Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Review Article

Resistance to Intervention: Paclitaxel in Breast Cancer

Author(s): Vipin Mohan Dan, Reji Saradha Raveendran and Sabulal Baby*

Volume 21, Issue 10, 2021

Published on: 14 December, 2020

Page: [1237 - 1268] Pages: 32

DOI: 10.2174/1389557520999201214234421

Price: $65

Abstract

Breast cancer stands as the most prevalent cancer in women globally, and contributes to the highest percentage of mortality due to cancer-related deaths in women. Paclitaxel (PTX) is heavily relied on as a frontline chemotherapy drug in breast cancer treatment, especially in advanced metastatic cancer. Generation of resistance to PTX often derails clinical management and adversely affects patient outcomes. Understanding the molecular mechanism of PTX resistance is necessary to device methods to aid in overcoming the resistance. Recent studies exploring the mechanism of development of PTX resistance have led to unveiling of a range novel therapeutic targets. PTX resistance pathways that involve major regulatory proteins/RNAs like RNF8/Twist/ROR1, TLR, ErbB3/ErbB2, BRCA1- IRIS, MENA, LIN9, MiRNA, FoxM1 and IRAK1 have expanded the complexity of resistance mechanisms, and brought newer insights into the development of drug targets. These resistance-related targets can be dealt with synthetic/natural therapeutics in combination with PTX. The present review encompasses the recent understanding of PTX resistance mechanisms in breast cancer and possible therapeutic combinations to overcome resistance.

Keywords: Paclitaxel, breast cancer, resistance, signal pathways, combination therapy.

« Previous
Graphical Abstract
[1]
Eckhardt, B.L.; Francis, P.A.; Parker, B.S.; Anderson, R.L. Strategies for the discovery and development of therapies for metastatic breast cancer. Nat. Rev. Drug Discov., 2012, 11(6), 479-497.
[http://dx.doi.org/10.1038/nrd2372] [PMID: 22653217]
[2]
Isakoff, S.J. Triple-negative breast cancer: Role of specific chemotherapy agents. Cancer J., 2010, 16(1), 53-61.
[http://dx.doi.org/10.1097/PPO.0b013e3181d24ff7] [PMID: 20164691]
[3]
Kaufmann, S.H.; Earnshaw, W.C. Induction of apoptosis by cancer chemotherapy. Exp. Cell Res., 2000, 256(1), 42-49.
[http://dx.doi.org/10.1006/excr.2000.4838] [PMID: 10739650]
[4]
Jordan, M.A. Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr. Med. Chem. Anticancer Agents, 2002, 2(1), 1-17.
[http://dx.doi.org/10.2174/1568011023354290] [PMID: 12678749]
[5]
Notte, A.; Rebucci, M.; Fransolet, M.; Roegiers, E.; Genin, M.; Tellier, C.; Watillon, K.; Fattaccioli, A.; Arnould, T.; Michiels, C. Taxol-induced unfolded protein response activation in breast cancer cells exposed to hypoxia: ATF4 activation regulates autophagy and inhibits apoptosis. Int. J. Biochem. Cell Biol., 2015, 62, 1-14.
[http://dx.doi.org/10.1016/j.biocel.2015.02.010] [PMID: 25724736]
[6]
Volk-Draper, L.; Hall, K.; Griggs, C.; Rajput, S.; Kohio, P.; DeNardo, D.; Ran, S. Paclitaxel therapy promotes breast cancer metastasis in a TLR4-dependent manner. Cancer Res., 2014, 74(19), 5421-5434.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0067] [PMID: 25274031]
[7]
Jost, P.J.; Ruland, J. Aberrant NF-kappaB signaling in lymphoma: Mechanisms, consequences, and therapeutic implications. Blood, 2007, 109(7), 2700-2707.
[http://dx.doi.org/10.1182/blood-2006-07-025809] [PMID: 17119127]
[8]
Perkins, N.D. The diverse and complex roles of NF-κB subunits in cancer. Nat. Rev. Cancer, 2012, 12(2), 121-132.
[http://dx.doi.org/10.1038/nrc3204] [PMID: 22257950]
[9]
Wee, Z.N.; Yatim, S.M.; Kohlbauer, V.K.; Feng, M.; Goh, J.Y.; Bao, Y.; Lee, P.L.; Zhang, S.; Wang, P.P.; Lim, E.; Tam, W.L. IRAK1 is a therapeutic target that drives breast cancer metastasis and resistance to paclitaxel. Nat. Commun., 2015, 6, 1-6.
[http://dx.doi.org/10.1038/ncomms9746]
[10]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2017. CA Cancer J. Clin., 2017, 67(1), 7-30.
[http://dx.doi.org/10.3322/caac.21387] [PMID: 28055103]
[11]
Curtis, C.; Shah, S.P.; Chin, S.F.; Turashvili, G.; Rueda, O.M.; Dunning, M.J.; Speed, D.; Lynch, A.G.; Samarajiwa, S.; Yuan, Y.; Gräf, S.; Ha, G.; Haffari, G.; Bashashati, A.; Russell, R.; McKinney, S.; Langerød, A.; Green, A.; Provenzano, E.; Wishart, G.; Pinder, S.; Watson, P.; Markowetz, F.; Murphy, L.; Ellis, I.; Purushotham, A.; Børresen-Dale, A.L.; Brenton, J.D.; Tavaré, S.; Caldas, C.; Aparicio, S. METABRIC Group.The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature, 2012, 486(7403), 346-352.
[http://dx.doi.org/10.1038/nature10983] [PMID: 22522925]
[12]
Berrieman, H.K.; Lind, M.J.; Cawkwell, L. Do beta-tubulin mutations have a role in resistance to chemotherapy? Lancet Oncol., 2004, 5(3), 158-164.
[http://dx.doi.org/10.1016/S1470-2045(04)01411-1] [PMID: 15003198]
[13]
Gradishar, W.J.; Tjulandin, S.; Davidson, N.; Shaw, H.; Desai, N.; Bhar, P.; Hawkins, M.; O’Shaughnessy, J. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J. Clin. Oncol., 2005, 23(31), 7794-7803.
[http://dx.doi.org/10.1200/JCO.2005.04.937] [PMID: 16172456]
[14]
Huen, M.S.; Grant, R.; Manke, I.; Minn, K.; Yu, X.; Yaffe, M.B.; Chen, J. RNF8 transduces the DNA-damage signal via histone ubiquitylation and checkpoint protein assembly. Cell, 2007, 131(5), 901-914.
[http://dx.doi.org/10.1016/j.cell.2007.09.041] [PMID: 18001825]
[15]
Bennett, E.J.; Harper, J.W. DNA damage: Ubiquitin marks the spot. Nat. Struct. Mol. Biol., 2008, 15(1), 20-22.
[http://dx.doi.org/10.1038/nsmb0108-20] [PMID: 18176551]
[16]
Orthwein, A.; Fradet-Turcotte, A.; Noordermeer, S.M.; Canny, M.D.; Brun, C.M.; Strecker, J.; Escribano-Diaz, C.; Durocher, D. Mitosis inhibits DNA double-strand break repair to guard against telomere fusions. Science, 2014, 344(6180), 189-193.
[http://dx.doi.org/10.1126/science.1248024] [PMID: 24652939]
[17]
Lee, H-J.; Li, C-F.; Ruan, D.; Powers, S.; Thompson, P.A.; Frohman, M.A.; Chan, C-H. The DNA damage transducer RNF8 facilitates cancer chemoresistance and progression through twist activation. Mol. Cell, 2016, 63(6), 1021-1033.
[http://dx.doi.org/10.1016/j.molcel.2016.08.009] [PMID: 27618486]
[18]
Kuang, J.; Li, L.; Guo, L.; Su, Y.; Wang, Y.; Xu, Y.; Wang, X.; Meng, S.; Lei, L.; Xu, L.; Shao, G. RNF8 promotes epithelial-mesenchymal transition of breast cancer cells. J. Exp. Clin. Cancer Res., 2016, 35(1), 88.
[http://dx.doi.org/10.1186/s13046-016-0363-6] [PMID: 27259701]
[19]
Wang, Y.; Shang, Y. Epigenetic control of epithelial-to-mesenchymal transition and cancer metastasis. Exp. Cell Res., 2013, 319(2), 160-169.
[http://dx.doi.org/10.1016/j.yexcr.2012.07.019] [PMID: 22935683]
[20]
Valenta, T.; Hausmann, G.; Basler, K. The many faces and functions of β-catenin. EMBO J., 2012, 31(12), 2714-2736.
[http://dx.doi.org/10.1038/emboj.2012.150] [PMID: 22617422]
[21]
Wang, S.; Huang, X.; Lee, C.K.; Liu, B. Elevated expression of erbB3 confers paclitaxel resistance in erbB2-overexpressing breast cancer cells via upregulation of survivin. Oncogene, 2010, 29(29), 4225-4236.
[http://dx.doi.org/10.1038/onc.2010.180] [PMID: 20498641]
[22]
Chen, J.; Ren, Q.; Cai, Y.; Lin, T.; Zuo, W.; Wang, J.; Lin, R.; Zhu, L.; Wang, P.; Dong, H.; Zhao, H.; Huang, L.; Fu, Y.; Yang, S.; Tan, J.; Lan, X.; Wang, S. Mesenchymal stem cells drive paclitaxel resistance in ErbB2/ErbB3-coexpressing breast cancer cells via paracrine of neuregulin 1. Biochem. Biophys. Res. Commun., 2018, 501(1), 212-219.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.218] [PMID: 29715459]
[23]
Lyu, H.; Wang, S.; Huang, J.; Wang, B.; He, Z.; Liu, B. Survivin-targeting miR-542-3p overcomes HER3 signaling-induced chemoresistance and enhances the antitumor activity of paclitaxel against HER2-overexpressing breast cancer. Cancer Lett., 2018, 420, 97-108.
[http://dx.doi.org/10.1016/j.canlet.2018.01.065] [PMID: 29409974]
[24]
Cheng, G.Z.; Chan, J.; Wang, Q.; Zhang, W.; Sun, C.D.; Wang, L.H. Twist transcriptionally up-regulates AKT2 in breast cancer cells leading to increased migration, invasion, and resistance to paclitaxel. Cancer Res., 2007, 67(5), 1979-1987.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1479] [PMID: 17332325]
[25]
Lawson, D.A.; Bhakta, N.R.; Kessenbrock, K.; Prummel, K.D.; Yu, Y.; Takai, K.; Zhou, A.; Eyob, H.; Balakrishnan, S.; Wang, C.Y.; Yaswen, P.; Goga, A.; Werb, Z. Single-cell analysis reveals a stem-cell program in human metastatic breast cancer cells. Nature, 2015, 526(7571), 131-135.
[http://dx.doi.org/10.1038/nature15260] [PMID: 26416748]
[26]
Wang, L.; Tan, R.Z.; Zhang, Z.X.; Yin, R.; Zhang, Y.L.; Cui, W.J.; He, T. Association between twist and multidrug resistance gene-associated proteins in Taxol®-resistant MCF-7 cells and a 293 cell model of twist overexpression. Oncol. Lett., 2018, 15(1), 1058-1066.
[PMID: 29399166]
[27]
Villarejo, A.; Cortés-Cabrera, A.; Molina-Ortíz, P.; Portillo, F.; Cano, A. Differential role of snail1 and snail2 zinc fingers in E-cadherin repression and epithelial to mesenchymal transition. J. Biol. Chem., 2014, 289(2), 930-941.
[http://dx.doi.org/10.1074/jbc.M113.528026] [PMID: 24297167]
[28]
Cao, J.; Wang, X.; Dai, T.; Wu, Y.; Zhang, M.; Cao, R.; Zhang, R.; Wang, G.; Jiang, R.; Zhou, B.P.; Shi, J.; Kang, T. Twist promotes tumor metastasis in basal-like breast cancer by transcriptionally upregulating ROR1. Theranostics, 2018, 8(10), 2739-2751.
[http://dx.doi.org/10.7150/thno.21477] [PMID: 29774072]
[29]
Zhang, S.; Chen, L.; Cui, B.; Chuang, H.Y.; Yu, J.; Wang-Rodriguez, J.; Tang, L.; Chen, G.; Basak, G.W.; Kipps, T.J. ROR1 is expressed in human breast cancer and associated with enhanced tumor-cell growth. PLoS One, 2012, 7(3)e31127
[http://dx.doi.org/10.1371/journal.pone.0031127] [PMID: 22403610]
[30]
Finlay, J.; Roberts, C.M.; Lowe, G.; Loeza, J.; Rossi, J.J.; Glackin, C.A. RNA-based TWIST1 inhibition via dendrimer complex to reduce breast cancer cell metastasis. BioMed Res. Int., 2015.2015382745
[http://dx.doi.org/10.1155/2015/382745] [PMID: 25759817]
[31]
Kawasaki, K.; Akashi, S.; Shimazu, R.; Yoshida, T.; Miyake, K.; Nishijima, M. Mouse toll-like receptor 4.MD-2 complex mediates lipopolysaccharide-mimetic signal transduction by Taxol. J. Biol. Chem., 2000, 275(4), 2251-2254.
[http://dx.doi.org/10.1074/jbc.275.4.2251] [PMID: 10644670]
[32]
Iwasaki, A.; Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol., 2004, 5(10), 987-995.
[http://dx.doi.org/10.1038/ni1112] [PMID: 15454922]
[33]
Rajput, S.; Volk-Draper, L.D.; Ran, S. TLR4 is a novel determinant of the response to paclitaxel in breast cancer. Mol. Cancer Ther., 2013, 12(8), 1676-1687.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-1019] [PMID: 23720768]
[34]
Ding, A.H.; Porteu, F.; Sanchez, E.; Nathan, C.F. Shared actions of endotoxin and taxol on TNF receptors and TNF release. Science, 1990, 248(4953), 370-372.
[http://dx.doi.org/10.1126/science.1970196] [PMID: 1970196]
[35]
Zimmer, S.M.; Liu, J.; Clayton, J.L.; Stephens, D.S.; Snyder, J.P. Paclitaxel binding to human and murine MD-2. J. Biol. Chem., 2008, 283(41), 27916-27926.
[http://dx.doi.org/10.1074/jbc.M802826200] [PMID: 18650420]
[36]
Silasi, D.A.; Alvero, A.B.; Illuzzi, J.; Kelly, M.; Chen, R.; Fu, H.H.; Schwartz, P.; Rutherford, T.; Azodi, M.; Mor, G. MyD88 predicts chemoresistance to paclitaxel in epithelial ovarian cancer. Yale J. Biol. Med., 2006, 79(3-4), 153-163.
[PMID: 17940625]
[37]
Apetoh, L.; Ghiringhelli, F.; Tesniere, A.; Obeid, M.; Ortiz, C.; Criollo, A.; Mignot, G.; Maiuri, M.C.; Ullrich, E.; Saulnier, P.; Yang, H.; Amigorena, S.; Ryffel, B.; Barrat, F.J.; Saftig, P.; Levi, F.; Lidereau, R.; Nogues, C.; Mira, J.P.; Chompret, A.; Joulin, V.; Clavel-Chapelon, F.; Bourhis, J.; André, F.; Delaloge, S.; Tursz, T.; Kroemer, G.; Zitvogel, L.; Zitvogel, L. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med., 2007, 13(9), 1050-1059.
[http://dx.doi.org/10.1038/nm1622] [PMID: 17704786]
[38]
Kelly, M.G.; Alvero, A.B.; Chen, R.; Silasi, D.A.; Abrahams, V.M.; Chan, S.; Visintin, I.; Rutherford, T.; Mor, G. TLR-4 signaling promotes tumor growth and paclitaxel chemoresistance in ovarian cancer. Cancer Res., 2006, 66(7), 3859-3868.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-3948] [PMID: 16585214]
[39]
Szajnik, M.; Szczepanski, M.J.; Czystowska, M.; Elishaev, E.; Mandapathil, M.; Nowak-Markwitz, E.; Spaczynski, M.; Whiteside, T.L. TLR4 signaling induced by lipopolysaccharide or paclitaxel regulates tumor survival and chemoresistance in ovarian cancer. Oncogene, 2009, 28(49), 4353-4363.
[http://dx.doi.org/10.1038/onc.2009.289] [PMID: 19826413]
[40]
Fukazawa, H.; Noguchi, K.; Murakami, Y.; Uehara, Y. Mitogen-activated protein/extracellular signal-regulated kinase (MEK) inhibitors restore anoikis sensitivity in human breast cancer cell lines with a constitutively activated extracellular-regulated kinase (ERK) pathway. Mol. Cancer Ther., 2002, 1(5), 303-309.
[PMID: 12489846]
[41]
Egunsola, A.T.; Zawislak, C.L.; Akuffo, A.A.; Chalmers, S.A.; Ewer, J.C.; Vail, C.M.; Lombardo, J.C.; Perez, D.N.; Kurt, R.A. Growth, metastasis, and expression of CCL2 and CCL5 by murine mammary carcinomas are dependent upon Myd88. Cell. Immunol., 2012, 272(2), 220-229.
[http://dx.doi.org/10.1016/j.cellimm.2011.10.008] [PMID: 22088941]
[42]
Li, J.Y.; Ou, Z.L.; Yu, S.J.; Gu, X.L.; Yang, C.; Chen, A.X.; Di, G.H.; Shen, Z.Z.; Shao, Z.M. The chemokine receptor CCR4 promotes tumor growth and lung metastasis in breast cancer. Breast Cancer Res. Treat., 2012, 131(3), 837-848.
[http://dx.doi.org/10.1007/s10549-011-1502-6] [PMID: 21479551]
[43]
Singh, S.; Sadanandam, A.; Nannuru, K.C.; Varney, M.L.; Mayer-Ezell, R.; Bond, R.; Singh, R.K. Small-molecule antagonists for CXCR2 and CXCR1 inhibit human melanoma growth by decreasing tumor cell proliferation, survival, and angiogenesis. Clin. Cancer Res., 2009, 15(7), 2380-2386.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-2387] [PMID: 19293256]
[44]
Voelcker, V.; Gebhardt, C.; Averbeck, M.; Saalbach, A.; Wolf, V.; Weih, F.; Sleeman, J.; Anderegg, U.; Simon, J. Hyaluronan fragments induce cytokine and metalloprotease upregulation in human melanoma cells in part by signalling via TLR4. Exp. Dermatol., 2008, 17(2), 100-107.
[http://dx.doi.org/10.1111/j.1600-0625.2007.00638.x] [PMID: 18031543]
[45]
Schelbergen, R.F.; Blom, A.B.; van den Bosch, M.H.; Slöetjes, A.; Abdollahi-Roodsaz, S.; Schreurs, B.W.; Mort, J.S.; Vogl, T.; Roth, J.; van den Berg, W.B.; van Lent, P.L. Alarmins S100A8 and S100A9 elicit a catabolic effect in human osteoarthritic chondrocytes that is dependent on Toll-like receptor 4. Arthritis Rheum., 2012, 64(5), 1477-1487.
[http://dx.doi.org/10.1002/art.33495] [PMID: 22127564]
[46]
Hynes, N.E.; Lane, H.A. ERBB receptors and cancer: The complexity of targeted inhibitors. Nat. Rev. Cancer, 2005, 5(5), 341-354.
[http://dx.doi.org/10.1038/nrc1609] [PMID: 15864276]
[47]
Sternlicht, M.D. Key stages in mammary gland development: The cues that regulate ductal branching morphogenesis. Breast Cancer Res., 2006, 8(1), 201.
[http://dx.doi.org/10.1186/bcr1368] [PMID: 16524451]
[48]
Slamon, D.J.; Clark, G.M.; Wong, S.G.; Levin, W.J.; Ullrich, A.; McGuire, W.L. Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science, 1987, 235(4785), 177-182.
[http://dx.doi.org/10.1126/science.3798106] [PMID: 3798106]
[49]
Yu, D.; Hung, M.C. Overexpression of ErbB2 in cancer and ErbB2-targeting strategies. Oncogene, 2000, 19(53), 6115-6121.
[http://dx.doi.org/10.1038/sj.onc.1203972] [PMID: 11156524]
[50]
Witton, C.J.; Reeves, J.R.; Going, J.J.; Cooke, T.G.; Bartlett, J.M. Expression of the HER1-4 family of receptor tyrosine kinases in breast cancer. J. Pathol., 2003, 200(3), 290-297.
[http://dx.doi.org/10.1002/path.1370] [PMID: 12845624]
[51]
Schulze, W.X.; Deng, L.; Mann, M. Phosphotyrosine interactome of the ErbB-receptor kinase family. Mol. Syst. Biol., 2005.
[http://dx.doi.org/10.1038/msb4100012]
[52]
Citri, A.; Skaria, K.B.; Yarden, Y. The deaf and the dumb: The biology of ErbB-2 and ErbB-3. Exp. Cell Res., 2003, 284(1), 54-65.
[http://dx.doi.org/10.1016/S0014-4827(02)00101-5] [PMID: 12648465]
[53]
Liu, B.; Ordonez-Ercan, D.; Fan, Z.; Edgerton, S.M.; Yang, X.; Thor, A.D. Downregulation of erbB3 abrogates erbB2-mediated tamoxifen resistance in breast cancer cells. Int. J. Cancer, 2007, 120(9), 1874-1882.
[http://dx.doi.org/10.1002/ijc.22423] [PMID: 17266042]
[54]
Lu, J.; Tan, M.; Huang, W.C.; Li, P.; Guo, H.; Tseng, L.M.; Su, X.H.; Yang, W.T.; Treekitkarnmongkol, W.; Andreeff, M.; Symmans, F.; Yu, D. Mitotic deregulation by survivin in ErbB2-overexpressing breast cancer cells contributes to Taxol resistance. Clin. Cancer Res., 2009, 15(4), 1326-1334.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-0954] [PMID: 19228734]
[55]
Yu, D.; Jing, T.; Liu, B.; Yao, J.; Tan, M.; McDonnell, T.J.; Hung, M.C. Overexpression of ErbB2 blocks Taxol-induced apoptosis by upregulation of p21Cip1, which inhibits p34Cdc2 kinase. Mol. Cell, 1998, 2(5), 581-591.
[http://dx.doi.org/10.1016/S1097-2765(00)80157-4] [PMID: 9844631]
[56]
Shi, Y.; Du, L.; Lin, L.; Wang, Y. Tumour-associated mesenchymal stem/stromal cells: Emerging therapeutic targets. Nat. Rev. Drug Discov., 2017, 16(1), 35-52.
[http://dx.doi.org/10.1038/nrd.2016.193] [PMID: 27811929]
[57]
Mishra, R.; Patel, H.; Alanazi, S.; Yuan, L.; Garrett, J.T. HER3 signaling and targeted therapy in cancer. Oncol. Rev., 2018, 12(1), 355.
[http://dx.doi.org/10.4081/oncol.2018.355] [PMID: 30057690]
[58]
Li, S.G.; Li, L. Targeted therapy in HER2-positive breast cancer. Biomed. Rep., 2013, 1(4), 499-505.
[http://dx.doi.org/10.3892/br.2013.95] [PMID: 24648975]
[59]
Slamon, D.J.; Leyland-Jones, B.; Shak, S.; Fuchs, H.; Paton, V.; Bajamonde, A.; Fleming, T.; Eiermann, W.; Wolter, J.; Pegram, M.; Baselga, J.; Norton, L. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N. Engl. J. Med., 2001, 344(11), 783-792.
[http://dx.doi.org/10.1056/NEJM200103153441101] [PMID: 11248153]
[60]
Gasparini, G.; Gion, M.; Mariani, L.; Papaldo, P.; Crivellari, D.; Filippelli, G.; Morabito, A.; Silingardi, V.; Torino, F.; Spada, A.; Zancan, M.; De Sio, L.; Caputo, A.; Cognetti, F.; Lambiase, A.; Amadori, D. Randomized Phase II Trial of weekly paclitaxel alone versus trastuzumab plus weekly paclitaxel as first-line therapy of patients with Her-2 positive advanced breast cancer. Breast Cancer Res. Treat., 2007, 101(3), 355-365.
[http://dx.doi.org/10.1007/s10549-006-9306-9] [PMID: 16850247]
[61]
Schneeweiss, A.; Park-Simon, T.W.; Albanell, J.; Lassen, U.; Cortés, J.; Dieras, V.; May, M.; Schindler, C.; Marmé, F.; Cejalvo, J.M.; Martinez-Garcia, M.; Gonzalez, I.; Lopez-Martin, J.; Welt, A.; Levy, C.; Joly, F.; Michielin, F.; Jacob, W.; Adessi, C.; Moisan, A.; Meneses-Lorente, G.; Racek, T.; James, I.; Ceppi, M.; Hasmann, M.; Weisser, M.; Cervantes, A. Phase Ib study evaluating safety and clinical activity of the anti-HER3 antibody lumretuzumab combined with the anti-HER2 antibody pertuzumab and paclitaxel in HER3-positive, HER2-low metastatic breast cancer. Invest. New Drugs, 2018, 36(5), 848-859.
[http://dx.doi.org/10.1007/s10637-018-0562-4] [PMID: 29349598]
[62]
Merrimack. A trial of preoperative MM-121 with paclitaxel in HER2-negative breast cancer. ClinicalTrials.gov NCT01421472,, 2016.
[63]
Merrimack. A study of MM-121 in combination with paclitaxel in patients with advanced gynecologic and breast cancers. Clinical- Trials.gov NCT01209195, , 2016.
[64]
Wang, S.; Huang, J.; Lyu, H.; Cai, B.; Yang, X.; Li, F.; Tan, J.; Edgerton, S.M.; Thor, A.D.; Lee, C-K.; Liu, B. Therapeutic targeting of erbB3 with MM-121/SAR256212 enhances antitumor activity of paclitaxel against erbB2-overexpressing breast cancer. Breast Cancer Res., 2013, 15(5), R101.
[http://dx.doi.org/10.1186/bcr3563] [PMID: 24168763]
[65]
Sankyo, D. Phase 1b/2 study of U3-1287 in combination with trastuzumab plus paclitaxel in newly diagnosed metastatic breast cancer (MBC). ClinicalTrials.gov NCT01512199, 2017.
[66]
Malm, M.; Frejd, F.Y.; Ståhl, S.; Löfblom, J. Targeting HER3 using mono- and bispecific antibodies or alternative scaffolds. MAbs, 2016, 8(7), 1195-1209.
[http://dx.doi.org/10.1080/19420862.2016.1212147] [PMID: 27532938]
[67]
Holmes, F.A.; McIntyre, K.J.; Krop, I.E.; Osborne, C.R.; Smith, J.W., II; Modiano, M.R.; Gupta, M.; Downey, L.B.; Nanda, R.; Saleh, M.N.; Young, J.R.; Horgan, K.E.; Kubasek, W.; MacBeath, G.; Danso, M.A.; O’Shaughnessy, J.A. A randomized, phase 2 trial of preoperative MM-121 with paclitaxel in triple negative (TN) and hormone receptor (HR) positive, HER2-negative breast cancer. Cancer Res., 2014, 75(9)
[68]
Furuta, S.; Jiang, X.; Gu, B.; Cheng, E.; Chen, P.L.; Lee, W.H. Depletion of BRCA1 impairs differentiation but enhances proliferation of mammary epithelial cells. Proc. Natl. Acad. Sci. USA, 2005, 102(26), 9176-9181.
[http://dx.doi.org/10.1073/pnas.0503793102] [PMID: 15967981]
[69]
Shimizu, Y.; Luk, H.; Horio, D.; Miron, P.; Griswold, M.; Iglehart, D.; Hernandez, B.; Killeen, J.; ElShamy, W.M. BRCA1-IRIS overexpression promotes formation of aggressive breast cancers. PLoS One, 2012, 7(4)e34102
[http://dx.doi.org/10.1371/journal.pone.0034102] [PMID: 22511931]
[70]
Blanchard, Z.; Paul, B.T.; Craft, B.; ElShamy, W.M. BRCA1-IRIS inactivation overcomes paclitaxel resistance in triple negative breast cancers. Breast Cancer Res., 2015, 17, 5.
[http://dx.doi.org/10.1186/s13058-014-0512-9] [PMID: 25583261]
[71]
Huang, H.; Tindall, D.J. Regulation of FOXO protein stability via ubiquitination and proteasome degradation. Biochim. Biophys. Acta, 2011, 1813(11), 1961-1964.
[http://dx.doi.org/10.1016/j.bbamcr.2011.01.007] [PMID: 21238503]
[72]
Hagenbuchner, J.; Ausserlechner, M.J. Mitochondria and FOXO3: Breath or die. Front. Physiol., 2013, 4, 147.
[http://dx.doi.org/10.3389/fphys.2013.00147] [PMID: 23801966]
[73]
Hao, L.; ElShamy, W.M. BRCA1-IRIS activates cyclin D1 expression in breast cancer cells by downregulating the JNK phosphatase DUSP3/VHR. Int. J. Cancer, 2007, 121(1), 39-46.
[http://dx.doi.org/10.1002/ijc.22597] [PMID: 17278098]
[74]
Chock, K.; Allison, J.M.; Elshamy, W.M. BRCA1-IRIS overexpression abrogates UV-induced p38MAPK/p53 and promotes proliferation of damaged cells. Oncogene, 2010, 29(38), 5274-5285.
[http://dx.doi.org/10.1038/onc.2010.262] [PMID: 20622893]
[75]
Pusztai, L.; Mendoza, T.R.; Reuben, J.M.; Martinez, M.M.; Willey, J.S.; Lara, J.; Syed, A.; Fritsche, H.A.; Bruera, E.; Booser, D.; Valero, V.; Arun, B.; Ibrahim, N.; Rivera, E.; Royce, M.; Cleeland, C.S.; Hortobagyi, G.N. Changes in plasma levels of inflammatory cytokines in response to paclitaxel chemotherapy. Cytokine, 2004, 25(3), 94-102.
[http://dx.doi.org/10.1016/j.cyto.2003.10.004] [PMID: 14698135]
[76]
Volk, L.D.; Flister, M.J.; Bivens, C.M.; Stutzman, A.; Desai, N.; Trieu, V.; Ran, S. Nab-paclitaxel efficacy in the orthotopic model of human breast cancer is significantly enhanced by concurrent anti-vascular endothelial growth factor A therapy. Neoplasia, 2008, 10(6), 613-623.
[http://dx.doi.org/10.1593/neo.08302] [PMID: 18516298]
[77]
Gurzu, S.; Ciortea, D.; Ember, I.; Jung, I. The possible role of Mena protein and its splicing-derived variants in embryogenesis, carcinogenesis, and tumor invasion: A systematic review of the literature. BioMed Res. Int., 2013.2013365192
[http://dx.doi.org/10.1155/2013/365192] [PMID: 23956979]
[78]
Di Modugno, F.; Bronzi, G.; Scanlan, M.J.; Del Bello, D.; Cascioli, S.; Venturo, I.; Botti, C.; Nicotra, M.R.; Mottolese, M.; Natali, P.G.; Santoni, A.; Jager, E.; Nisticò, P. Human Mena protein, a serex-defined antigen overexpressed in breast cancer eliciting both humoral and CD8+ T-cell immune response. Int. J. Cancer, 2004, 109(6), 909-918.
[http://dx.doi.org/10.1002/ijc.20094] [PMID: 15027125]
[79]
Di Modugno, F.; Iapicca, P.; Boudreau, A.; Mottolese, M.; Terrenato, I.; Perracchio, L.; Carstens, R.P.; Santoni, A.; Bissell, M.J.; Nisticò, P. Splicing program of human MENA produces a previously undescribed isoform associated with invasive, mesenchymal-like breast tumors. Proc. Natl. Acad. Sci. USA, 2012, 109(47), 19280-19285.
[http://dx.doi.org/10.1073/pnas.1214394109] [PMID: 23129656]
[80]
Roussos, E.T.; Wang, Y.; Wyckoff, J.B.; Sellers, R.S.; Wang, W.; Li, J.; Pollard, J.W.; Gertler, F.B.; Condeelis, J.S. Mena deficiency delays tumor progression and decreases metastasis in polyoma middle-T transgenic mouse mammary tumors. Breast Cancer Res., 2010, 12(6), R101.
[http://dx.doi.org/10.1186/bcr2784] [PMID: 21108830]
[81]
Hughes, S.K.; Oudin, M.J.; Tadros, J.; Neil, J.; Del Rosario, A.; Joughin, B.A.; Ritsma, L.; Wyckoff, J.; Vasile, E.; Eddy, R.; Philippar, U.; Lussiez, A.; Condeelis, J.S.; van Rheenen, J.; White, F.; Lauffenburger, D.A.; Gertler, F.B. PTP1B-dependent regulation of receptor tyrosine kinase signaling by the actin-binding protein Mena. Mol. Biol. Cell, 2015, 26(21), 3867-3878.
[http://dx.doi.org/10.1091/mbc.E15-06-0442] [PMID: 26337385]
[82]
Oudin, M.J.; Barbier, L.; Schäfer, C.; Kosciuk, T.; Miller, M.A.; Han, S.; Jonas, O.; Lauffenburger, D.A.; Gertler, F.B. MENA confers resistance to paclitaxel in triple-negative breast cancer. Mol. Cancer Ther., 2017, 16(1), 143-155.
[http://dx.doi.org/10.1158/1535-7163.MCT-16-0413] [PMID: 27811011]
[83]
Szakács, G.; Paterson, J.K.; Ludwig, J.A.; Booth-Genthe, C.; Gottesman, M.M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov., 2006, 5(3), 219-234.
[http://dx.doi.org/10.1038/nrd1984] [PMID: 16518375]
[84]
McGrail, D.J.; Khambhati, N.N.; Qi, M.X.; Patel, K.S.; Ravikumar, N.; Brandenburg, C.P.; Dawson, M.R. Alterations in ovarian cancer cell adhesion drive taxol resistance by increasing microtubule dynamics in a FAK-dependent manner. Sci. Rep., 2015, 5, 9529.
[http://dx.doi.org/10.1038/srep09529] [PMID: 25886093]
[85]
Gupton, S.L.; Riquelme, D.; Hughes-Alford, S.K.; Tadros, J.; Rudina, S.S.; Hynes, R.O.; Lauffenburger, D.; Gertler, F.B. Mena binds α5 integrin directly and modulates α5β1 function. J. Cell Biol., 2012, 198(4), 657-676.
[http://dx.doi.org/10.1083/jcb.201202079] [PMID: 22908313]
[86]
Orr, G.A.; Verdier-Pinard, P.; McDaid, H.; Horwitz, S.B. Mechanisms of taxol resistance related to microtubules. Oncogene, 2003, 22(47), 7280-7295.
[http://dx.doi.org/10.1038/sj.onc.1206934] [PMID: 14576838]
[87]
Esterlechner, J.; Reichert, N.; Iltzsche, F.; Krause, M.; Finkernagel, F.; Gaubatz, S. LIN9, a subunit of the DREAM complex, regulates mitotic gene expression and proliferation of embryonic stem cells. PLoS One, 2013, 8(5)e62882
[http://dx.doi.org/10.1371/journal.pone.0062882] [PMID: 23667535]
[88]
Rashid, N.N.; Rothan, H.A.; Yusoff, M.S. The association of mammalian DREAM complex and HPV16 E7 proteins. Am. J. Cancer Res., 2015, 5(12), 3525-3533.
[PMID: 26885443]
[89]
Kleinschmidt, M.A.; Wagner, T.U.; Liedtke, D.; Spahr, S.; Samans, B.; Gaubatz, S. LIN9 is required for mitosis and cell survival during early zebrafish development. J. Biol. Chem., 2009, 284(19), 13119-13127.
[http://dx.doi.org/10.1074/jbc.M809635200] [PMID: 19278998]
[90]
Gagrica, S.; Hauser, S.; Kolfschoten, I.; Osterloh, L.; Agami, R.; Gaubatz, S. Inhibition of oncogenic transformation by mammalian Lin-9, a pRB-associated protein. EMBO J., 2004, 23(23), 4627-4638.
[http://dx.doi.org/10.1038/sj.emboj.7600470] [PMID: 15538385]
[91]
Lai, H.; Wang, R.; Li, S.; Shi, Q.; Cai, Z.; Li, Y.; Liu, Y. LIN9 confers paclitaxel resistance in triple negative breast cancer cells by upregulating CCSAP. Sci. China Life Sci., 2020, 63(3), 419-428.
[http://dx.doi.org/10.1007/s11427-019-9581-8] [PMID: 31420851]
[92]
Eckerdt, F.; Perez-Neut, M.; Colamonici, O.R. LIN-9 phosphorylation on threonine-96 is required for transcriptional activation of LIN-9 target genes and promotes cell cycle progression. PLoS One, 2014, 9(1)e87620
[http://dx.doi.org/10.1371/journal.pone.0087620] [PMID: 24475316]
[93]
Sahni, J.M.; Gayle, S.S.; Webb, B.M.; Weber-Bonk, K.L.; Seachrist, D.D.; Singh, S.; Sizemore, S.T.; Restrepo, N.A.; Bebek, G.; Scacheri, P.C.; Varadan, V.; Summers, M.K.; Keri, R.A. Mitotic vulnerability in triple-negative breast cancer associated with LIN9 is targetable with BET inhibitors. Cancer Res., 2017, 77(19), 5395-5408.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-1571] [PMID: 28807940]
[94]
Shively, M.S.; Gayle, S.S.; Sahni, J.M.; Keri, R.A. LIN9 regulation of NEK2 underlies taxol resistance in triple-negative breast cancer. Proceedings of the American Association for Cancer Research Annual Meeting, 2019 Mar 29-Apr 3AtlantaGA2019.
[http://dx.doi.org/10.1158/1538-7445.SABCS18-P5-03-01]
[95]
Wiseman, E.F.; Chen, X.; Han, N.; Webber, A.; Ji, Z.; Sharrocks, A.D.; Ang, Y.S. Deregulation of the FOXM1 target gene network and its coregulatory partners in oesophageal adenocarcinoma. Mol. Cancer, 2015, 14, 69.
[http://dx.doi.org/10.1186/s12943-015-0339-8] [PMID: 25889361]
[96]
Png, K.J.; Halberg, N.; Yoshida, M.; Tavazoie, S.F. A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature, 2011, 481(7380), 190-194.
[http://dx.doi.org/10.1038/nature10661] [PMID: 22170610]
[97]
Croce, C.M.; Calin, G.A. miRNAs, cancer, and stem cell division. Cell, 2005, 122(1), 6-7.
[http://dx.doi.org/10.1016/j.cell.2005.06.036] [PMID: 16009126]
[98]
Yang, Q.; Hua, J.; Wang, L.; Xu, B.; Zhang, H.; Ye, N.; Zhang, Z.; Yu, D.; Cooke, H.J.; Zhang, Y.; Shi, Q. MicroRNA and piRNA profiles in normal human testis detected by next generation sequencing. PLoS One, 2013, 8(6), e66809..
[http://dx.doi.org/10.1371/journal.pone.0066809] [PMID: 23826142]
[99]
Kanakkanthara, A.; Miller, J.H. MicroRNAs: Novel mediators of resistance to microtubule-targeting agents. Cancer Treat. Rev., 2013, 39(2), 161-170.
[http://dx.doi.org/10.1016/j.ctrv.2012.07.005] [PMID: 22902296]
[100]
Fan, Z.; Cui, H.; Yu, H.; Ji, Q.; Kang, L.; Han, B.; Wang, J.; Dong, Q.; Li, Y.; Yan, Z.; Yan, X.; Zhang, X.; Lin, Z.; Hu, Y.; Jiao, S. MiR-125a promotes paclitaxel sensitivity in cervical cancer through altering STAT3 expression.Oncogenesis, 2016, 5e197,
[http://dx.doi.org/10.1038/oncsis.2016.1] [PMID: 26878391]
[101]
Shen, Y.; Wang, P. LiY-Ye, F.; Wang, F.; Wan, X.; Cheng, X.; Lu, W.; Xie, X. miR-375 is upregulated in acquired paclitaxel resistance in lung cancer. Br. J. Cancer, 2013, 109, 92-99.
[http://dx.doi.org/10.1038/bjc.2013.308] [PMID: 23778521]
[102]
Xu, X.; Jin, S.; Ma, Y.; Fan, Z.; Yan, Z.; Li, W.; Song, Q.; You, W.; Lyu, Z.; Song, Y.; Shi, P.; Liu, Y.; Han, X.; Li, L.; Li, Y.; Liu, Y.; Ye, Q. miR-30a-5p enhances paclitaxel sensitivity in non-small cell lung cancer through targeting BCL-2 expression. J. Mol. Med. (Berl.), 2017, 95(8), 861-871.
[http://dx.doi.org/10.1007/s00109-017-1539-z] [PMID: 28487996]
[103]
Si, W.; Shen, J.; Zheng, H.; Fan, W. The role and mechanisms of action of microRNAs in cancer drug resistance. Clin. Epigenet, 2019, 11(1), 25.
[http://dx.doi.org/10.1186/s13148-018-0587-8] [PMID: 30744689]
[104]
Hu, Y.; Qiu, Y.; Yagüe, E.; Ji, W.; Liu, J.; Zhang, J. miRNA-205 targets VEGFA and FGF2 and regulates resistance to chemotherapeutics in breast cancer. Cell Death Dis., 2016, 7(6)e2291
[http://dx.doi.org/10.1038/cddis.2016.194] [PMID: 27362808]
[105]
Pogribny, I.P.; Filkowski, J.N.; Tryndyak, V.P.; Golubov, A.; Shpyleva, S.I.; Kovalchuk, O. Alterations of microRNAs and their targets are associated with acquired resistance of MCF-7 breast cancer cells to cisplatin. Int. J. Cancer, 2010, 127(8), 1785-1794.
[http://dx.doi.org/10.1002/ijc.25191] [PMID: 20099276]
[106]
Chen, J.; Tian, W.; Cai, H.; He, H.; Deng, Y. Down-regulation of microRNA-200c is associated with drug resistance in human breast cancer. Med. Oncol., 2012, 29(4), 2527-2534.
[http://dx.doi.org/10.1007/s12032-011-0117-4] [PMID: 22101791]
[107]
Chen, J.; Tian, W.; He, H.; Chen, F.; Huang, J.; Wang, X.; Chen, Z. Downregulation of miR-200c-3p contributes to the resistance of breast cancer cells to paclitaxel by targeting SOX2. Oncol. Rep., 2018, 40(6), 3821-3829.
[http://dx.doi.org/10.3892/or.2018.6735] [PMID: 30272330]
[108]
Mukherjee, P.; Gupta, A.; Chattopadhyay, D.; Chatterji, U. Modulation of SOX2 expression delineates an end-point for paclitaxel-effectiveness in breast cancer stem cells. Sci. Rep., 2017, 7(1), 9170.
[http://dx.doi.org/10.1038/s41598-017-08971-2] [PMID: 28835684]
[109]
Shimono, Y.; Zabala, M.; Cho, R.W.; Lobo, N.; Dalerba, P.; Qian, D.; Diehn, M.; Liu, H.; Panula, S.P.; Chiao, E.; Dirbas, F.M.; Somlo, G.; Pera, R.A.; Lao, K.; Clarke, M.F. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell, 2009, 138(3), 592-603.
[http://dx.doi.org/10.1016/j.cell.2009.07.011] [PMID: 19665978]
[110]
Wang, W.; Zhang, L.; Wang, Y.; Ding, Y.; Chen, T.; Wang, Y.; Wang, H.; Li, Y.; Duan, K.; Chen, S.; Yang, Q.; Chen, C. Involvement of miR-451 in resistance to paclitaxel by regulating YWHAZ in breast cancer. Cell Death Dis., 2017, 8(10)e3071
[http://dx.doi.org/10.1038/cddis.2017.460] [PMID: 28981108]
[111]
Kovalchuk, O.; Filkowski, J.; Meservy, J.; Ilnytskyy, Y.; Tryndyak, V.P.; Chekhun, V.F.; Pogribny, I.P. Involvement of microRNA-451 in resistance of the MCF-7 breast cancer cells to chemotherapeutic drug doxorubicin. Mol. Cancer Ther., 2008, 7(7), 2152-2159.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0021] [PMID: 18645025]
[112]
Li, H.Y.; Zhang, Y.; Cai, J.H.; Bian, H.L. MicroRNA-451 inhibits growth of human colorectal carcinoma cells via downregulation of Pi3k/Akt pathway. Asian Pac. J. Cancer Prev., 2013, 14(6), 3631-3634.
[http://dx.doi.org/10.7314/APJCP.2013.14.6.3631] [PMID: 23886157]
[113]
Nan, Y.; Han, L.; Zhang, A.; Wang, G.; Jia, Z.; Yang, Y.; Yue, X.; Pu, P.; Zhong, Y.; Kang, C. MiRNA-451 plays a role as tumor suppressor in human glioma cells. Brain Res., 2010, 1359, 14-21.
[http://dx.doi.org/10.1016/j.brainres.2010.08.074] [PMID: 20816946]
[114]
Krausova, M.; Korinek, V. Wnt signaling in adult intestinal stem cells and cancer. Cell. Signal., 2014, 26(3), 570-579.
[http://dx.doi.org/10.1016/j.cellsig.2013.11.032] [PMID: 24308963]
[115]
Guo, Y.; Xiao, L.; Sun, L.; Liu, F. Wnt/β-catenin signaling: A promising new target for fibrosis diseases. Physiol. Res., 2012, 61(4), 337-346.
[http://dx.doi.org/10.33549/physiolres.932289] [PMID: 22670697]
[116]
Bautista, S.; Vallès, H.; Walker, R.L.; Anzick, S.; Zeillinger, R.; Meltzer, P.; Theillet, C. In breast cancer, amplification of the steroid receptor coactivator gene AIB1 is correlated with estrogen and progesterone receptor positivity. Clin. Cancer Res., 1998, 4(12), 2925-2929.
[PMID: 9865902]
[117]
Ao, X.; Nie, P.; Wu, B.; Xu, W.; Zhang, T.; Wang, S.; Chang, H.; Zou, Z. Decreased expression of microRNA-17 and microRNA-20b promotes breast cancer resistance to taxol therapy by upregulation of NCOA3. Cell Death Dis., 2016, 7(11)e2463
[http://dx.doi.org/10.1038/cddis.2016.367] [PMID: 27831559]
[118]
Ochnik, A.M.; Peterson, M.S.; Avdulov, S.V.; Oh, A.S.; Bitterman, P.B.; Yee, D. Amplified in breast cancer regulates transcription and translation in breast cancer cells. Neoplasia, 2016, 18(2), 100-110.
[http://dx.doi.org/10.1016/j.neo.2016.01.001] [PMID: 26936396]
[119]
Iwase, H.; Omoto, Y.; Toyama, T.; Yamashita, H.; Hara, Y.; Sugiura, H.; Zhang, Z. Clinical significance of AIB1 expression in human breast cancer. Breast Cancer Res. Treat., 2003, 80(3), 339-345.
[http://dx.doi.org/10.1023/A:1024916126532] [PMID: 14503806]
[120]
Song, Y-K.; Wang, Y.; Wen, Y.Y.; Zhao, P.; Bian, Z.J. MicroRNA-22 suppresses breast cancer cell growth and increases paclitaxel sensitivity by targeting NRAS. Technol. Cancer Res. Treat., 2018.171533033818809997
[http://dx.doi.org/10.1177/1533033818809997] [PMID: 30384806]
[121]
Cantley, L.C. The phosphoinositide 3-kinase pathway. Science, 2002, 296(5573), 1655-1657.
[http://dx.doi.org/10.1126/science.296.5573.1655] [PMID: 12040186]
[122]
Posch, C.; Moslehi, H.; Feeney, L.; Green, G.A.; Ebaee, A.; Feichtenschlager, V.; Chong, K.; Peng, L.; Dimon, M.T.; Phillips, T.; Daud, A.I.; McCalmont, T.H.; LeBoit, P.E.; Ortiz-Urda, S. Combined targeting of MEK and PI3K/mTOR effector pathways is necessary to effectively inhibit NRAS mutant melanoma in vitro and in vivo. Proc. Natl. Acad. Sci. USA, 2013, 110(10), 4015-4020.
[http://dx.doi.org/10.1073/pnas.1216013110] [PMID: 23431193]
[123]
Gong, J-P.; Yang, L.; Tang, J-W.; Sun, P.; Hu, Q.; Qin, J-W.; Xu, X-M.; Sun, B-C.; Tang, J-H. Overexpression of microRNA-24 increases the sensitivity to paclitaxel in drug-resistant breast carcinoma cell lines via targeting ABCB9. Oncol. Lett., 2016, 12(5), 3905-3911.
[http://dx.doi.org/10.3892/ol.2016.5139] [PMID: 27895747]
[124]
Zhu, W.; Xu, H.; Zhu, D.; Zhi, H.; Wang, T.; Wang, J.; Jiang, B.; Shu, Y.; Liu, P. miR-200bc/429 cluster modulates multidrug resistance of human cancer cell lines by targeting BCL2 and XIAP. Cancer Chemother. Pharmacol., 2012, 69(3), 723-731.
[http://dx.doi.org/10.1007/s00280-011-1752-3] [PMID: 21993663]
[125]
Gao, C.; Peng, F.H.; Peng, L.K. MiR-200c sensitizes clear-cell renal cell carcinoma cells to sorafenib and imatinib by targeting heme oxygenase-1. Neoplasma, 2014, 61(6), 680-689.
[http://dx.doi.org/10.4149/neo_2014_083] [PMID: 25150313]
[126]
Gupta, S.C.; Kim, J.H.; Prasad, S.; Aggarwal, B.B. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev., 2010, 29(3), 405-434.
[http://dx.doi.org/10.1007/s10555-010-9235-2] [PMID: 20737283]
[127]
Sovak, M.A.; Bellas, R.E.; Kim, D.W.; Zanieski, G.J.; Rogers, A.E.; Traish, A.M.; Sonenshein, G.E. Aberrant nuclear factor-kappaB/Rel expression and the pathogenesis of breast cancer. J. Clin. Invest., 1997, 100(12), 2952-2960.
[http://dx.doi.org/10.1172/JCI119848] [PMID: 9399940]
[128]
Ito-Kureha, T.; Koshikawa, N.; Yamamoto, M.; Semba, K.; Yamaguchi, N.; Yamamoto, T.; Seiki, M.; Inoue, J. Tropomodulin 1 expression driven by NF-κB enhances breast cancer growth. Cancer Res., 2015, 75(1), 62-72.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3455] [PMID: 25398440]
[129]
Wang, W.; Nag, S.A.; Zhang, R. Targeting the NFκB signaling pathways for breast cancer prevention and therapy. Curr. Med. Chem., 2015, 22(2), 264-289.
[http://dx.doi.org/10.2174/0929867321666141106124315] [PMID: 25386819]
[130]
Beinke, S.; Ley, S.C. Functions of NF-kappaB1 and NF-kappaB2 in immune cell biology. Biochem. J., 2004, 382(Pt 2), 393-409.
[http://dx.doi.org/10.1042/BJ20040544] [PMID: 15214841]
[131]
Oeckinghaus, A.; Ghosh, S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb. Perspect. Biol., 2009, 1(4)a000034
[http://dx.doi.org/10.1101/cshperspect.a000034] [PMID: 20066092]
[132]
Patel, N.M.; Nozaki, S.; Shortle, N.H.; Bhat-Nakshatri, P.; Newton, T.R.; Rice, S.; Gelfanov, V.; Boswell, S.H.; Goulet, R.J., Jr; Sledge, G.W., Jr; Nakshatri, H. Paclitaxel sensitivity of breast cancer cells with constitutively active NF-kappaB is enhanced by IkappaBalpha super-repressor and parthenolide. Oncogene, 2000, 19(36), 4159-4169.
[http://dx.doi.org/10.1038/sj.onc.1203768] [PMID: 10962577]
[133]
Deveraux, Q.L.; Reed, J.C. IAP family proteins––suppressors of apoptosis. Genes Dev., 1999, 13(3), 239-252.
[http://dx.doi.org/10.1101/gad.13.3.239] [PMID: 9990849]
[134]
Bargou, R.C.; Wagener, C.; Bommert, K.; Mapara, M.Y.; Daniel, P.T.; Arnold, W.; Dietel, M.; Guski, H.; Feller, A.; Royer, H.D.; Dörken, B. Overexpression of the death-promoting gene bax-alpha which is downregulated in breast cancer restores sensitivity to different apoptotic stimuli and reduces tumor growth in SCID mice. J. Clin. Invest., 1996, 97(11), 2651-2659.
[http://dx.doi.org/10.1172/JCI118715] [PMID: 8647960]
[135]
Manna, S.K.; Zhang, H.J.; Yan, T.; Oberley, L.W.; Aggarwal, B.B. Overexpression of manganese superoxide dismutase suppresses tumor necrosis factor-induced apoptosis and activation of nuclear transcription factor-kappaB and activated protein-1. J. Biol. Chem., 1998, 273(21), 13245-13254.
[http://dx.doi.org/10.1074/jbc.273.21.13245] [PMID: 9582369]
[136]
Bentires-Aji, M.; Hellin, A-C.; Ameyar, M.; Chouaib, S.; Merville, M-P.; Bours, V. Stable inhibition of nuclear factor κB in cancer cells does not increase sensitivity to cytotoxic drugs. Cancer Res., 1999, 59, 81-815.
[137]
MacKeigan, J.P.; Taxman, D.J.; Hunter, D.; Earp, H.S., III; Graves, L.M.; Ting, J.P. Inactivation of the antiapoptotic phosphatidylinositol 3-kinase-Akt pathway by the combined treatment of taxol and mitogen-activated protein kinase kinase inhibition. Clin. Cancer Res., 2002, 8(7), 2091-2099.
[PMID: 12114408]
[138]
Lam, E.W.; Brosens, J.J.; Gomes, A.R.; Koo, C.Y. Forkhead box proteins: Tuning forks for transcriptional harmony. Nat. Rev. Cancer, 2013, 13(7), 482-495.
[http://dx.doi.org/10.1038/nrc3539] [PMID: 23792361]
[139]
Laoukili, J.; Stahl, M.; Medema, R.H. FoxM1: At the crossroads of ageing and cancer. Biochim. Biophys. Acta, 2007, 1775(1), 92-102.
[PMID: 17014965]
[140]
Francis, R.E.; Myatt, S.S.; Krol, J.; Hartman, J.; Peck, B.; McGovern, U.B.; Wang, J.; Guest, S.K.; Filipovic, A.; Gojis, O.; Palmieri, C.; Peston, D.; Shousha, S.; Yu, Q.; Sicinski, P.; Coombes, R.C.; Lam, E.W. FoxM1 is a downstream target and marker of HER2 overexpression in breast cancer. Int. J. Oncol., 2009, 35(1), 57-68.
[PMID: 19513552]
[141]
Carr, J.R.; Park, H.J.; Wang, Z.; Kiefer, M.M.; Raychaudhuri, P. FoxM1 mediates resistance to herceptin and paclitaxel. Cancer Res., 2010, 70(12), 5054-5063.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0545] [PMID: 20530690]
[142]
Hirokawa, N.; Noda, Y.; Tanaka, Y.; Niwa, S. Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell Biol., 2009, 10(10), 682-696.
[http://dx.doi.org/10.1038/nrm2774] [PMID: 19773780]
[143]
Wonsey, D.R.; Follettie, M.T. Loss of the forkhead transcription factor FoxM1 causes centrosome amplification and mitotic catastrophe. Cancer Res., 2005, 65(12), 5181-5189.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-4059] [PMID: 15958562]
[144]
Khongkow, P.; Gomes, A.R.; Gong, C.; Man, E.P.; Tsang, J.W.; Zhao, F.; Monteiro, L.J.; Coombes, R.C.; Medema, R.H.; Khoo, U.S.; Lam, E.W. Paclitaxel targets FOXM1 to regulate KIF20A in mitotic catastrophe and breast cancer paclitaxel resistance. Oncogene, 2016, 35(8), 990-1002.
[http://dx.doi.org/10.1038/onc.2015.152] [PMID: 25961928]
[145]
Huang, C.; Zhang, X.; Jiang, L.; Zhang, L.; Xiang, M.; Ren, H. FoxM1 induced paclitaxel resistance via activation of the FoxM1/PHB1/RAF-MEK-ERK pathway and enhancement of the ABCA2 transporter. Mol. Ther. Oncolyt, 2019, 14, 196-212.
[http://dx.doi.org/10.1016/j.omto.2019.05.005] [PMID: 31334335]
[146]
Karadedou, C.T.; Gomes, A.R.; Chen, J.; Petkovic, M.; Ho, K.K.; Zwolinska, A.K.; Feltes, A.; Wong, S.Y.; Chan, K.Y.; Cheung, Y.N.; Tsang, J.W.; Brosens, J.J.; Khoo, U.S.; Lam, E.W. FOXO3a represses VEGF expression through FOXM1-dependent and -independent mechanisms in breast cancer. Oncogene, 2012, 31(14), 1845-1858.
[http://dx.doi.org/10.1038/onc.2011.368] [PMID: 21860419]
[147]
Singer, J.W.; Fleischman, A.; Al-Fayoumi, S.; Mascarenhas, J.O.; Yu, Q.; Agarwal, A. Inhibition of interleukin-1 receptor-associated kinase 1 (IRAK1) as a therapeutic strategy. Oncotarget, 2018, 9(70), 33416-33439.
[http://dx.doi.org/10.18632/oncotarget.26058] [PMID: 30279971]
[148]
Nanda, S.K.; Lopez-Pelaez, M.; Arthur, J.S.; Marchesi, F.; Cohen, P. Suppression of IRAK1 or IRAK4 catalytic activity, but not Type 1 IFN signaling, prevents lupus nephritis in mice expressing a ubiquitin binding-defective mutant of ABIN1. J. Immunol., 2016, 197(11), 4266-4273.
[http://dx.doi.org/10.4049/jimmunol.1600788] [PMID: 27807192]
[149]
Yang, G.; Hatcher, J.; Wang, J.; Liu, X.; Munshi, M.; Chen, J.; Xu, L.; Tsakmaklis, N.; Demos, M.; Kofides, A.; Chan, G.; Hunter, Z.; Patterson, C.; Gustine, J.; Castillo, J.J.; Gray, N.; Treon, S.P.; Buhrlage, S. A novel, highly selective IRAK1 inhibitor Jh-X-119- 01 shows synergistic tumor cell killing with ibrutinib in MYD88 mutated B-cell lymphoma cells. 59th Anual Meeting & Exposition for the American Society of Hematology, Atlanta, GA2017.,
[150]
Thomas, L.W.; Lam, C.; Edwards, S.W. Mcl-1; The molecular regulation of protein function. FEBS Lett., 2010, 584(14), 2981-2989.
[http://dx.doi.org/10.1016/j.febslet.2010.05.061] [PMID: 20540941]
[151]
Petrocca, F.; Altschuler, G.; Tan, S.M.; Mendillo, M.L.; Yan, H.; Jerry, D.J.; Kung, A.L.; Hide, W.; Ince, T.A.; Lieberman, J. A genome-wide siRNA screen identifies proteasome addiction as a vulnerability of basal-like triple-negative breast cancer cells. Cancer Cell, 2013, 24(2), 182-196.
[http://dx.doi.org/10.1016/j.ccr.2013.07.008] [PMID: 23948298]
[152]
Goh, J.Y.; Feng, M.; Wang, W.; Oguz, G.; Yatim, S.M.J.M.; Lee, P.L.; Bao, Y.; Lim, T.H.; Wang, P.; Tam, W.L.; Kodahl, A.R.; Lyng, M.B.; Sarma, S.; Lin, S.Y.; Lezhava, A.; Yap, Y.S.; Lim, A.S.T.; Hoon, D.S.B.; Ditzel, H.J.; Lee, S.C.; Tan, E.Y.; Yu, Q. Chromosome 1q21.3 amplification is a trackable biomarker and actionable target for breast cancer recurrence. Nat. Med., 2017, 23(11), 1319-1330.
[http://dx.doi.org/10.1038/nm.4405] [PMID: 28967919]
[153]
Ajabnoor, G.M.; Crook, T.; Coley, H.M. Paclitaxel resistance is associated with switch from apoptotic to autophagic cell death in MCF-7 breast cancer cells. Cell Death Dis., 2012, 3e260,
[http://dx.doi.org/10.1038/cddis.2011.139] [PMID: 22278287]
[154]
Jänicke, R.U.; Ng, P.; Sprengart, M.L.; Porter, A.G. Caspase-3 is required for alpha-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis. J. Biol. Chem., 1998, 273(25), 15540-15545.
[http://dx.doi.org/10.1074/jbc.273.25.15540] [PMID: 9624143]
[155]
Devarajan, E.; Sahin, A.A.; Chen, J.S.; Krishnamurthy, R.R.; Aggarwal, N.; Brun, A.M.; Sapino, A.; Zhang, F.; Sharma, D.; Yang, X.H.; Tora, A.D.; Mehta, K. Down-regulation of caspase 3 in breast cancer: A possible mechanism for chemoresistance. Oncogene, 2002, 21(57), 8843-8851.
[http://dx.doi.org/10.1038/sj.onc.1206044] [PMID: 12483536]
[156]
Nassar, A.; Lawson, D.; Cotsonis, G.; Cohen, C. Survivin and caspase-3 expression in breast cancer: Correlation with prognostic parameters, proliferation, angiogenesis, and outcome. Appl. Immunohistochem. Mol. Morphol., 2008, 16(2), 113-120.
[http://dx.doi.org/10.1097/PAI.0b013e318032ea73] [PMID: 18227733]
[157]
Li, Z.; Zhang, J.; Liu, Z.; Woo, C.W.; Thiele, C.J. Downregulation of Bim by brain-derived neurotrophic factor activation of TrkB protects neuroblastoma cells from paclitaxel but not etoposide or cisplatin-induced cell death. Cell Death Differ., 2007, 14(2), 318-326.
[http://dx.doi.org/10.1038/sj.cdd.4401983] [PMID: 16778834]
[158]
Rohwer, N.; Cramer, T. Hypoxia-mediated drug resistance: Novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist. Updat., 2011, 14(3), 191-201.
[http://dx.doi.org/10.1016/j.drup.2011.03.001] [PMID: 21466972]
[159]
He, C.; Klionsky, D.J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet., 2009, 43, 67-93.
[http://dx.doi.org/10.1146/annurev-genet-102808-114910] [PMID: 19653858]
[160]
Notte, A.; Ninane, N.; Arnould, T.; Michiels, C. Hypoxia counteracts taxol-induced apoptosis in MDA-MB-231 breast cancer cells: Role of autophagy and JNK activation. Cell Death Dis., 2013, 4e638,
[http://dx.doi.org/10.1038/cddis.2013.167] [PMID: 23681233]
[161]
Veldhoen, R.A.; Banman, S.L.; Hemmerling, D.R.; Odsen, R.; Simmen, T.; Simmonds, A.J.; Underhill, D.A.; Goping, I.S. The chemotherapeutic agent paclitaxel inhibits autophagy through two distinct mechanisms that regulate apoptosis. Oncogene, 2013, 32(6), 736-746.
[http://dx.doi.org/10.1038/onc.2012.92] [PMID: 22430212]
[162]
Liao, P.C.; Tan, S.K.; Lieu, C.H.; Jung, H.K. Involvement of endoplasmic reticulum in paclitaxel-induced apoptosis. J. Cell. Biochem., 2008, 104(4), 1509-1523.
[http://dx.doi.org/10.1002/jcb.21730] [PMID: 18452161]
[163]
Cort, A.; Ozben, T. Natural product modulators to overcome multidrug resistance in cancer. Nutr. Cancer, 2015, 67(3), 411-423.
[http://dx.doi.org/10.1080/01635581.2015.1002624] [PMID: 25649862]
[164]
Chang, X.; Firestone, G.L.; Bjeldanes, L.F. Inhibition of growth factor-induced Ras signaling in vascular endothelial cells and angiogenesis by 3,3′-diindolylmethane. Carcinogenesis, 2006, 27(3), 541-550.
[http://dx.doi.org/10.1093/carcin/bgi230] [PMID: 16199440]
[165]
Bashmail, H.A.; Alamoudi, A.A.; Noorwali, A.; Hegazy, G.A.; Ajabnoor, G.M.; Al-Abd, A.M. Thymoquinone enhances paclitaxel anti-breast cancer activity via inhibiting tumor-associated stem cells despite apparent mathematical antagonism. Molecules, 2020, 25(2), 426.
[http://dx.doi.org/10.3390/molecules25020426] [PMID: 31968657]
[166]
Wang, Y.; Sui, Y.; Tao, Y. Gambogic acid increases the sensitivity to paclitaxel in drug-resistant triple-negative breast cancer via the SHH signaling pathway. Mol. Med. Rep., 2019, 20(5), 4515-4522.
[http://dx.doi.org/10.3892/mmr.2019.10697] [PMID: 31545492]
[167]
Kim, S-H.; Park, H-J.; Moon, D-O. Sulforaphane sensitizes human breast cancer cells to paclitaxel-induced apoptosis by downregulating the NF-κB signaling pathway. Oncol. Lett., 2017, 13(6), 4427-4432.
[http://dx.doi.org/10.3892/ol.2017.5950] [PMID: 28599444]
[168]
Aggarwal, B.B.; Shishodia, S.; Takada, Y.; Banerjee, S.; Newman, R.A.; Bueso-Ramos, C.E.; Price, J.E. Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin. Cancer Res., 2005, 11(20), 7490-7498.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1192] [PMID: 16243823]
[169]
Tu, S-H.; Chiou, Y-S.; Kalyanam, N.; Ho, C-T.; Chen, L-C.; Pan, M-H. Garcinol sensitizes breast cancer cells to taxol through the suppression of caspase-3/iPLA2 and NF-κB/Twist1 signaling pathways in a mouse 4T1 breast tumor model. Food Funct., 2017, 8(3), 1067-1079.
[http://dx.doi.org/10.1039/C6FO01588C] [PMID: 28145547]
[170]
Umehara, K.; Nemoto, K.; Matsushita, A.; Terada, E.; Monthakantirat, O.; De-Eknamkul, W.; Miyase, T.; Warashina, T.; Degawa, M.; Noguchi, H. Flavonoids from the heartwood of the Thai medicinal plant Dalbergia parviflora and their effects on estrogenic-responsive human breast cancer cells. J. Nat. Prod., 2009, 72(12), 2163-2168.
[http://dx.doi.org/10.1021/np900676y] [PMID: 19928832]
[171]
Yang, Y-I.; Lee, K-T.; Park, H-J.; Kim, T.J.; Choi, Y.S.; Shih, IeM.; Choi, J.H. Tectorigenin sensitizes paclitaxel-resistant human ovarian cancer cells through downregulation of the Akt and NFκB pathway. Carcinogenesis, 2012, 33(12), 2488-2498.
[http://dx.doi.org/10.1093/carcin/bgs302] [PMID: 23027625]
[172]
Qiao, H.; Wang, T.Y.; Yu, Z.F.; Han, X.G.; Liu, X.Q.; Wang, Y.G.; Fan, Q.M.; Qin, A.; Tang, T.T. Structural simulation of adenosine phosphate via plumbagin and zoledronic acid competitively targets JNK/Erk to synergistically attenuate osteoclastogenesis in a breast cancer model. Cell Death Dis., 2016, 7e2094,
[http://dx.doi.org/10.1038/cddis.2016.11] [PMID: 26866274]
[173]
Xu, X.; Zhu, G.Q.; Zhang, K.; Zhou, Y.C.; Li, X.L.; Xu, W.; Zhang, H.; Shao, Y.; Zhang, Z.Y.; Sun, W.H. Cyclooxygenase-2 mediated synergistic effect of ursolic acid in combination with paclitaxel against human gastric carcinoma. Oncotarget, 2017, 8(54), 92770-92777.
[http://dx.doi.org/10.18632/oncotarget.21576] [PMID: 29190954]
[174]
Xiang, F.; Fan, Y.; Ni, Z.; Liu, Q.; Zhu, Z.; Chen, Z.; Hao, W.; Yue, H.; Wu, R.; Kang, X. Ursolic acid reverses the chemoresistance of breast cancer cells to paclitaxel by targeting MiRNA-149-5p/MyD88. Front. Oncol., 2019, 9, 501.
[http://dx.doi.org/10.3389/fonc.2019.00501] [PMID: 31259152]
[175]
Li, W.; Liu, J.; Jackson, K.; Shi, R.; Zhao, Y. Sensitizing the therapeutic efficacy of taxol with shikonin in human breast cancer cells. PLoS One, 2014, 9(4)e94079
[http://dx.doi.org/10.1371/journal.pone.0094079] [PMID: 24710512]
[176]
Zhang, H.B.; Lu, P.; Guo, Q.Y.; Zhang, Z.H.; Meng, X.Y. Baicalein induces apoptosis in esophageal squamous cell carcinoma cells through modulation of the PI3K/Akt pathway. Oncol. Lett., 2013, 5(2), 722-728.
[http://dx.doi.org/10.3892/ol.2012.1069] [PMID: 23420294]
[177]
Zhang, Q.; Wang, J.; He, H.; Liu, H.; Yan, X.; Zou, K. Trametenolic acid B reverses multidrug resistance in breast cancer cells through regulating the expression level of P-glycoprotein. Phytother. Res., 2014, 28(7), 1037-1044.
[http://dx.doi.org/10.1002/ptr.5089] [PMID: 25289403]
[178]
Motiwala, M.N.; Rangari, V.D. Combined effect of paclitaxel and piperine on a MCF-7 breast cancer cell line in vitro: Evidence of a synergistic interaction. Synergy, 2015, 2, 1-6.
[http://dx.doi.org/10.1016/j.synres.2015.04.001]
[179]
Bradlow, H.L.; Michnovicz, J.; Telang, N.T.; Osborne, M.P. Effects of dietary indole-3-carbinol on estradiol metabolism and spontaneous mammary tumors in mice. Carcinogenesis, 1991, 12(9), 1571-1574.
[http://dx.doi.org/10.1093/carcin/12.9.1571] [PMID: 1893517]
[180]
Rahman, K.W.; Sarkar, F.H. Inhibition of nuclear translocation of nuclear factor-kappaB contributes to 3,3′-diindolylmethane-induced apoptosis in breast cancer cells. Cancer Res., 2005, 65(1), 364-371.
[PMID: 15665315]
[181]
Khan, M.A.; Tania, M.; Wei, C.; Mei, Z.; Fu, S.; Cheng, J.; Xu, J.; Fu, J. Thymoquinone inhibits cancer metastasis by downregulating TWIST1 expression to reduce epithelial to mesenchymal transition. Oncotarget, 2015, 6(23), 19580-19591.
[http://dx.doi.org/10.18632/oncotarget.3973] [PMID: 26023736]
[182]
Chi, Y.; Zhan, X.K.; Yu, H.; Xie, G.R.; Wang, Z.Z.; Xiao, W.; Wang, Y.G.; Xiong, F.X.; Hu, J.F.; Yang, L.; Cui, C.X.; Wang, J.W. An open-labeled, randomized, multicenter phase IIa study of gambogic acid injection for advanced malignant tumors. Chin. Med. J. (Engl.), 2013, 126(9), 1642-1646.
[PMID: 23652044]
[183]
Rimkus, T.K.; Carpenter, R.L.; Qasem, S.; Chan, M.; Lo, H.W. Targeting the sonic hedgehog signaling pathway: Review of smoothened and GLI inhibitors. Cancers (Basel), 2016, 8(2)E22
[http://dx.doi.org/10.3390/cancers8020022] [PMID: 26891329]
[184]
Cornblatt, B.S.; Ye, L.; Dinkova-Kostova, A.T.; Erb, M.; Fahey, J.W.; Singh, N.K.; Chen, M.S.; Stierer, T.; Garrett-Mayer, E.; Argani, P.; Davidson, N.E.; Talalay, P.; Kensler, T.W.; Visvanathan, K. Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. Carcinogenesis, 2007, 28(7), 1485-1490.
[http://dx.doi.org/10.1093/carcin/bgm049] [PMID: 17347138]
[185]
Jackson, S.J.; Singletary, K.W. Sulforaphane inhibits human MCF-7 mammary cancer cell mitotic progression and tubulin polymerization. J. Nutr., 2004, 134(9), 2229-2236.
[http://dx.doi.org/10.1093/jn/134.9.2229] [PMID: 15333709]
[186]
Mabuchi, S.; Ohmichi, M.; Kimura, A.; Hisamoto, K.; Hayakawa, J.; Nishio, Y.; Adachi, K.; Takahashi, K.; Arimoto-Ishida, E.; Nakatsuji, Y.; Tasaka, K.; Murata, Y. Inhibition of phosphorylation of BAD and Raf-1 by Akt sensitizes human ovarian cancer cells to paclitaxel. J. Biol. Chem., 2002, 277(36), 33490-33500.
[http://dx.doi.org/10.1074/jbc.M204042200] [PMID: 12087097]
[187]
Calderon, L.E.; Liu, S.; Arnold, N.; Breakall, B.; Rollins, J.; Ndinguri, M. Bromoenol lactone attenuates nicotine-induced breast cancer cell proliferation and migration. PLoS One, 2015, 10(11)e0143277
[http://dx.doi.org/10.1371/journal.pone.0143277] [PMID: 26588686]
[188]
Joyce, J.A.; Pollard, J.W. Microenvironmental regulation of metastasis. Nat. Rev. Cancer, 2009, 9(4), 239-252.
[http://dx.doi.org/10.1038/nrc2618] [PMID: 19279573]
[189]
Glackin, C.A. Targeting the Twist and Wnt signaling pathways in metastatic breast cancer. Maturitas, 2014, 79(1), 48-51.
[http://dx.doi.org/10.1016/j.maturitas.2014.06.015] [PMID: 25086726]
[190]
Nishiumi, S.; Miyamoto, S.; Kawabata, K.; Ohnishi, K.; Mukai, R.; Murakami, A.; Ashida, H.; Terao, J. Dietary flavonoids as cancer-preventive and therapeutic biofactors. Front. Biosci. (Schol. Ed.), 2011, 3, 1332-1362.
[http://dx.doi.org/10.2741/229] [PMID: 21622274]
[191]
Kuo, P-L.; Hsu, Y-L.; Cho, C-Y. Plumbagin induces G2-M arrest and autophagy by inhibiting the AKT/mammalian target of rapamycin pathway in breast cancer cells. Mol. Cancer Ther., 2006, 5(12), 3209-3221.
[http://dx.doi.org/10.1158/1535-7163.MCT-06-0478] [PMID: 17172425]
[192]
Kawiak, A.; Domachowska, A.; Lojkowska, E. Plumbagin increases paclitaxel induced cell death and overcomes paclitaxel resistance in breast cancer cells through ERK-mediated apoptosis induction. J. Nat. Prod., 2019, 82(4), 878-885.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00964] [PMID: 30810041]
[193]
Balmanno, K.; Cook, S.J. Tumour cell survival signalling by the ERK1/2 pathway. Cell Death Differ., 2009, 16(3), 368-377.
[http://dx.doi.org/10.1038/cdd.2008.148] [PMID: 18846109]
[194]
Xiang, F.; Ni, Z.; Zhan, Y.; Kong, Q.; Xu, J.; Jiang, J.; Wu, R.; Kang, X. Increased expression of MyD88 and association with paclitaxel resistance in breast cancer. Tumour Biol., 2016, 37(5), 6017-6025.
[http://dx.doi.org/10.1007/s13277-015-4436-5] [PMID: 26596839]
[195]
Brigham, L.A.; Michaels, P.J.; Flores, H.E. Cell-specific production and antimicrobial activity of naphthoquinones in roots of lithospermum erythrorhizon. Plant Physiol., 1999, 119(2), 417-428.
[http://dx.doi.org/10.1104/pp.119.2.417] [PMID: 9952436]
[196]
Chen, Y.; Zheng, L.; Liu, J.; Zhou, Z.; Cao, X.; Lv, X.; Chen, F. Shikonin inhibits prostate cancer cells metastasis by reducing matrix metalloproteinase-2/-9 expression via AKT/mTOR and ROS/ERK1/2 pathways. Int. Immunopharmacol., 2014, 21(2), 447-455.
[http://dx.doi.org/10.1016/j.intimp.2014.05.026] [PMID: 24905636]
[197]
Chen, X.; Yang, L.; Oppenheim, J.J.; Howard, M.Z. Cellular pharmacology studies of shikonin derivatives. Phytother. Res., 2002, 16(3), 199-209.
[http://dx.doi.org/10.1002/ptr.1100] [PMID: 12164262]
[198]
Yang, H.; Zhou, P.; Huang, H.; Chen, D.; Ma, N.; Cui, Q.C.; Shen, S.; Dong, W.; Zhang, X.; Lian, W.; Wang, X.; Dou, Q.P.; Liu, J. Shikonin exerts antitumor activity via proteasome inhibition and cell death induction in vitro and in vivo. Int. J. Cancer, 2009, 124(10), 2450-2459.
[http://dx.doi.org/10.1002/ijc.24195] [PMID: 19165859]
[199]
Kim, D.H.; Hossain, M.A.; Kang, Y.J.; Jang, J.Y.; Lee, Y.J.; Im, E.; Yoon, J.H.; Kim, H.S.; Chung, H.Y.; Kim, N.D. Baicalein, an active component of Scutellaria baicalensis Georgi, induces apoptosis in human colon cancer cells and prevents AOM/DSS-induced colon cancer in mice. Int. J. Oncol., 2013, 43(5), 1652-1658.
[http://dx.doi.org/10.3892/ijo.2013.2086] [PMID: 24008356]
[200]
Zhou, Q.M.; Wang, S.; Zhang, H.; Lu, Y.Y.; Wang, X.F.; Motoo, Y.; Su, S.B. The combination of baicalin and baicalein enhances apoptosis via the ERK/p38 MAPK pathway in human breast cancer cells. Acta Pharmacol. Sin., 2009, 30(12), 1648-1658.
[http://dx.doi.org/10.1038/aps.2009.166] [PMID: 19960010]
[201]
Chou, D.S.; Hsiao, G.; Lai, Y.A.; Tsai, Y.J.; Sheu, J.R. Baicalein induces proliferation inhibition in B16F10 melanoma cells by generating reactive oxygen species via 12-lipoxygenase. Free Radic. Biol. Med., 2009, 46(8), 1197-1203.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.01.024] [PMID: 19439216]
[202]
Ishii, K.; Tanaka, S.; Kagami, K.; Henmi, K.; Toyoda, H.; Kaise, T.; Hirano, T. Effects of naturally occurring polymethyoxyflavonoids on cell growth, p-glycoprotein function, cell cycle, and apoptosis of daunorubicin-resistant T lymphoblastoid leukemia cells. Cancer Invest., 2010, 28(3), 220-229.
[http://dx.doi.org/10.3109/07357900902744486] [PMID: 19863351]
[203]
Nakata, T.; Yamada, T.; Taji, S.; Ohishi, H.; Wada, S.; Tokuda, H.; Sakuma, K.; Tanaka, R. Structure determination of inonotsuoxides A and B and in vivo anti-tumor promoting activity of inotodiol from the sclerotia of Inonotus obliquus. Bioorg. Med. Chem., 2007, 15(1), 257-264.
[http://dx.doi.org/10.1016/j.bmc.2006.09.064] [PMID: 17049251]
[204]
Athanasiou, A.; Smith, P.A.; Vakilpour, S.; Kumaran, N.M.; Turner, A.E.; Bagiokou, D.; Layfield, R.; Ray, D.E.; Westwell, A.D.; Alexander, S.P.H.; Kendall, D.A.; Lobo, D.N.; Watson, S.A.; Lophatanon, A.; Muir, K.A.; Guo, D-A.; Bates, T.E. Vanilloid receptor agonists and antagonists are mitochondrial inhibitors: How vanilloids cause non-vanilloid receptor mediated cell death. Biochem. Biophys. Res. Commun., 2007, 354(1), 50-55.
[http://dx.doi.org/10.1016/j.bbrc.2006.12.179] [PMID: 17214968]
[205]
Lan, Y.; Sun, Y.; Yang, T.; Ma, X.; Cao, M.; Liu, L.; Yu, S.; Cao, A.; Liu, Y. Co-delivery of paclitaxel by a capsaicin prodrug micelle facilitating for combination therapy on breast cancer. Mol. Pharm., 2019, 16(8), 3430-3440.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00209] [PMID: 31199661]
[206]
Blanco, E.; Sangai, T.; Wu, S.; Hsiao, A.; Ruiz-Esparza, G.U.; Gonzalez-Delgado, C.A.; Cara, F.E.; Granados-Principal, S.; Evans, K.W.; Akcakanat, A.; Wang, Y.; Do, K.A.; Meric-Bernstam, F.; Ferrari, M. Colocalized delivery of rapamycin and paclitaxel to tumors enhances synergistic targeting of the PI3K/Akt/mTOR pathway. Mol. Ther., 2014, 22(7), 1310-1319.
[http://dx.doi.org/10.1038/mt.2014.27] [PMID: 24569835]
[207]
Yallapu, M.M.; Jaggi, M.; Chauhan, S.C. Curcumin nanomedicine: A road to cancer therapeutics. Curr. Pharm. Des., 2013, 19(11), 1994-2010.
[PMID: 23116309]
[208]
Jibodh, R.A.; Lagas, J.S.; Nuijen, B.; Beijnen, J.H.; Schellens, J.H. Taxanes: Old drugs, new oral formulations. Eur. J. Pharmacol., 2013, 717(1-3), 40-46.
[http://dx.doi.org/10.1016/j.ejphar.2013.02.058] [PMID: 23660368]
[209]
Ganta, S.; Devalapally, H.; Amiji, M. Curcumin enhances oral bioavailability and anti-tumor therapeutic efficacy of paclitaxel upon administration in nanoemulsion formulation. J. Pharm. Sci., 2010, 99(11), 4630-4641.
[http://dx.doi.org/10.1002/jps.22157] [PMID: 20845461]
[210]
Badr, G.; Gul, H.I.; Yamali, C.; Mohamed, A.A.M.; Badr, B.M.; Gul, M.; Abo Markeb, A.; Abo El-Maali, N. Curcumin analogue 1,5-bis(4-hydroxy-3-((4-methylpiperazin-1-yl)methyl)phenyl)penta-1,4-dien-3-one mediates growth arrest and apoptosis by targeting the PI3K/AKT/mTOR and PKC-theta signaling pathways in human breast carcinoma cells. Bioorg. Chem., 2018, 78, 46-57.
[http://dx.doi.org/10.1016/j.bioorg.2018.03.006] [PMID: 29533214]
[211]
Dan, V.M.; Muralikrishnan, B.; Sanawar, R. J S, V.; Burkul, B.B.; Srinivas, K.P.; Lekshmi, A.; Pradeep, N.S.; Dastager, S.G.; Santhakumari, B.; Santhoshkumar, T.R.; Kumar, R.A.; Pillai, M.R. Streptomyces sp. metabolite(s) promotes Bax mediated intrinsic apoptosis and autophagy involving inhibition of mTOR pathway in cervical cancer cell lines. Sci. Rep., 2018, 8(1), 2810.
[http://dx.doi.org/10.1038/s41598-018-21249-5] [PMID: 29434241]
[212]
Makhov, P.; Golovine, K.; Teper, E.; Kutikov, A.; Mehrazin, R.; Corcoran, A.; Tulin, A.; Uzzo, R.G.; Kolenko, V.M. Piperlongumine promotes autophagy via inhibition of Akt/mTOR signalling and mediates cancer cell death. Br. J. Cancer, 2014, 110(4), 899-907.
[http://dx.doi.org/10.1038/bjc.2013.810] [PMID: 24434432]
[213]
Dan, V.M. J S, V.; C J, S.; Sanawar, R.; Lekshmi, A.; Kumar, R.A.; Santhosh Kumar, T.R.; Marelli, U.K.; Dastager, S.G.; Pillai, M.R. Molecular networking and whole-genome analysis aid discovery of an angucycline that inactivates mTORC1/C2 and induces programmed cell death. ACS Chem. Biol., 2020, 15(3), 780-788.
[http://dx.doi.org/10.1021/acschembio.0c00026] [PMID: 32058690]
[214]
DiDonato, J.A.; Mercurio, F.; Karin, M. NF-κB and the link between inflammation and cancer. Immunol. Rev., 2012, 246(1), 379-400.
[http://dx.doi.org/10.1111/j.1600-065X.2012.01099.x] [PMID: 22435567]
[215]
Krzyszczyk, P.; Acevedo, A.; Davidoff, E.J.; Timmins, L.M.; Marrero-Berrios, I.; Patel, M.; White, C.; Lowe, C.; Sherba, J.J.; Hartmanshenn, C.; O'Neill, K.M.; Balter, M.L.; Fritz, Z.R.; Androulakis, I.P.; Schloss, R.S.; Yarmush, M.L. The growing role of precision and personalized medicine for cancer treatment.Technology (Singap. World Sci.), 2018, 6, 79-100.,
[http://dx.doi.org/10.1142/S2339547818300020M]
[216]
Turnbull, C.; Rahman, N. Genetic predisposition to breast cancer: Past, present, and future. Annu. Rev. Genomics Hum. Genet., 2008, 9, 321-345.
[http://dx.doi.org/10.1146/annurev.genom.9.081307.164339] [PMID: 18544032]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy