Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Research Article

Synthesis of 3-methyl-4H-benzo[b][1,4]thiazine-2-carboxylates Using CAN as a Catalyst and Its Conversion Into Guanidines

Author(s): Dhanaji V. Jawale, Devendra Wagare, Dinesh L. Lingampalle and Prashant D. Netankar*

Volume 8, Issue 2, 2021

Published on: 28 December, 2020

Page: [258 - 263] Pages: 6

DOI: 10.2174/2213337207999201228141906

Price: $65

Abstract

Background: 1,4-benzothiazine carboxylates show wide application in the field of medicinal chemistry. Therefore, we have designed convenient and efficient method for the synthesis of 1,4-benzothiazine carboxylates.

Objective: Synthesis of 1,4-benzothiazine carboxylates and its guanidines by simple and facile method using efficient catalyst.

Methods: Derivatives of 1,4-benzothiazine carboxylates were synthesized by cyclocondensing β- keto esters with 2-aminobenzenethiols using CAN as a catalyst at room temperature. 1,4-benzothiazine carboxylate, condensed with guanidine hydrochloride in the presence of sodium methoxide in DMF to obtained new 3-substituted-l-4H-benzo[b][1,4]thiazine-2-carboxyguanidines (88-91%).

Results: All the products were obtained with good to excellent yields within 40 min. Here, CAN oxidizes aminothiophenol into disulfide and then nucleophilic attack of enolic form of β-ketoesters on the disulphide and 1, 4-benzothiazine acetates, were obtained with good yields.

Conclusion: We have designed convenient and efficient method for the synthesis of 1,4-benzothiazine carboxylates. Most remarkable features of this cyclocondensation such as use of efficient catalyst and non-volatile solvent under mild reaction condition to obtain excellent yield.

Keywords: Guanidine, 1, 4-Benzothiazine, CAN, 4H-benzo[b][1, 4]thiazine-2-carboxyguanidines, Synthesis, catalyst, disulphide.

« Previous
Graphical Abstract
[1]
ade Souza Berlinck, R.G. Some aspects of guanidine secondary metabolites. Fortschritte der Chemie organischer Naturstoffe/Progress in the Chemistry of Organic Natural Products. Springer: Vienna; , 1995, pp. pp. 119-295.
bLam, P.Y.; Clark, C.G.; Li, R.; Pinto, D.J.; Orwat, M.J.; Galemmo, R.A.; Fevig, J.M.; Teleha, C.A.; Alexander, R.S.; Smallwood, A.M.; Rossi, K.A.; Wright, M.R.; Bai, S.A.; He, K.; Luettgen, J.M.; Wong, P.C.; Knabb, R.M.; Wexler, R.R. Structure-based design of novel guanidine/benzamidine mimics: potent and orally bioavailable factor Xa inhibitors as novel anticoagulants. J. Med. Chem., 2003, 46(21), 4405-4418.
cFresneda, P.M.; Delgado, S.; Francesch, A.; Manzanares, I.; Cuevas, C.; Molina, P. Synthesis and cytotoxic evaluation of new derivatives of the marine alkaloid variolin B. J. Med. Chem., 2006, 49(3), 1217-1221.
[http://dx.doi.org/10.1007/978-3-7091-9363-1_2] [http://dx.doi.org/10.1021/jm020578e] [PMID: 14521405] [http://dx.doi.org/10.1021/jm051090r] [PMID: 16451088]
[2]
Berlinck, R.G. Natural guanidine derivatives. Nat. Prod. Rep., 2002, 19(5), 617-649.
[http://dx.doi.org/10.1039/a901981b] [PMID: 12430726]
[3]
Heys, L.; Moore, C.G.; Murphy, P.J. The guanidine metabolites of Ptilocaulis spiculifer and related compounds; isolation and synthesis. Chem. Soc. Rev., 2000, 29(1), 57-67.
[4]
aKelley, M.T.; Bürckstümmer, T.; Wenzel-Seifert, K.; Dove, S.; Buschauer, A.; Seifert, R. Distinct interaction of human and guinea pig histamine H2-receptor with guanidine-type agonists. Mol. Pharmacol., 2001, 60(6), 1210-1225.
bLaeckmann, D.; Rogister, F.; Dejardin, J.V.; Prosperi-Meys, C.; Géczy, J.; Delarge, J.; Masereel, B. Synthesis and biological evaluation of aroylguanidines related to amiloride as inhibitors of the human platelet Na(+)/H(+) exchanger. Bioorg. Med. Chem., 2002, 10(6), 1793-1804.
[http://dx.doi.org/10.1124/mol.60.6.1210] [PMID: 11723228] [http://dx.doi.org/10.1016/S0968-0896(02)00022-6] [PMID: 11937337]
[5]
Ungar, G.; Freedman, L.; Shapiro, SL. Pharmacological studies of a new oral hypoglycemic drug. Proceedings of the Society for Experimental Biology and Medicine, 95(1), 190-192.
[6]
Shapiro, S.L.; Parrino, V.A.; Freedman, L. Hypoglycemic Agents. I. 1 Chemical Properties of β-Phenethylbiguanide. 2 A New Hypoglycemic Agent3. J. Am. Chem. Soc., 1959, 81(9), 2220-2225.
[http://dx.doi.org/10.1021/ja01518a052]
[7]
Ohara, S.; Komatsu, R.; Matsuyama, T. Short-term effect of buformin, a biguanide, on insulin sensitivity, soluble fraction of tumor necrosis factor receptor and serum lipids in overweight patients with type 2 diabetes mellitus. Diabetes Res. Clin. Pract., 2004, 66(2), 133-138.
[http://dx.doi.org/10.1016/j.diabres.2004.03.007] [PMID: 15533580]
[8]
Rahman, A.A.; Daoud, M.K.; Dukat, M.; Herrick-Davis, K.; Purohit, A.; Teitler, M.; do Amaral, A.T.; Malvezzi, A.; Glennon, R.A. Conformationally-restricted analogues and partition coefficients of the 5-HT3 serotonin receptor ligands meta-chlorophenylbiguanide (mCPBG) and meta-chlorophenylguanidine (mCPG). Bioorg. Med. Chem. Lett., 2003, 13(6), 1119-1123.
[http://dx.doi.org/10.1016/S0960-894X(03)00044-1] [PMID: 12643925]
[9]
Thomas, L.; Russell, A.D.; Maillard, J.Y. Antimicrobial activity of chlorhexidine diacetate and benzalkonium chloride against Pseudomonas aeruginosa and its response to biocide residues. J. Appl. Microbiol., 2005, 98(3), 533-543.
[http://dx.doi.org/10.1111/j.1365-2672.2004.02402.x] [PMID: 15715855]
[10]
Denys, A.; Machlański, T.; Bialek, J.; Mrozicki, S. Relationships between chemical structure and antiviral activity of some biguanide derivatives. Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene. Erste Abteilung Originale. Reihe B: Hygiene, praventive Medizin, 1977, 164(1-2), 85-89.
[11]
Sugimoto, Y.; Tarumi, T.; Zhao, Q.E.; Fujii, Y.; Kamei, C. Effects of antiallergic drugs on histamine release from rat peritoneal mast cells induced by bradykinin. Methods Find. Exp. Clin. Pharmacol., 1998, 20(6), 457-462.
[http://dx.doi.org/10.1358/mf.1998.20.6.485708] [PMID: 9789869]
[12]
King, D.J.; Wager, E. Haematological safety of antipsychotic drugs. J. Psychopharmacol., 1998, 12(3), 283-288.
[http://dx.doi.org/10.1177/026988119801200309] [PMID: 10958256]
[13]
Williams, P.I.; Smith, M. An assessment of prochlorperazine buccal for the prevention of nausea and vomiting during intravenous patient-controlled analgesia with morphine following abdominal hysterectomy. Eur. J. Anaesthesiol., 1999, 16(9), 638-645.
[http://dx.doi.org/10.1046/j.1365-2346.1999.00561.x] [PMID: 10549465]
[14]
Pavlova, L.V.; Platonov, I.A.; Nikitchenko, N.V.; Kolesnichenko, I.N.; Kurkin, V.A. Extraction of Biologically Active Compounds from Eucalyptus (Eucalypti viminalis Labill) Leaves by Subcritical Water and Water-Ethanol Mixtures. Russ. J. Phy. Chem. B, 2017, 11(7), 1129-1143.
[http://dx.doi.org/10.1134/S1990793117070132]
[15]
Lucas, C.L.; Moody, C.J. Naturally Occurring Nitrogen–Sulfur Compounds: Part 2. 1, 4-Thiazine and Benzo-1, 4-Thiazine alkaloids. Adv. Heterocycl. Chem., 2010, 100, 53-74. [Academic Press.].
[http://dx.doi.org/10.1016/S0065-2725(10)10002-6]
[16]
Napolitano, A.; Memoli, S.; Prota, G. A new insight in the biosynthesis of pheomelanins: characterization of a labile 1, 4-benzothiazine intermediate. J. Org. Chem., 1999, 64(9), 3009-3011.
[http://dx.doi.org/10.1021/jo981018j] [PMID: 11674395]
[17]
Spiegelberg, U.; Kleu, G. Psychiatric-neurologic experiences with a new psychopharmacological drug. Arzneimittel-Forschung, 1967, 17(2), 159-172.
[18]
Fujita, M.; Ito, S.; Ota, A.; Kato, N.; Yamamoto, K.; Kawashima, Y.; Yamauchi, H.; Iwao, J. Synthesis and Ca2+ antagonistic activity of 2-[2-[(aminoalkyl)oxy]-5-methoxyphenyl]-3,4-dihydro-4-methyl-3-oxo-2H- 1,4-benzothiazines. J. Med. Chem., 1990, 33(7), 1898-1905.
[http://dx.doi.org/10.1021/jm00169a011] [PMID: 2362267]
[19]
Tawada, H.; Sugiyama, Y.; Ikeda, H.; Yamamoto, Y.; Meguro, K. Studies on Antidiabetic Agents. IX.: A New Aldose Reductase Inhibitor, AD-5467, and Related 1, 4-Benzoxazine and 1, 4-Benzothiazine Derivatives: Synthesis and Biological Activity. Chem. Pharm. Bull., 1990, 38(5), 1238-1245.
[20]
Grandolini, G.; Ambrogi, V.; Perioli, L.; D'eramo, D.; Bernardini, C.; Giampietri, A. Studies on annelated 1, 4-benzothiazines and 1, 5-benzothiazepines. XI. Synthesis and biological activity of several naphtho-and quinolino-1, 4-thiazine and-1, 4-thiazepine derivatives containing the imidazole ring. Farmaco (Societa chimica italiana: 1989), 1997, 52(6-7), 379-384.
[21]
Schou, S.C.; Hansen, H.C.; Tagmose, T.M.; Boonen, H.C.; Worsaae, A.; Drabowski, M.; Wahl, P.; Arkhammar, P.O.; Bodvarsdottir, T.; Antoine, M.H.; Lebrun, P.; Hansen, J.B. Synthesis and pharmacological evaluation of 4H-1,4-benzothiazine-2-carbonitrile 1,1-dioxide and N-(2-cyanomethylsulfonylphenyl)acylamide derivatives as potential activators of ATP sensitive potassium channels. Bioorg. Med. Chem., 2005, 13(1), 141-155.
[http://dx.doi.org/10.1016/j.bmc.2004.09.051] [PMID: 15582459]
[22]
Gurram, R.M.; Bhuniya, D.; Das, S.; Sharma, S.K.; Chakrabarti, R.; Iqbal, J. Novel compounds and their use in medicine process for their preparation and pharmaceutical compositions containing them US 0,096,331, A1, 2005.
[23]
Sharma, P.R.; Gupta, V.; Gautam, D.C; Gupta, R.R. Synthesis of 7-Bromo/5, 6-Dimethyl-4 H-1, 4-Benzothiazines and Their Conversion into Sulfones. Phosphorus, Sulfur, and Silicon Relat. Elem., 2003, 178(7), 1483-1488.
[24]
Liso, G.; Trapani, G.; Berardi, V.; Latrofa, A.; Marchini, P. Adducts of 2-aminothiophenol with acetylenic nitriles or esters and their conversion into benzothiazoles and/or 1, 4-benzothiazines. J. Heterocycl. Chem., 1980, 17(4), 793-796.
[http://dx.doi.org/10.1002/jhet.5570170435]
[25]
Katritzky, A.R.; Rees, C.W.; Scriven, E.F. Comprehensive heterocyclic chemistry II. Pergamon; , 1996.
[26]
Rai, A; Raj, V; Singh, AK; Keshari, AK; Kumar, U; Kumar, D; Saha, S. Design and synthesis of 1, 4-benzothiazine derivatives with promising effects against colorectal cancer cells. Cogent chemistry, 2017.
[27]
Bollu, R.; Palem, J.D.; Bantu, R.; Guguloth, V.; Nagarapu, L.; Polepalli, S.; Jain, N. Rational design, synthesis and anti-proliferative evaluation of novel 1,4-benzoxazine-[1,2,3]triazole hybrids. Eur. J. Med. Chem., 2015, 89, 138-146.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.051] [PMID: 25462234]
[28]
Rather, R.A.; Siddiqui, Z.N. Silver phosphate supported on metal–organic framework (Ag3PO4@ MOF-5) as a novel heterogeneous catalyst for green synthesis of indenoquinolinediones. Appl. Organomet. Chem., 2019, 33(11), e5176.
[http://dx.doi.org/10.1002/aoc.5176]
[29]
Ramazani, A.; Khoobi, M.; Sadri, F.; Tarasi, R.; Shafiee, A.; Aghahosseini, H.; Joo, S.W. Efficient and selective oxidation of alcohols in water employing palladium supported nanomagnetic Fe3O4@ hyperbranched polyethylenimine (Fe3O4@ HPEI. Pd) as a new organic–inorganic hybrid nanocatalyst. Appl. Organomet. Chem., 2018, 32(1), e3908.
[http://dx.doi.org/10.1002/aoc.3908]
[30]
Maleki, A.; Ghalavand, R.; Firouzi Haji, R. Synthesis and characterization of the novel diamine-functionalized Fe3O4@ SiO2 nanocatalyst and its application for one-pot three-component synthesis of chromenes. Appl. Organomet. Chem., 2018, 32(1), e3916.
[http://dx.doi.org/10.1002/aoc.3916]
[31]
Tse-Lok, H.O. Ceric ion oxidation in organic chemistry. Synthesis, 1973, (06), 347-354.
[32]
Nair, V.; Deepthi, A. Cerium (IV) ammonium nitrate a versatile single-electron oxidant. Chem. Rev., 2007, 107(5), 1862-1891.
[33]
Dar, O.A.; Lone, S.A.; Malik, M.A.; Wani, M.Y.; Talukdar, M.I.A.; Al-Bogami, A.S.; Hashmi, A.A.; Ahmad, A. Heteroleptic transition metal complexes of Schiff-base-derived ligands exert their antifungal activity by disrupting membrane integrity. Appl. Organomet. Chem., 2019, 33(11), e5128.
[http://dx.doi.org/10.1002/aoc.5128]
[34]
Abu-Dief, A.M.; Nassar, I.F.; Elsayed, W.H. Magnetic NiFe2O4 nanoparticles: efficient, heterogeneous and reusable catalyst for synthesis of acetylferrocene chalcones and their anti-tumour activity. Appl. Organomet. Chem., 2016, 30(11), 917-923.
[http://dx.doi.org/10.1002/aoc.3521]
[35]
Kurapati, S.K.; Pal, S. cis-Dioxomolybdenum (VI) complexes with unsymmetric linear tetradentate ligands: syntheses, structures and bromoperoxidase activities. Appl. Organomet. Chem., 2016, 30(3), 116-124.
[http://dx.doi.org/10.1002/aoc.3403]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy