Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Photocatalytic Degradation of Methyl Orange Dye with Synthesized Chitosan/Fe2O3Nanocomposite and its Isotherm Studies

Author(s): Nimisha Jadon*, Gulzar Ahmad Bhat, Manoharmayum Vishwanath Sharma and Harendra Kumar Sharma*

Volume 18, Issue 1, 2022

Published on: 17 December, 2020

Page: [78 - 85] Pages: 8

DOI: 10.2174/1573413716666201217123318

Abstract

Background: The study focuses on the synthesis of chitosan/Fe2O3 nanocomposite, its characterization and application in methyl orange dye degradation.

Methods: The synthesized chitosan/Fe2O3 nanocomposite was characterized with Powder X-Ray Diffraction, Fourier Transformation Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and UV-Vis Spectroscopy

Results: The characterization showed that the Fe2O3nanoparticles were embedded in the polymer matrix of chitosan. The size of the Fe2O3nanoparticles was less than 10nm and the crystallite size was 1.22 nm. The synthesized chitosan/Fe2O3nanocomposite was tested for methyl orange degradation using different parameters such as the effect of contact time, effect of dose, effect of concentration and effect of pH for the degradation of methyl orange dye in aqueous solution. The Fruendlich, Langmuir and Temkin isotherm studies were also conducted for adsorption of methyl orange on Chitosan/ Fe2O3nanocomposite

Conclusion: The study indicated that the synthesized chitosan/Fe2O3 nanocomposite had the potential of degrading methyl orange dye up to 75.04% under the set condition in this experiment, which indicates that Chitosan/Fe2O3 nanocomposite is a viable option that can be used for the degradation of methyl orange dye

Keywords: Chitosan, Fe2O3, nanocomposite, methyl orange, dye degradation, photocatalytic degradation

Graphical Abstract
[1]
Oller, I.; Malato, S.; Sánchez-Pérez, J.A. Combination of advanced oxidation processes and biological treatments for wastewater decontamination-a review. Sci. Total Environ., 2011, 409(20), 4141-4166.
[http://dx.doi.org/10.1016/j.scitotenv.2010.08.061] [PMID: 20956012]
[2]
Hoffmann, M.R.; Martin, S.T. Choi, Wonyong.; Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev., 1995, 95(1), 69-96.
[http://dx.doi.org/10.1021/cr00033a004]
[3]
Fujishima, A.; Rao, T.N.; Tryk, D.A. Titanium dioxide photocatalysis. J. Photochem. Photobiol. Photochem. Rev., 2000, 1(1), 1-21.
[http://dx.doi.org/10.1016/S1389-5567(00)00002-2]
[4]
Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visiblelight photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528), 269-271.
[http://dx.doi.org/10.1126/science.1061051] [PMID: 11452117]
[5]
Sun, J-H.; Dong, S-Y.; Wang, Y-K.; Sun, S-P. Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst. J. Hazard. Mater., 2009, 172(2-3), 1520-1526.
[http://dx.doi.org/10.1016/j.jhazmat.2009.08.022] [PMID: 19735975]
[6]
Cheng, X-L.; Jiang, J-S.; Jin, C-Y.; Lin, C-C.; Zeng, Y.; Zhang, Q-H. Cauliflower-like α-Fe2O3 microstructures: Toluene–water interface-assisted synthesis, characterization, and applications in wastewater treatment and visible-light photocatalysis. Chem. Eng. J., 2014, 236, 139-148.
[http://dx.doi.org/10.1016/j.cej.2013.09.089]
[7]
Chowdhury, S.; Balasubramanian, R. Graphene/Semiconductor Nanocomposites (GSNs) for heterogeneous photocatalytic decolorization of wastewaters contaminated with synthetic dyes: A Review. Appl. Catal. B, 2014, 160, 307-324.
[http://dx.doi.org/10.1016/j.apcatb.2014.05.035]
[8]
Chaturvedi, S.; Dave, P.N.; Shah, N.K. Applications of nano-catalyst in new era. J. Saudi Chem. Soc., 2012, 16(3), 307-325.
[http://dx.doi.org/10.1016/j.jscs.2011.01.015]
[9]
Johns, J.; Rao, V. Adsorption of methylene blue onto natural rubber/chitosan blends. Int. J. Polym. Mater., 2011, 60(10), 766-775.
[http://dx.doi.org/10.1080/00914037.2010.551361]
[10]
Gu, H.; Ho, P.L.; Tong, E.; Wang, L.; Xu, B. Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett., 2003, 3(9), 1261-1263.
[http://dx.doi.org/10.1021/nl034396z]
[11]
Dutta, P.K.; Rinki, K.; Dutta, J. Chitosan: A promising biomaterial for tissue engineering scaffolds. Chitosan for biomaterials II; Springer, 2011, pp. 45-79.
[http://dx.doi.org/10.1007/12_2011_112]
[12]
Zheng, N.; Zhou, X.; Yang, W.; Li, X.; Yuan, Z. Direct electrochemistry and electrocatalysis of hemoglobin immobilized in a magnetic nanoparticles-chitosan film. Talanta, 2009, 79(3), 780-786..
[http://dx.doi.org/10.1016/j.talanta.2009.05.002] [PMID: 19576445]
[13]
Wang, S.; Tan, Y.; Zhao, D.; Liu, G. Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-chitosan nanocomposite. Biosens. Bioelectron., 2008, 23(12), 1781-1787.
[http://dx.doi.org/10.1016/j.bios.2008.02.014] [PMID: 18387292]
[14]
Donadel, K.; Felisberto, M.D.; Fávere, V.T.; Rigoni, M.; Batistela, N.J.; Laranjeira, M.C. Synthesis and characterization of the iron oxide magnetic particles coated with chitosan biopolymer. Mater. Sci. Eng. C, 2008, 28(4), 509-514.
[http://dx.doi.org/10.1016/j.msec.2007.06.004]
[15]
Kaushik, A.; Solanki, P.R.; Ansari, A.A.; Sumana, G.; Ahmad, S.; Malhotra, B.D. Iron oxide-chitosan nanobiocomposite for Urea Sensor. Sens. Actuators B Chem., 2009, 138(2), 572-580.
[http://dx.doi.org/10.1016/j.snb.2009.02.005]
[16]
Cheong, S-J.; Lee, C-M.; Kim, S-L.; Jeong, H-J.; Kim, E-M.; Park, E-H.; Kim, D.W.; Lim, S.T.; Sohn, M-H. Superparamagnetic iron oxide nanoparticles-loaded chitosan-linoleic acid nanoparticles as an effective hepatocyte-targeted gene delivery system. Int. J. Pharm., 2009, 372(1-2), 169-176.
[http://dx.doi.org/10.1016/j.ijpharm.2009.01.009] [PMID: 19429277]
[17]
Kaushik, A.; Solanki, P.R.; Ansari, A.A.; Ahmad, S.; Malhotra, B.D. Chitosan-iron oxide nanobiocomposite based immunosensor for ochratoxin-A. Electrochem. Commun., 2008, 10(9), 1364-1368.
[http://dx.doi.org/10.1016/j.elecom.2008.07.007]
[18]
Singh, R.; Verma, R.; Kaushik, A.; Sumana, G.; Sood, S.; Gupta, R.K.; Malhotra, B.D. Chitosan-iron oxide nano-composite platform for mismatch-discriminating DNA hybridization for Neisseria gonorrhoeae detection causing sexually transmitted disease. Biosens. Bioelectron., 2011, 26(6), 2967-2974.
[http://dx.doi.org/10.1016/j.bios.2010.11.047] [PMID: 21190837]
[19]
Saad, A.A.H.; M. Azzam, A.; T El-Wakeel, S.; B Mostafa, B.; B Abd El-latif, M. Industrial wastewater remediation using hematite@ chitosan nanocomposite. Egyptian J. Aquatic Biol. Fisheries, 2020, 24(1), 13-29.
[http://dx.doi.org/10.21608/ejabf.2020.67580]
[20]
Broujeni, B.R.; Nilchi, A.; Hassani, A.H.; Saberi, R. Preparation and characterization of chitosan/Fe2O3 nano composite for the adsorption of thorium (IV) ion from aqueous solution. Water Sci. Technol., 2018, 78(3-4), 708-720.
[http://dx.doi.org/10.2166/wst.2018.343] [PMID: 30208011]
[21]
Keshvardoostchokami, M.; Piri, F.; Zamani, A. One-pot synthesis of chitosan/iron oxide nanocomposite as an eco-friendly bioadsorbent for water remediation of methylene blue. Micro & Nano Lett., 2017, 12(5), 338-343.
[http://dx.doi.org/10.1049/mnl.2016.0681]
[22]
Scialla, S.; Barca, A.; Palazzo, B.; D’Amora, U.; Russo, T.; Gloria, A.; De Santis, R.; Verri, T.; Sannino, A.; Ambrosio, L.; Gervaso, F. Bioactive chitosan-based scaffolds with improved properties induced by dextran-grafted nano-maghemite and l-arginine amino acid. J. Biomed. Mater. Res. A, 2019, 107(6), 1244-1252..
[http://dx.doi.org/10.1002/jbm.a.36633] [PMID: 30701656]
[23]
Abhilash, M.R.; Akshatha, G.; Srikantaswamy, S. Photocatalytic dye degradation and biological activities of the Fe2O3/Cu2O nanocomposite. RSC Adv, 2019, 9(15), 8557-8568.
[http://dx.doi.org/10.1039/C8RA09929D]
[24]
Holzwarth, U.; Gibson, N. The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat. Nanotechnol., 2011, 6(9), 534-534.
[http://dx.doi.org/10.1038/nnano.2011.145] [PMID: 21873991]
[25]
Lizardi-Mendoza, J.; Monal, W.M.A.; Valencia, F.M.G. Chemical characteristics and functional properties of chitosan. Chitosan in the preservation of agricultural commodities; Elsevier, 2016, pp. 3-31.
[http://dx.doi.org/10.1016/B978-0-12-802735-6.00001-X]
[26]
Rajiv, P.; Bavadharani, B.; Kumar, M.N.; Vanathi, P. Synthesis and characterization of biogenic iron oxide nanoparticles using green chemistry approach and evaluating their biological activities. Biocatal. Agric. Biotechnol., 2017, 12, 45-49.
[http://dx.doi.org/10.1016/j.bcab.2017.08.015]
[27]
Kumar, M.; Mehta, A.; Mishra, A.; Singh, J.; Rawat, M.; Basu, S. Biosynthesis of tin oxide nanoparticles using Psidium guajava leave extract for photocatalytic dye degradation under sunlight. Mater. Lett., 2018, 215, 121-124.
[http://dx.doi.org/10.1016/j.matlet.2017.12.074]
[28]
Hunge, Y.M.; Yadav, A.A.; Mathe, V.L. Ultrasound assisted synthesis of WO3-ZnO nanocomposites for brilliant blue dye degradation. Ultrason. Sonochem., 2018, 45, 116-122.,
[http://dx.doi.org/10.1016/j.ultsonch.2018.02.052] [PMID: 29705304]
[29]
Viswanathan, B. Photocatalytic degradation of dyes: An overview. Curr. Catal., 2018, 7(2), 99-121.
[http://dx.doi.org/10.2174/2211544707666171219161846]
[30]
Kumar, A.; Pandey, G. A review on the factors affecting the photocatalytic degradation of hazardous materials. Mat. Sci. Eng. Int. J., 2017, 1(3), 1-10.,
[http://dx.doi.org/10.15406/mseij.2017.01.00018]
[31]
Muruganandham, M.; Swaminathan, M. Photochemical oxidation of reactive azo dye with UV–H2O2 process. Dyes Pigments, 2004, 62(3), 269-275.
[http://dx.doi.org/10.1016/j.dyepig.2003.12.006]
[32]
Singh, R.; Kulkarni, K.; Kulkarni, A.D. Application of appopolite in adsorption of heavy metals (Co and Ni) from waste water. Chem. Mat. Res., 2011, 1(2), 16-21.
[33]
Dubey, L.; Sharma, H.K.; Khare, R.K. Removal of Zinc and Lead from aqueous solution using low cost bioadsorbent Pennisetum glaucum (Bajara). Husk. Adv. Biores., 2017, 8(4), 188-196.
[34]
Dada, A.O.; Olalekan, A.P.; Olatunya, A.M.; Dada, O. Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR J. Appl. Chem., 2012, 3(1), 38-45.
[http://dx.doi.org/10.9790/5736-0313845]
[35]
Hussain, M.; Tariq, S.; Ahmad, M.; Sun, H.; Maaz, K.; Ali, G.; Hussain, S.Z.; Iqbal, M.; Karim, S.; Nisar, A. Ag TiO2 nanocomposite for environmental and sensing applications. Mater. Chem. Phys., 2016, 181, 194-203.,
[http://dx.doi.org/10.1016/j.matchemphys.2016.06.049]
[36]
Parida, K.M.; Sahu, N.; Biswal, N.R.; Naik, B.; Pradhan, A.C. Preparation, characterization, and photocatalytic activity of sulfate-modified titania for degradation of methyl orange under visible light. J. Colloid Interface Sci., 2008, 318(2), 231-237.
[http://dx.doi.org/10.1016/j.jcis.2007.10.028] [PMID: 18035368]
[37]
Kumar, R.; Kumar, G.; Akhtar, M.S.; Umar, A. Sonophotocatalytic degradation of methyl orange using ZnO nano-aggregates. J. Alloys Compd., 2015, 629, 167-172.
[http://dx.doi.org/10.1016/j.jallcom.2014.12.232]

© 2024 Bentham Science Publishers | Privacy Policy