-cell anode achieving high power density. Adv. Mater., 2018, 30(22)
[http://dx.doi.org/10.1002/adma.201800618] [PMID: 29665169]
[74]
Yuan, H.; Dong, G.; Li, D.; Deng, L.; Cheng, P.; Chen, Y. Steamed cake-derived 3D carbon foam with surface anchored carbon nanoparticles as freestanding anodes for high-performance microbial fuel cells. Sci. Total Environ., 2018, 636, 1081-1088.
[http://dx.doi.org/10.1016/j.scitotenv.2018.04.367] [PMID: 29913570]
[75]
Jiang, H.; Yang, L.; Deng, W. Macroporous graphitic carbon foam decorated with polydopamine as a high-performance anode for microbial fuel cell. J. Power Sources, 2017, 363, 27-33.
[http://dx.doi.org/10.1016/j.jpowsour.2017.07.064]
[76]
Ghasemi, M.; Ismail, M.; Kamarudin, S.K. Carbon nanotube as an alternative cathode support and catalyst for microbial fuel cells. Appl. Energy, 2013, 102, 1050-1056.
[http://dx.doi.org/10.1016/j.apenergy.2012.06.003]
[77]
Amade, R.; Vila-Costa, M.; Hussain, S. Vertically aligned carbon nanotubes coated with manganese dioxide as cathode material for microbial fuel cells. J. Mater. Sci., 2015, 50, 1214-1220.
[http://dx.doi.org/10.1007/s10853-014-8677-2]
[78]
Gnana Kumar, G.; Awan, Z.; Suk Nahm, K.; Xavier, J.S. Nanotubular MnO2/graphene oxide composites for the application of open air-breathing cathode microbial fuel cells. Biosens. Bioelectron., 2014, 53, 528-534.
[http://dx.doi.org/10.1016/j.bios.2013.10.012] [PMID: 24240107]
[79]
Nguyen, M-T.; Mecheri, B.; D’Epifanio, A. Iron chelates as low-cost and effective electrocatalyst for oxygen reduction reaction in microbial fuel cells. Int. J. Hydrogen Energy, 2014, 39, 6462-6469.
[http://dx.doi.org/10.1016/j.ijhydene.2014.02.064]
[80]
Wang, H.; Wu, Z.; Plaseied, A. Carbon nanotube modified air-cathodes for electricity production in microbial fuel cells. J. Power Sources, 2011, 196, 7465-7469.
[http://dx.doi.org/10.1016/j.jpowsour.2011.05.005]
[81]
Kodali, M.; Herrera, S.; Kabir, S.; Serov, A.; Santoro, C.; Ieropoulos, I.; Atanassov, P. Enhancement of microbial fuel cell performance by introducing a nano-composite cathode catalyst. Electrochim. Acta, 2018, 265, 56-64.
[http://dx.doi.org/10.1016/j.electacta.2018.01.118] [PMID: 29527017]
[82]
Mashkour, M.; Rahimnejad, M.; Pourali, S.M. Catalytic performance of nano-hybrid graphene and titanium dioxide modified cathodes fabricated with facile and green technique in microbial fuel cell. Progress Natural Sci.: Mat. Int., 2017, 27, 647-651.
[http://dx.doi.org/10.1016/j.pnsc.2017.11.003]
[83]
Sawant, S.Y.; Han, T.H.; Ansari, S.A. A metal-free and non-precious multifunctional 3D carbon foam for high-energy density supercapacitors and enhanced power generation in microbial fuel cells. J. Ind. Eng. Chem., 2018, 60, 431-440.
[http://dx.doi.org/10.1016/j.jiec.2017.11.030]
[84]
Zhang, Y.; He, Q.; Xia, L. Algae cathode microbial fuel cells for cadmium removal with simultaneous electricity production using nickel foam/graphene electrode. Biochem. Eng. J., 2018, 138, 179-187.
[http://dx.doi.org/10.1016/j.bej.2018.07.021]
[85]
Khilari, S.; Pandit, S.; Ghangrekar, M.M.; Pradhan, D. Graphene oxide-impregnated PVA−STA composite polymer electrolyte membrane separator for power generation in a singlechambered microbial fuel cell. Ind. Eng. Chem. Res., 2013, 52, 11597-11606.
[http://dx.doi.org/10.1021/ie4016045]
[86]
Tiwari, B.R. Md.T. Noori, M.M. Ghangrekar, A novel low cost polyvinyl alcohol-Nafion-borosilicate membrane separator for microbial fuel cell. Mater. Chem. Phys., 2016, 182, 86-93.
[http://dx.doi.org/10.1016/j.matchemphys.2016.07.008]
[87]
Yang, W.; Rossi, R.; Tian, Y.; Kim, K.Y.; Logan, B.E. Mitigating external and internal cathode fouling using a polymer bonded separator in microbial fuel cells. Bioresour. Technol., 2018, 249, 1080-1084.
[http://dx.doi.org/10.1016/j.biortech.2017.10.109] [PMID: 29137930]
[88]
Oliot, M.; Etcheverry, L.; Mosdale, A. Separator electrode assembly (SEA) with 3-dimensional bioanode and removable air-cathode boosts microbial fuel cell performance. J. Power Sources, 2017, 356, 389-399.
[http://dx.doi.org/10.1016/j.jpowsour.2017.03.016]
[89]
Mathuriya, A.S.; Pant, D. Assessment of expanded polystyrene as a separator in microbial fuel cell. Environ. Technol., 2019, 40(16), 2052-2061.
[http://dx.doi.org/10.1080/09593330.2018.1435740] [PMID: 29384429]
[90]
Hindatu, Y.M.; Suffian, M.A.; Mohamed, S.M.D.S. Medium-chain-length poly-3-hydroxyalkanoates-carbon nanotubes composite as proton exchange membrane in microbial fuel cell. Chem. Eng. Commun., 2019, 206, 731-745.
[http://dx.doi.org/10.1080/00986445.2018.1521392]
[91]
Yousefi, V.; Mohebbi-Kalhori, D. Application of layer-by-layer assembled chitosan/montmorillonite nanocomposite as oxygen barrier film over the ceramic separator of the microbial fuel cell. Electrochim. Acta, 2018, 283, 234-247.
[http://dx.doi.org/10.1016/j.electacta.2018.06.173]
[92]
Liu, Z.; Fu, X.; Li, M.; Wang, F. Novel silicon-doped, silicon and nitrogen-codoped carbon nanomaterials with high activity for the oxygen reduction reaction in alkaline medium. J. Mater. Chem. A Mater. Energy Sustain., 2015, 3, 3289-3293.
[http://dx.doi.org/10.1039/C4TA05937A]
[93]
Ahmed, M.S.; You, J-M.; Han, H.S.; Jeong, D.C.; Jeon, S. A green preparation of nitrogen doped graphene using urine for oxygen reduction in alkaline fuel cells. J. Nanosci. Nanotechnol., 2014, 14(8), 5722-5729.
[http://dx.doi.org/10.1166/jnn.2014.8837] [PMID: 25935996]
[94]
Stoševski, I.; Krstić, J.; Milikić, J. Radiolitically synthesized nano Ag/C catalysts for oxygen reduction and borohydride oxidation reactions in alkaline media, for potential applications in fuel cells. Energy, 2016, 101, 79-90.
[http://dx.doi.org/10.1016/j.energy.2016.02.003]
[95]
Soliman, A.B.; Abdel-Samad, H.S.; Abdel Rehim, S.S. High performance nano-Ni/Graphite electrode for electro-oxidation in direct alkaline ethanol fuel cells. J. Power Sources, 2016, 325, 653-663.
[http://dx.doi.org/10.1016/j.jpowsour.2016.06.088]
[96]
Kung, C-W.; Cheng, Y-H. Single layer of nickel hydroxide nanoparticles covered on a porous Ni foam and its application for highly sensitive non-enzymatic glucose sensor. Sens. Actuators B Chem., 2014, 204, 159-166.
[http://dx.doi.org/10.1016/j.snb.2014.07.102]
[97]
Yang, F.; Cheng, K.; Xiao, X. Nickel and cobalt electrodeposited on carbon fiber cloth as the anode of direct hydrogen peroxide fuel cell. J. Power Sources, 2014, 245, 89-94.
[http://dx.doi.org/10.1016/j.jpowsour.2013.06.115]
[98]
Guo, F.; Cheng, K.; Ye, K. Preparation of nickel-cobalt nanowire arrays anode electro-catalyst and its application in direct urea/hydrogen peroxide fuel cell. Electrochim. Acta, 2016, 199, 290-296.
[http://dx.doi.org/10.1016/j.electacta.2016.01.215]
[99]
Zhao, Y.; Liu, X.; Wang, X. Peony petal-like 3D graphene-nickel oxide nanocomposite decorated nickel foam as high-performance electrocatalyst for direct glucose alkaline fuel cell. Int. J. Hydrogen Energy, 2017, 42, 29863-29873.
[http://dx.doi.org/10.1016/j.ijhydene.2017.10.120]
[100]
Gao, M.; Liu, X.; Irfan, M. Nickle-cobalt composite catalyst-modified activated carbon anode for direct glucose alkaline fuel cell. Int. J. Hydrogen Energy, 2018, 18, 1805-1815.
[http://dx.doi.org/10.1016/j.ijhydene.2017.11.114]
[101]
Varga, T.; Ballai, G.; Vásárhelyi, L. Co4N/nitrogen-doped graphene: A non-noble metal oxygen reduction electrocatalyst for alkaline fuel cells. Appl. Catal. B, 2018, 237, 826-834.
[http://dx.doi.org/10.1016/j.apcatb.2018.06.054]
[102]
Liu, M.; Yizhong, L.W.C. PdAg nanorings supported on graphene nanosheets: highly methanol‐tolerant cathode electrocatalyst for alkaline fuel cells. Adv. Funct. Mater., 2013, 23, 1289-1296.
[http://dx.doi.org/10.1002/adfm.201202225]
[103]
Jin, Sa Y.; Park, C.; Jeong, H.Y.; Park, S.‐H. Carbon nanotubes/heteroatom‐doped carbon core–sheath nanostructures as highly active, metal‐free oxygen reduction electrocatalysts for alkaline fuel cells. Angewandte Communications, 2014, 53, 4102-4106.
[104]
Han, J.; Sa, Y.J.; Shim, Y.; Choi, M.; Park, N.; Joo, S.H.; Park, S. Coordination chemistry of [Co(acac)2] with N‐doped graphene: implications for oxygen reduction reaction reactivity of organometallic Co‐O4‐N species. Angew. Chem., 2015, 127, 12622-12626.
[http://dx.doi.org/10.1002/anie.201504707]
[105]
Woo, J.; Sa, Y.J.; Kim, J.H.; Lee, H-W.; Pak, C. Impact of textural properties of mesoporous porphyrinic carbon electrocatalysts on oxygen reduction reaction activity, 2018. ChemElectroChem, 2018, 5, 1928-1936.
[http://dx.doi.org/10.1002/celc.201800183]
[106]
Liu, P.; Liu, X.; Dong, F.; Lin, Q.; Tong, Y.; Li, Y.; Zhang, P. Electricity generation from banana peels in an alkaline fuel cell with a Cu2O-Cu modified activated carbon cathode. Sci. Total Environ., 2018, 631-632, 849-856.
[http://dx.doi.org/10.1016/j.scitotenv.2018.03.122] [PMID: 29727995]
[107]
Huang, C-Y.; Lin, J-S.; Pan, W-H. Alkaline direct ethanol fuel cell performance using alkali-impregnated polyvinyl alcohol/functionalized carbon nano-tube solid electrolytes. J. Power Sources, 2016, 303, 267-277.
[http://dx.doi.org/10.1016/j.jpowsour.2015.10.108]
[108]
Li, P-C.; Liao, G-M.; Kumar, R.S.; Shih, C-M. Fabrication and characterization of chitosan nanoparticle-incorporated quaternized poly(vinyl alcohol) composite membranes as solid electrolytes for direct methanol alkaline fuel cells. Electrochim. Acta, 2016, 187, 616-628.
[http://dx.doi.org/10.1016/j.electacta.2015.11.117]
[109]
Lina, J.S.; Rajesh Kumara, S. Maa, W.-T.; Shiha, C.-M.; Tenga, L.-W. Gradiently distributed iron oxide@graphene oxide nanofillers in quaternized polyvinyl alcohol composite to enhance alkaline fuel cell power density. J. Membr. Sci., 2017, 543, 28-39.
[http://dx.doi.org/10.1016/j.memsci.2017.08.045]
[110]
Liao, G-M.; Li, P-C.; Lin, J-S. Highly conductive quasi-coaxial electrospun quaternized polyvinyl alcohol nanofibers and composite as high-performance solid electrolytes. J. Power Sources, 2016, 304, 136-145.
[http://dx.doi.org/10.1016/j.jpowsour.2015.11.025]
[111]
Watanabe, T.; Tanaka, M.; Kawakami, H. Anion conductive polymer nanofiber composite membrane: effects of nanofibers on polymer electrolyte characteristics. Polym. Int., 2017, 66, 382-387.
[http://dx.doi.org/10.1002/pi.5270]
[112]
Kouhi, S.; Ghamari, B.; Yeganeh, R. The effect of nanoparticle coating on anticorrosion performance of centrifugal pump blades. Jordan J. Mech. Ind. Eng., 2018, 2, 117-122.
[113]
Shao, W.; Nabb, D.; Renevier, N.; Sherrington, I.J.K. Luo1, Mechanical and corrosion resistance properties of TiO2 nanoparticles reinforced Ni coating by electrodeposition. Mater. Sci. Eng., 2012, 40.
[114]
Haider, F.I.; Faizi, M.H. Al hazza, Suryanto, Developing of corrosion resistance nano copper oxide coating on copper using anodization in oxalate solution. Int. J. Eng. Transactions C: Aspects, 2018, 31(3), pp. 450-455.
[115]
Hasnidawani, J.N.; Azlina, H.N.; Norita, H.; Samat, N. ZnO Nanoparticles for anti-corrosion nanocoating of carbon steel. Mater. Sci. Forum, 2017, 894, 76-80.
[http://dx.doi.org/10.4028/www.scientific.net/MSF.894.76]
[116]
Lopez de Armentia, S.; Pantoja, M.; Abenojar, J.; Martinez, M.A. Development of silane-based coatings with zirconia nanoparticles combining wetting, tribological, and aesthetical properties. Coatings, 2018, 8, 368.
[http://dx.doi.org/10.3390/coatings8100368]
[117]
Mahvidi, S.; Gharagozlou, M.; Mahdavian, M.; Naghibic, S. Potency of ZnFe2O4 nanoparticles as corrosion inhibitor for stainless steel; the pigment extract study. Mater. Res., 2017, 20, 1516-1439.
[http://dx.doi.org/10.1590/1980-5373-mr-2016-0772]
[118]
Saravanakumara, T.; Kavimanib, V.; Soorya Prakashb, K.; Selvarajua, T. Exploring the corrosion inhibition of magnesium by coatings formulated with nano CeO2 and ZnO particles. Prog. Org. Coat., 2019, 129, 32-42.
[http://dx.doi.org/10.1016/j.porgcoat.2019.01.006]
[119]
Samad, U.A.; Alam, M.A.; Sherif, E-S.M. Synergistic effect of Ag and ZnO nanoparticles on polypyrrole-incorporated epoxy/2pack coatings and their corrosion performances in chloride solutions. Coatings, 2019, 9, 287-299.
[http://dx.doi.org/10.3390/coatings9050287]
[120]
Idrees, M.; Batool, S.; Kalsoom, T.; Raina, S.; Sharif, H.M.A.; Yasmeen, S. Biosynthesis of silver nanoparticles using Sida acuta extract for antimicrobial actions and corrosion inhibition potential. Environ. Technol., 2019, 40(8), 1071-1078.
[http://dx.doi.org/10.1080/09593330.2018.1435738] [PMID: 29385891]
[121]
Narenkumar, J.; Parthipan, P.; Madhavan, J.; Murugan, K.; Marpu, S.B.; Suresh, A.K.; Rajasekar, A. Bioengineered silver nanoparticles as potent anti-corrosive inhibitor for mild steel in cooling towers. Environ. Sci. Pollut. Res. Int., 2018, 25(6), 5412-5420.
[http://dx.doi.org/10.1007/s11356-017-0768-6] [PMID: 29209978]
[122]
Khadom, A.A.; Abd, A.N.; Ahmed, N.A. Xanthium strumarium leaves extracts as a friendly corrosion inhibitor of low carbon steel in hydrochloric acid: Kinetics and mathematical studies. South African. Chem. Eng. J., 2018, 25, 13-21.
[123]
Solomona, M.M.; Gerengia, H.; Umorenb, S.A. Carboxymethyl applied material interfaces, cellulose/silver nanoparticles composite: synthesis, characterization and application as a benign corrosion inhibitor for St37 Steel in 15% H2SO4 Medium. ACS Appl. Mater. Interfaces, 2017, 9, 6376-6389.
[http://dx.doi.org/10.1021/acsami.6b14153] [PMID: 28112890]
[124]
Essien, E.A.; Kavaz, D.; Ituen, E.B.; Umoren, S.A. Synthesis, characterization and anticorrosion property of olive leaves extract-titanium nanoparticles composite. J. Adhes. Sci. Technol., 2018, 6, 1773-1794.
[http://dx.doi.org/10.1080/01694243.2018.1445800]
[125]
Sun, W.; Cui, S.; Wei, N.; Chen, S. Hierarchical WO3/TiO2 nanotube nanocomposites for efficient photocathodic protection of 304 stainless steel under visible light. J. Alloys Compd., 2018, 749, 741-749.
[http://dx.doi.org/10.1016/j.jallcom.2018.03.371]
[126]
Ituen, E.; Singh, A.; Lin, Y.; Li, R. Synthesis and evaluation of anticorrosion properties of onion mesocarp-nickel nanocomposites on X80 steel in acidic cleaning solution. J. Mat. Res. Technol., 2020, 9, 2832-2845.
[http://dx.doi.org/10.1016/j.jmrt.2020.01.017]
[127]
Atta, A.M.; Al-Lohedan, H.A.; El-Saeed, A.M.; Al-Shafey, H.I. Salt-controlled self-healing nanogel composite embedded with epoxy as environmentally friendly organic coating. J. Coat. Technol. Res., 2017, 14, 1225-1236.
[http://dx.doi.org/10.1007/s11998-017-9917-6]
[128]
Jouyandeha, M.; Rahmatib, N.; Movahedifard, E.; Hadavand, B.S. Properties of nano-Fe3O4 incorporated epoxy coatings from Cure Index perspective. Prog. Org. Coat., 2019, 133, 220-228.
[http://dx.doi.org/10.1016/j.porgcoat.2019.04.034]
[129]
Aly, K.I.; Younis, O.; Mahross, M.H.; Tsutsumi, O.; Mohamed, M.G.; Sayed, M.M. Novel conducting polymeric nanocomposites embedded with nanoclay: synthesis, photoluminescence, and corrosion protection performance. Polym. J., 2019, 51, 77-90.
[http://dx.doi.org/10.1038/s41428-018-0119-6]
[130]
Alya, K.I.; Younis, O.; Mahross, M.H.; Orabi, E.A. Conducting copolymers nanocomposite coatings with aggregation controlled luminescence and efficient corrosion inhibition properties. Prog. Org. Coat., 2019, 135, 525-535.
[http://dx.doi.org/10.1016/j.porgcoat.2019.06.001]
[131]
Srivastava, M.; Srivastava, S.K. Nikhil; Ji, G.; Prakash, R. Chitosan based new nanocomposites for corrosion protection of mild steel in aggressive chloride media. Int. J. Biol. Macromol., 2019, 140, 177-187.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.073] [PMID: 31401281]
[132]
Cui, G.; Guo, J.; Zhang, Y.; Zhao, Q.; Fu, S.; Han, T.; Zhang, S.; Wu, Y. Chitosan oligosaccharide derivatives as green corrosion inhibitors for P110 steel in a carbon-dioxide-saturated chloride solution. Carbohydr. Polym., 2019, 203, 386-395.
[http://dx.doi.org/10.1016/j.carbpol.2018.09.038] [PMID: 30318227]
[133]
Pourhashema, S.; Vaezia, M.R.; Rashidi, A. Distinctive roles of silane coupling agents on the corrosion inhibition performance of graphene oxide in epoxy coatings. Prog. Org. Coat., 2017, 111, 47-56.
[http://dx.doi.org/10.1016/j.porgcoat.2017.05.008]
[134]
Chen, C.; Qiu, S.; Cui, M.; Qin, S.; Yan, G. Achieving high performance corrosion and wear resistant epoxy coatings via incorporation of noncovalent functionalized grapheme. Carbon, 2017, 114, 356-366.
[http://dx.doi.org/10.1016/j.carbon.2016.12.044]
[135]
Ramezanzadeh, B.; Kardar, P.; Bahlakeh, G.; Hayatgheib, Y.; Mahdavian, M. Fabrication of a highly tunable graphene oxide composite through layer-by-layer assembly of highly crystalline polyaniline nanofibers and green corrosion inhibitors: complementary experimental and first-principles quantum mechanics modeling approaches. J. Phys. Chem. C, 2017, 121, 20433-20450.
[http://dx.doi.org/10.1021/acs.jpcc.7b04323]
[136]
Hayatgheib, Y.; Ramezanzadeh, B.; Kardar, P.; Mahdavian, M. A comparative study on fabrication of a highly effective corrosion protective system based on graphene oxide-polyaniline nanofibers/epoxy composite. Corros. Sci., 2018, 133, 358-373.
[137]
Ramezanzadeh, B.; Bahlakeh, G.; Ramezanzadeh, M. Polyaniline-cerium oxide (PAni-CeO2) coated graphene oxide for enhancement of epoxy coating corrosion protection performance on mild steel. Corros. Sci., 2018, 137, 111-126.
[138]
Du, P.; Wang, J.; Liu, G.; Zhao, H.; Wang, L. Facile synthesis of intelligent nanocomposites as encapsulation for materials protection. Mater. Chem. Front., 2019, 3, 321-330.
[http://dx.doi.org/10.1039/C8QM00455B]
[139]
Irfan, M.; Bhat, S.I.; Ahmad, S.; Reduced, G.O.R.W.S.A.N. formulation, characterization and corrosion inhibition analysis. ACS Sustain. Chem.& Eng., 2018, 06, 14820-14830.
[http://dx.doi.org/10.1021/acssuschemeng.8b03349]
[140]
Mohammadi, A.; Barikani, M.; Doctorsafaei, A.H.; Isfahani, A.P. Aqueous dispersion of polyurethane nanocomposites based on calix[4]arenes modified graphene oxide nanosheets: preparation, Characterization, and anticorrosion properties. Eng. J. (N.Y.), 2018, 349, 466-480.
[http://dx.doi.org/10.1016/j.cej.2018.05.111]
[141]
Nadeem, B.D.S. Chauhan, T.A.; Saleha, M.A. Quraishi, Diethylenetriamine functionalized graphene oxide as a novel corrosion inhibitor for mild steel in hydrochloric acid solutions. New J. Chem., 2018, 43, 2328-2337.
[http://dx.doi.org/10.1039/C8NJ04771E]
[142]
Gupta, R.K.; Malviya, M. ChandrabhanVerma, M.A. Quraish, Aminoazobenzene and diaminoazobenzene functionalized graphene oxides as novel class of corrosion inhibitors for mild steel: experimental and DFT studies. Mater. Chem. Phys., 2017, 198, 360-373.
[http://dx.doi.org/10.1016/j.matchemphys.2017.06.030]
[143]
Wolk, A.; Rosenthal, M.; Neuhaus, S.; Huber, K.; Brassat, K.; Lindner, J.K.N.; Grothe, R.; Grundmeier, G.; Bremser, W.; Wilhelm, R. A novel lubricant based on covalent functionalized graphene oxide quantum dots. Sci. Rep., 2018, 8(1), 5843-5852.
[http://dx.doi.org/10.1038/s41598-018-24062-2] [PMID: 29643400]
[144]
Xinga, X.; Wanga, J.; Lia, Q.; Hub, W.; Yuan, J. A novel acid-responsive HNTs-based corrosion inhibitor for protection of carbon steel. Colloids Surf. A Physicochem. Eng. Asp., 2018, 553, 295-304.
[http://dx.doi.org/10.1016/j.colsurfa.2018.05.072]
[145]
Mahmoudi, R.; Kardar, P.; Arabi, A.M.; Amini, R.; Pasbakhsh, P. Acid-modification and praseodymium loading of halloysite nanotubes as a corrosion inhibitor. Appl. Clay Sci., 2019, 184.
[http://dx.doi.org/10.1016/j.clay.2019.105355]
[146]
Kumar, S.S.; Kakooei, S.; Ismail, M.C. Significance of bath temperature in loading halloysite nanotube with a corrosion inhibitor, Platform. J. Eng. (Stevenage), 2020, 4, 50-54.
[147]
Izadi, M.; Mohammadi, I.; Shahrabi, T.; Ramezanzadeh, B.; Fateh, A. Corrosion inhibition performance of novel eco-friendly nanoreservoirs as bicomponent active system on mild steel in aqueous chloride solution. J. Taiwan Inst. Chem. Engineers, 2019, 95, 555-568.
[http://dx.doi.org/10.1016/j.jtice.2018.09.012]
[148]
Wanga, Z.; Gonga, Y.; Lin, Z.; Chuan, J.; Gaoa, F.; Zhanga, S. Self-assembly of new dendrimers basing on strong π-π intermolecular interaction for application to protect copper. Chem. Eng. J., 2018, 342, 238-250.
[http://dx.doi.org/10.1016/j.cej.2018.02.080]
[149]
Nair, R.B.; Arora, H.S.; Ayyagari, A.; Mukherjee, S.; Grewal, H.S.; Alloys, H.E. Prospective materials for tribo‐corrosion applications. Adv. Eng. Mater., 2018, 20.
[http://dx.doi.org/10.1002/adem.201700946]
[150]
Fekry, A.M.; Azab, S.M. The development of an innovative nano-coating on the surgical 316 L SS implant and studying the enhancement of corrosion resistance by electrochemical methods using Ibandronate drug; Nano-Structures Nano-Objects, 2020, p. 21.
[http://dx.doi.org/10.1016/j.nanoso.2019.100411]
[151]
Arthur, David Ebuka Uzairu, Adamu Computational study on the corrosion inhibition of nano materials of Zn, Al, Fe and Cu by clindamycin. Kenkyu J. Nanotechnol. Nanosci., 2019, 5, 01-18.
[152]
Arellanes-Lozada, P. Adsorption and performance of ammonium-based ionic liquids as corrosion inhibitors of steel. J. Mol. Liq., 2018, 265, 151-163.
[http://dx.doi.org/10.1016/j.molliq.2018.04.153]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy