Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Review Article

Two-Dimensional Transitional Metal Disulfides as Charge Transport Layers in Organic-Inorganic Perovskite Solar Cells

Author(s): Huanhuan Zheng, Bingqiang Niu, Yijin Wang, Peng Zhong*, Xiaohua Ma and Hafiz Muhammad Asif Javed

Volume 16, Issue 1, 2022

Published on: 23 December, 2020

Page: [4 - 17] Pages: 14

DOI: 10.2174/1872210514666201223093838

Price: $65

Abstract

Abstract: In the past decade, organic-inorganic perovskite solar cells (PSCs) have received significant attentions due to their high efficiencies and low costs. However, the commercialization of PSCs is stilled hindered by several issues such as device performance (especially for large-area cells) and stability. Recently, two-dimensional (2D) transition metal disulfides (TMDs) show great potentials in solving aforementioned problems due to their unique morphological structure and electrical properties. Herein, we summarize the advancements in the recent applications of various TMDs materials as charge transport layers in PSCs. Although some progress have been made, there are considerable issues to be tackled in this field. The challenges and development directions of these 2D TMDs materials for PSCs are also clarified. Lastly, the most recent advancements about TMDs materials in some other electronic (or optoelectronic) fields are also summarized and discussed.

Keywords: Two-dimensional material, transition metal disulfide, perovskite solar cell, photoelectric conversion efficiency, stability.

Graphical Abstract
[1]
Fan J, Jia B, Gu M. Perovskite-based low-cost and high-efficiency hybrid halide solar cells. Photon Res 2014; 2(5): 111.
[http://dx.doi.org/10.1364/PRJ.2.000111]
[2]
Li Y, Zhao Y, Chen Q, et al. Multifunctional Fullerene Derivative for Interface Engineering in Perovskite Solar Cells. J Am Chem Soc 2015; 137(49): 15540-7.
[http://dx.doi.org/10.1021/jacs.5b10614] [PMID: 26592525]
[3]
Green MA, Ho-Baillie A, Snaith HJ. The emergence of perovskite solar cells. Nat Photonics 2014; 8(7): 506-14.
[http://dx.doi.org/10.1038/nphoton.2014.134]
[4]
[5]
Mali SS, Hong CK. p-i-n/n-i-p type planar hybrid structure of highly efficient perovskite solar cells towards improved air stability: synthetic strategies and the role of p-type hole transport layer (HTL) and n-type electron transport layer (ETL) metal oxides. Nanoscale 2016; 8(20): 10528-40.
[http://dx.doi.org/10.1039/C6NR02276F] [PMID: 27161123]
[6]
Yang G, Tao H, Qin P, Ke W, Fang G. Recent progress in electron transport layers for efficient perovskite solar cells. J Mater Chem A Mater Energy Sustain 2016; 4(11): 3970-90.
[http://dx.doi.org/10.1039/C5TA09011C]
[7]
Meyer J, Hamwi S, Kröger M, Kowalsky W, Riedl T, Kahn A. Transition metal oxides for organic electronics: energetics, device physics and applications. Adv Mater 2012; 24(40): 5408-27.
[http://dx.doi.org/10.1002/adma.201201630] [PMID: 22945550]
[8]
Salazar-Villanueva M, Hernandez AB, Briones JQ, Anota EC, Carrillo FS. Influence of doping on chain-like TiO2 clusters: A DFT study. Curr Appl Phys 2016; 16(2): 197-206.
[http://dx.doi.org/10.1016/j.cap.2015.11.018]
[9]
Salazar-Villanueva M, Hernandez AB, Anota EC, Valdez S, Cuchillo OV. Electronic and structural properties of Ti9XO20 (X= Ti, C, Si, Ge, Sn and Pb) clusters: a DFT study. Physica E 2015; 65: 120-4.
[http://dx.doi.org/10.1016/j.physe.2014.09.009]
[10]
Sherkar TS, Momblona C, Gil-Escrig L, et al. Recombination in Perovskite Solar Cells: Significance of Grain Boundaries, Interface Traps, and Defect Ions. ACS Energy Lett 2017; 2(5): 1214-22.
[http://dx.doi.org/10.1021/acsenergylett.7b00236] [PMID: 28540366]
[11]
Ho Y-C, Hoque MNF, Stoneham E, Warzywoda J, Dallas T, Fan Z. Reduction of Oxygen Vacancy Related Traps in TiO2 and the Impacts on Hybrid Perovskite Solar Cells. J Phys Chem C 2017; 121(43): 23939-46.
[http://dx.doi.org/10.1021/acs.jpcc.7b08384]
[12]
Yang C, Yu M, Chen D, et al. An annealing-free aqueous-processed anatase TiO2 compact layer for efficient planar heterojunction perovskite solar cells. Chem Commun (Camb) 2017; 53(79): 10882-5.
[http://dx.doi.org/10.1039/C7CC01104K] [PMID: 28634601]
[13]
Dong Q, Shi Y, Wang K, et al. Insight into Perovskite Solar Cells Based on SnO2 Compact Electron-Selective Layer. J Phys Chem C 2015; 119(19): 10212-7.
[http://dx.doi.org/10.1021/acs.jpcc.5b00541]
[14]
Anaraki EH, Kermanpur A, Steier L, et al. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy Environ Sci 2016; 9(10): 3128-34.
[http://dx.doi.org/10.1039/C6EE02390H]
[15]
Tseng ZL, Chiang CH, Wu CG. Surface Engineering of ZnO Thin Film for High Efficiency Planar Perovskite Solar Cells. Sci Rep 2015; 5: 13211.
[http://dx.doi.org/10.1038/srep13211] [PMID: 26411577]
[16]
Jeon NJ, Na H, Jung EH, et al. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat Energy 2018; 3(8): 682-9.
[http://dx.doi.org/10.1038/s41560-018-0200-6]
[17]
Malinauskas T, Tomkute-Luksiene D, Sens R, et al. Enhancing Thermal Stability and Lifetime of Solid-State Dye-Sensitized Solar Cells via Molecular Engineering of the Hole-Transporting Material Spiro-OMeTAD. ACS Appl Mater Interfaces 2015; 7(21): 11107-16.
[http://dx.doi.org/10.1021/am5090385] [PMID: 25954820]
[18]
Babayigit A, Duy Thanh D, Ethirajan A, et al. Assessing the toxicity of Pb- and Sn-based perovskite solar cells in model organism Danio rerio. Sci Rep 2016; 6(1): 18721.
[http://dx.doi.org/10.1038/srep18721] [PMID: 26759068]
[19]
Wang H, Yuan H, Sae Hong S, Li Y, Cui Y. Physical and chemical tuning of two-dimensional transition metal dichalcogenides. Chem Soc Rev 2015; 44(9): 2664-80.
[http://dx.doi.org/10.1039/C4CS00287C] [PMID: 25474482]
[20]
Bati ASR, Batmunkh M, Shapter JG. Emerging 2D Layered Materials for Perovskite Solar Cells. Adv Energy Mater 2020; 10(13)1902253
[http://dx.doi.org/10.1002/aenm.201902253]
[21]
You P, Tang G, Yan F. Two-dimensional materials in perovskite solar cells. Materials Today Energy 2019; 11: 128-58.
[http://dx.doi.org/10.1016/j.mtener.2018.11.006]
[22]
Zhang Z, Dong Y, Sun H, Liu G, Liu S, Yang X. Defect-rich 2D reticulated MoS2 monolayers: Facile hydrothermal preparation and marvellous photoelectric properties. Journal of the Taiwan Institute of Chemical Engineers 2019; 101: 221-30.
[http://dx.doi.org/10.1016/j.jtice.2019.04.035]
[23]
Yao H, Chen L, Zhang W, Shi Y. Method for improving singlelayer transition metal sulfide material light-emitting performance of the method CN Patent 107313024B, 2019.
[24]
Wang Y, Bai Y, Yang D, Sun Y. Preparation and application for transition metal sulfide-based counter electrode CN Patent 105845444A, 2016.
[25]
Sun Y, Huang C, Shen J, Zhong Y, Ning J, Hu Y. One-step construction of a transition-metal surface decorated with metal sulfide nanoparticles: A high-efficiency electrocatalyst for hydrogen generation. J Colloid Interface Sci 2020; 558: 1-8.
[http://dx.doi.org/10.1016/j.jcis.2019.09.090] [PMID: 31580951]
[26]
Tian Z, Zheng A, Wang D, Liu J. Supported single-layer and fewlayer two-dimensional transition metal sulfide catalyst and preparation method thereof CN Patent 111229256A 2020.
[27]
Wang Y, Liu Y, Liu M, Zhang C, Sun Y. Method for controllably preparing transition metal sulfide heterojunction by two steps CN Patent 109767920A, 2019.
[28]
Lai C-H, Lu M-Y, Chen L-J. Metal sulfide nanostructures: synthesis, properties and applications in energy conversion and storage. J Mater Chem 2012; 22(1): 19-30.
[http://dx.doi.org/10.1039/C1JM13879K]
[29]
Chhowalla M, Shin HS, Eda G, Li LJ, Loh KP, Zhang H. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 2013; 5(4): 263-75.
[http://dx.doi.org/10.1038/nchem.1589] [PMID: 23511414]
[30]
Chia X, Ambrosi A, Lazar P, Sofer Z, Pumera M. Electrocatalysis of layered Group 5 metallic transition metal dichalcogenides (MX2, M = V, Nb, and Ta; X = S, Se, and Te). J Mater Chem A Mater Energy Sustain 2016; 4(37): 14241-53.
[http://dx.doi.org/10.1039/C6TA05110C]
[31]
Chia X, Eng AY, Ambrosi A, Tan SM, Pumera M. Electrochemistry of Nanostructured Layered Transition-Metal Dichalcogenides. Chem Rev 2015; 115(21): 11941-66.
[http://dx.doi.org/10.1021/acs.chemrev.5b00287] [PMID: 26426313]
[32]
Shi Y, Li H, Li LJ. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem Soc Rev 2015; 44(9): 2744-56.
[http://dx.doi.org/10.1039/C4CS00256C] [PMID: 25327436]
[33]
Li H, Shi Y, Chiu M-H, Li L-J. Emerging energy applications of two-dimensional layered transition metal dichalcogenides. Nano Energy 2015; 18: 293-305.
[http://dx.doi.org/10.1016/j.nanoen.2015.10.023]
[34]
Lv R, Robinson JA, Schaak RE, et al. Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. Acc Chem Res 2015; 48(1): 56-64.
[http://dx.doi.org/10.1021/ar5002846] [PMID: 25490673]
[35]
Duan X, Wang C, Pan A, Yu R, Duan X. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem Soc Rev 2015; 44(24): 8859-76.
[http://dx.doi.org/10.1039/C5CS00507H] [PMID: 26479493]
[36]
Fiori G, Bonaccorso F, Iannaccone G, et al. Electronics based on two-dimensional materials. Nat Nanotechnol 2014; 9(10): 768-79.
[http://dx.doi.org/10.1038/nnano.2014.207] [PMID: 25286272]
[37]
Das S, Robinson JA, Dubey M, Terrones H, Terrones M. Beyond Graphene: Progress in Novel Two-Dimensional Materials and van der Waals Solids. Annu Rev Mater Res 2015; 45(1): 1-27.
[http://dx.doi.org/10.1146/annurev-matsci-070214-021034]
[38]
Kang M, Kim B, Ryu SH, et al. Universal Mechanism of Band-Gap Engineering in Transition-Metal Dichalcogenides. Nano Lett 2017; 17(3): 1610-5.
[http://dx.doi.org/10.1021/acs.nanolett.6b04775] [PMID: 28118710]
[39]
Kutana A, Penev ES, Yakobson BI. Engineering electronic properties of layered transition-metal dichalcogenide compounds through alloying. Nanoscale 2014; 6(11): 5820-5.
[http://dx.doi.org/10.1039/C4NR00177J] [PMID: 24744083]
[40]
Fan Z-Q, Jiang X-W, Luo J-W, et al. In-plane Schottky-barrier field-effect transistors based on 1T/2H heterojunctions of transition-metal dichalcogenides. Phys Rev B 2017; 96(16)
[http://dx.doi.org/10.1103/PhysRevB.96.165402]
[41]
Zeng H, Cui X. An optical spectroscopic study on two-dimensional group-VI transition metal dichalcogenides. Chem Soc Rev 2015; 44(9): 2629-42.
[http://dx.doi.org/10.1039/C4CS00265B] [PMID: 25897845]
[42]
Laturia A, Van de Put M L, Vandenberghe W G. Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk npj 2D Materials and Applications 2018; 2(1)
[43]
Seyler KL, Schaibley JR, Gong P, et al. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nat Nanotechnol 2015; 10(5): 407-11.
[http://dx.doi.org/10.1038/nnano.2015.73] [PMID: 25895004]
[44]
Salim T, Sun S, Abe Y, Krishna A, Grimsdale AC, Lam YM. Perovskite-based solar cells: impact of morphology and device architecture on device performance. J Mater Chem A Mater Energy Sustain 2015; 3(17): 8943-69.
[http://dx.doi.org/10.1039/C4TA05226A]
[45]
Akinwande D, Petrone N, Hone J. Two-dimensional flexible nanoelectronics. Nat Commun 2014; 5: 5678.
[http://dx.doi.org/10.1038/ncomms6678] [PMID: 25517105]
[46]
Chang J, Zhao P, Lin Z, Su J, Zhnag J, Hao Y. a perovskite solar cell by taking a two-dimensional material as an electron transport layer and a preparation method thereof CN Patent 110518122A, 2019.
[47]
Hou Y, Chen X, Yang S, et al. Low-temperature processed In2S3 electron transport layer for efficient hybrid perovskite solar cells. Nano Energy 2017; 36: 102-9.
[http://dx.doi.org/10.1016/j.nanoen.2017.04.033]
[48]
Yin G, Zhao H, Feng J, et al. Low-temperature and facile solution-processed two-dimensional TiS2 as an effective electron transport layer for UV-stable planar perovskite solar cells. J Mater Chem A Mater Energy Sustain 2018; 6(19): 9132-8.
[http://dx.doi.org/10.1039/C8TA01143E]
[49]
Huang P, Yuan L, Zhang K, et al. Room-Temperature and Aqueous Solution-Processed Two-Dimensional TiS2 as an Electron Transport Layer for Highly Efficient and Stable Planar n-i-p Perovskite Solar Cells. ACS Appl Mater Interfaces 2018; 10(17): 14796-802.
[http://dx.doi.org/10.1021/acsami.8b03225] [PMID: 29633824]
[50]
Huang P, Chen Q, Zhang K, et al. 21.7% efficiency achieved in planar n–i–p perovskite solar cells via interface engineering with water-soluble 2D TiS2. J Mater Chem A Mater Energy Sustain 2019; 7(11): 6213-9.
[http://dx.doi.org/10.1039/C8TA11841H]
[51]
Zhao E, Gao L, Yang S, Wang L, Cao J, Ma T. In situ fabrication of 2D SnS2 nanosheets as a new electron transport layer for perovskite solar cells. Nano Res 2018; 11(11): 5913-23.
[http://dx.doi.org/10.1007/s12274-018-2103-z]
[52]
Chu W, Li X, Li S, Hou J, Jiang Q, Yang J. High-Performance Flexible Perovskite Solar Cells with a Metal Sulfide Electron Transport Layer of SnS2 by Room-Temperature Vacuum Deposition. ACS Applied Energy Materials 2018; 2(1): 382-8.
[http://dx.doi.org/10.1021/acsaem.8b01405]
[53]
Zhao X, Liu S, Zhang H, et al. 20% Efficient Perovskite Solar Cells with 2D Electron Transporting Layer. Adv Funct Mater 2019; 29(4)1805168
[http://dx.doi.org/10.1002/adfm.201805168]
[54]
Singh R, Giri A, Pal M, et al. Perovskite solar cells with an MoS2 electron transport layer. J Mater Chem A Mater Energy Sustain 2019; 7(12): 7151-8.
[http://dx.doi.org/10.1039/C8TA12254G]
[55]
Afzali M, Mostafavi A, Shamspur T. Improved perovskite solar cell with 2H–TaS2 nanosheets as an electron transport layer using microwave irradiation. J Alloys Compd 2020.817152742
[http://dx.doi.org/10.1016/j.jallcom.2019.152742]
[56]
Niu G, Li W, Li J, Wang L. Progress of interface engineering in perovskite solar cells. Science China Materials 2016; 59(9): 728-42.
[http://dx.doi.org/10.1007/s40843-016-5094-6]
[57]
Chen J, Park NG. Causes and Solutions of Recombination in Perovskite Solar Cells. Adv Mater 2019; 31(47)e1803019
[http://dx.doi.org/10.1002/adma.201803019] [PMID: 30230045]
[58]
Capasso A, Matteocci F, Najafi L, et al. Few-Layer MoS2Flakes as Active Buffer Layer for Stable Perovskite Solar Cells. Adv Energy Mater 2016; 6(16)1600920
[http://dx.doi.org/10.1002/aenm.201600920]
[59]
Agresti A, Pescetelli S, Palma AL, et al. Two-Dimensional Material Interface Engineering for Efficient Perovskite Large-Area Modules. ACS Energy Lett 2019; 4(8): 1862-71.
[http://dx.doi.org/10.1021/acsenergylett.9b01151]
[60]
Liu J, Wu Y, Qin C, et al. A dopant-free hole-transporting material for efficient and stable perovskite solar cells. Energy Environ Sci 2014; 7(9): 2963-7.
[http://dx.doi.org/10.1039/C4EE01589D]
[61]
Zhou P, Bu T, Shi S, et al. Efficient and stable mixed perovskite solar cells using P3HT as a hole transporting layer. J Mater Chem C Mater Opt Electron Devices 2018; 6(21): 5733-7.
[http://dx.doi.org/10.1039/C8TC01345D]
[62]
Ray R, Sarkar AS, Pal SK. Improving performance and moisture stability of perovskite solar cells through interface engineering with polymer-2D MoS2 nanohybrid. Sol Energy 2019; 193: 95-101.
[http://dx.doi.org/10.1016/j.solener.2019.09.055]
[63]
Liu Z, Liu K, Zhang F, et al. CH3NH3PbI3:MoS2 heterostructure for stable and efficient inverted perovskite solar cell. Sol Energy 2020; 195: 436-45.
[http://dx.doi.org/10.1016/j.solener.2019.11.030]
[64]
Kim YG, Kwon KC, Le QV, Hong K, Jang HW, Kim SY. Atomically thin two-dimensional materials as hole extraction layers in organolead halide perovskite photovoltaic cells. J Power Sources 2016; 319: 1-8.
[http://dx.doi.org/10.1016/j.jpowsour.2016.04.032]
[65]
Huang P, Wang Z, Liu Y, et al. Water-Soluble 2D Transition Metal Dichalcogenides as the Hole-Transport Layer for Highly Efficient and Stable p-i-n Perovskite Solar Cells. ACS Appl Mater Interfaces 2017; 9(30): 25323-31.
[http://dx.doi.org/10.1021/acsami.7b06403] [PMID: 28695726]
[66]
Dasgupta U, Chatterjee S, Pal AJ. Thin-film formation of 2D MoS2 and its application as a hole-transport layer in planar perovskite solar cells. Sol Energy Mater Sol Cells 2017; 172: 353-60.
[http://dx.doi.org/10.1016/j.solmat.2017.08.012]
[67]
Dai R, Wang Y, Wang J, Deng X. Metal-Organic-Compound-Modified MoS2 with Enhanced Solubility for High-Performance Perovskite Solar Cells. ChemSusChem 2017; 10(14): 2869-74.
[http://dx.doi.org/10.1002/cssc.201700603] [PMID: 28547844]
[68]
Kakavelakis G, Paradisanos I, Paci B, et al. Extending the Continuous Operating Lifetime of Perovskite Solar Cells with a Molybdenum Disulfide Hole Extraction Interlayer. Adv Energy Mater 2018; 8(12)1702287
[http://dx.doi.org/10.1002/aenm.201702287]
[69]
Kohnehpoushi S, Nazari P, Nejand BA, Eskandari M. MoS2: a two-dimensional hole-transporting material for high-efficiency, low-cost perovskite solar cells. Nanotechnology 2018; 29(20)205201
[http://dx.doi.org/10.1088/1361-6528/aab1d4] [PMID: 29473826]
[70]
Shin DH, Shin SH, Choi S-H. Self-powered and flexible perovskite photodiode/solar cell bifunctional devices with MoS2 hole transport layer. Appl Surf Sci 2020.514145880
[http://dx.doi.org/10.1016/j.apsusc.2020.145880]
[71]
Su X. Based on molybdenum disulfide transistor of a scintillator detector and producing method thereof CN Patent 105676259A, 2016.
[72]
Chen Q, Zeng J, Wang D. Lithium iron-manganese-lithium- manganese disulfide nanosheet lithium battery cathode material and preparation method thereof CN Patent 106450302B, 2019
[73]
Chen H, Ma C, Fu W, Wang L, Yang X, Xu M. Based on disulphide photolysis m sheet material of the organic solar cell and its preparation method. C.N. Patent 104465991A: 2015.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy