Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

Potential Impacts of Prebiotics and Probiotics on Cancer Prevention

Author(s): Saptadip Samanta*

Volume 22, Issue 4, 2022

Published on: 10 December, 2020

Page: [605 - 628] Pages: 24

DOI: 10.2174/1871520621999201210220442

Price: $65

Abstract

Background: Cancer is a serious problem throughout the world. The pathophysiology of cancer is multifactorial and is also related to gut microbiota. Intestinal microbes are the useful resident of the healthy human. They are significant for various aspects of human health, including nutritional biotransformation, flushing of the pathogens, toxin neutralization, immune response, and onco-suppression. Disruption in the interactions among the gut microbiota, intestinal epithelium, and the host immune system are associated with gastrointestinal disorders, neurodegenerative diseases, metabolic syndrome, and cancer. Probiotic bacteria (Lactobacillus spp., Bifidobacterium spp.) have been regarded as beneficial to health. Moreover, they also play a significant role in immunomodulation and a preventive measure against obesity, diabetes, liver disease, inflammatory bowel disease, tumor progression, and cancer.

Objective: The involvement of gut microorganisms in cancer development and prevention has been recognized as a balancing factor. The events of dysbiosis emphasize metabolic disorder and carcinogenesis. The gut flora potentiates immunomodulation and minimizes the limitations of usual chemotherapy. The significant role of prebiotics and probiotics on the improvement of immunomodulation and antitumor properties has been considered.

Methods: I had reviewed the literature on the multidimensional activities of prebiotics and probiotics from the NCBI website database PubMed, Springer Nature, Science Direct (Elsevier), Google Scholar database to search relevant articles. Specifically, I had focused on the role of prebiotics and probiotics in immunomodulation and cancer prevention.

Results: Prebiotics are the nondigestible fermentable sugars that selectively influence the growth of probiotic organisms that exert immunomodulation over the cancerous growth. The oncostatic properties of bacteria are mediated through the recruitment of cytotoxic T cells, natural killer cells, and oxidative stress-induced apoptosis in the tumor microenvironment. Moreover, approaches have also been taken to use probiotics as an adjuvant in cancer therapy.

Conclusion: The present review has indicated that dysbiosis is a crucial factor in many pathological situations, including cancer. Applications of prebiotics and probiotics exhibit the immune-surveillance as oncostatic effects. These events increase the possibilities of new therapeutic strategies for cancer prevention.

Keywords: Gut microbiota, dysbiosis, cancer, prebiotics, probiotics, immunotherapy.

Graphical Abstract
[1]
Osadchiy, V.; Martin, C.R.; Mayer, E.A. The gut-brain axis and the microbiome: mechanisms and clinical implications. Clin. Gastroenterol. Hepatol., 2019, 17(2), 322-332.
[http://dx.doi.org/10.1016/j.cgh.2018.10.002] [PMID: 30292888]
[2]
Frank, D.N.; St Amand, A.L.; Feldman, R.A.; Boedeker, E.C.; Harpaz, N.; Pace, N.R. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc. Natl. Acad. Sci. USA, 2007, 104(34), 13780-13785.
[http://dx.doi.org/10.1073/pnas.0706625104] [PMID: 17699621]
[3]
Jostins, L.; Ripke, S.; Weersma, R.K.; Duerr, R.H.; McGovern, D.P.; Hui, K.Y.; Lee, J.C.; Schumm, L.P.; Sharma, Y.; Anderson, C.A.; Essers, J.; Mitrovic, M.; Ning, K.; Cleynen, I.; Theatre, E.; Spain, S.L.; Raychaudhuri, S.; Goyette, P.; Wei, Z.; Abraham, C.; Achkar, J.P.; Ahmad, T.; Amininejad, L.; Ananthakrishnan, A.N.; Andersen, V.; Andrews, J.M.; Baidoo, L.; Balschun, T.; Bampton, P.A.; Bitton, A.; Boucher, G.; Brand, S.; Büning, C.; Cohain, A.; Cichon, S.; D’Amato, M.; De Jong, D.; Devaney, K.L.; Dubinsky, M.; Edwards, C.; Ellinghaus, D.; Ferguson, L.R.; Franchimont, D.; Fransen, K.; Gearry, R.; Georges, M.; Gieger, C.; Glas, J.; Haritunians, T.; Hart, A.; Hawkey, C.; Hedl, M.; Hu, X.; Karlsen, T.H.; Kupcinskas, L.; Kugathasan, S.; Latiano, A.; Laukens, D.; Lawrance, I.C.; Lees, C.W.; Louis, E.; Mahy, G.; Mansfield, J.; Morgan, A.R.; Mowat, C.; Newman, W.; Palmieri, O.; Ponsioen, C.Y.; Potocnik, U.; Prescott, N.J.; Regueiro, M.; Rotter, J.I.; Russell, R.K.; Sanderson, J.D.; Sans, M.; Satsangi, J.; Schreiber, S.; Simms, L.A.; Sventoraityte, J.; Targan, S.R.; Taylor, K.D.; Tremelling, M.; Verspaget, H.W.; De Vos, M.; Wijmenga, C.; Wilson, D.C.; Winkelmann, J.; Xavier, R.J.; Zeissig, S.; Zhang, B.; Zhang, C.K.; Zhao, H.; Silverberg, M.S.; Annese, V.; Hakonarson, H.; Brant, S.R.; Radford-Smith, G.; Mathew, C.G.; Rioux, J.D.; Schadt, E.E.; Daly, M.J.; Franke, A.; Parkes, M.; Vermeire, S.; Barrett, J.C.; Cho, J.H. International IBD Genetics Consortium (IIBDGC). Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature, 2012, 491(7422), 119-124.
[http://dx.doi.org/10.1038/nature11582] [PMID: 23128233]
[4]
Karlsson, F.; Tremaroli, V.; Nielsen, J.; Bäckhed, F. Assessing the human gut microbiota in metabolic diseases. Diabetes, 2013, 62(10), 3341-3349.
[http://dx.doi.org/10.2337/db13-0844] [PMID: 24065795]
[5]
Ley, R.E.; Bäckhed, F.; Turnbaugh, P.; Lozupone, C.A.; Knight, R.D.; Gordon, J.I. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA, 2005, 102(31), 11070-11075.
[http://dx.doi.org/10.1073/pnas.0504978102] [PMID: 16033867]
[6]
Kostic, A.D.D.; Gevers, D.; Siljander, H.; Vatanen, T.; Hyötyläinen, T.; Hämäläinen, A.M.; Peet, A.; Tillmann, V.; Pöhö, P.; Mattila, I.; Lähdesmäki, H.; Franzosa, E.A.; Vaarala, O.; de Goffau, M.; Harmsen, H.; Ilonen, J.; Virtanen, S.M.; Clish, C.B.; Orešič, M.; Huttenhower, C.; Knip, M.; Xavier, R.J. DIABIMMUNE Study Group.The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe, 2015, 17(2), 260-273.
[http://dx.doi.org/10.1016/j.chom.2015.01.001] [PMID: 25662751]
[7]
de Martel, C.; Ferlay, J.; Franceschi, S.; Vignat, J.; Bray, F.; Forman, D.; Plummer, M. Global burden of cancers attributable to infections in 2008: a review and synthetic analysis. Lancet Oncol., 2012, 13(6), 607-615.
[http://dx.doi.org/10.1016/S1470-2045(12)70137-7] [PMID: 22575588]
[8]
Schwabe, R.F.; Jobin, C. The microbiome and cancer. Nat. Rev. Cancer, 2013, 13(11), 800-812.
[http://dx.doi.org/10.1038/nrc3610] [PMID: 24132111]
[9]
Zitvogel, L.; Galluzzi, L.; Viaud, S.; Vétizou, M.; Daillère, R.; Merad, M.; Kroemer, G. Cancer and the gut microbiota: an unexpected link. Sci. Transl. Med., 2015, 7(271) , 271ps1.
[http://dx.doi.org/10.1126/scitranslmed.3010473] [PMID: 25609166]
[10]
Wong, S.H.; Kwong, T.N.Y.; Wu, C-Y.; Yu, J. Clinical applications of gut microbiota in cancer biology. Semin. Cancer Biol., 2019, 55, 28-36.
[http://dx.doi.org/10.1016/j.semcancer.2018.05.003] [PMID: 29782923]
[11]
Czene, K.; Lichtenstein, P.; Hemminki, K. Environmental and heritable causes of cancer among 9.6 million individuals in the Swedish Family-Cancer Database. Int. J. Cancer, 2002, 99(2), 260-266.
[http://dx.doi.org/10.1002/ijc.10332] [PMID: 11979442]
[12]
Brown, J.M.; Hazen, S.L. Microbial modulation of cardiovascular disease. Nat. Rev. Microbiol., 2018, 16(3), 171-181.
[http://dx.doi.org/10.1038/nrmicro.2017.149] [PMID: 29307889]
[13]
Maruvada, P.; Leone, V.; Kaplan, L.M.; Chang, E.B. The human microbiome and obesity: moving beyond associations. Cell Host Microbe, 2017, 22(5), 589-599.
[http://dx.doi.org/10.1016/j.chom.2017.10.005] [PMID: 29120742]
[14]
Sharon, G.; Sampson, T.R.; Geschwind, D.H.; Mazmanian, S.K. The central nervous system and the gut microbiome. Cell, 2016, 167(4), 915-932.
[http://dx.doi.org/10.1016/j.cell.2016.10.027] [PMID: 27814521]
[15]
Gorjifard, S.; Goldszmid, R.S. Microbiota-myeloid cell crosstalk beyond the gut. J. Leukoc. Biol., 2016, 100(5), 865-879.
[http://dx.doi.org/10.1189/jlb.3RI0516-222R] [PMID: 27605211]
[16]
Fessler, J.; Matson, V.; Gajewski, T.F. Exploring the emerging role of the microbiome in cancer immunotherapy. J. Immunother. Cancer, 2019, 7(1), 108.
[http://dx.doi.org/10.1186/s40425-019-0574-4] [PMID: 30995949]
[17]
Scott, A.J.; Merrifield, C.A.; Younes, J.A.; Pekelharing, E.P. Pre-, pro- and synbiotics in cancer prevention and treatment-a review of basic and clinical research. Ecancermedicalscience, 2018, 12, 869.
[http://dx.doi.org/10.3332/ecancer.2018.869] [PMID: 30263060]
[18]
Qin, J.; Li, R.; Raes, J.; Arumugam, M.; Burgdorf, K.S.; Manichanh, C.; Nielsen, T.; Pons, N.; Levenez, F.; Yamada, T.; Mende, D.R.; Li, J.; Xu, J.; Li, S.; Li, D.; Cao, J.; Wang, B.; Liang, H.; Zheng, H.; Xie, Y.; Tap, J.; Lepage, P.; Bertalan, M.; Batto, J.M.; Hansen, T.; Le Paslier, D.; Linneberg, A.; Nielsen, H.B.; Pelletier, E.; Renault, P.; Sicheritz-Ponten, T.; Turner, K.; Zhu, H.; Yu, C.; Li, S.; Jian, M.; Zhou, Y.; Li, Y.; Zhang, X.; Li, S.; Qin, N.; Yang, H.; Wang, J.; Brunak, S.; Doré, J.; Guarner, F.; Kristiansen, K.; Pedersen, O.; Parkhill, J.; Weissenbach, J.; Bork, P.; Ehrlich, S.D.; Wang, J. MetaHIT Consortium. A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010, 464(7285), 59-65.
[http://dx.doi.org/10.1038/nature08821] [PMID: 20203603]
[19]
Kong, F.; Cai, Y. Study Insights into gastrointestinal cancer through the gut microbiota. BioMed Res. Int., 2019, 2019 , 8721503.
[http://dx.doi.org/10.1155/2019/8721503] [PMID: 31341907]
[20]
Vivarelli, S.; Salemi, R.; Candido, S.; Falzone, L.; Santagati, M.; Stefani, S.; Torino, F.; Banna, G.L.; Tonini, G.; Libra, M. Gut microbiota and cancer: from pathogenesis to therapy. Cancers (Basel), 2019, 11(1), 38.
[http://dx.doi.org/10.3390/cancers11010038] [PMID: 30609850]
[21]
Garrett, W.S. The gut microbiota and colon cancer. Science, 2019, 364(6446), 1133-1135.
[http://dx.doi.org/10.1126/science.aaw2367] [PMID: 31221845]
[22]
Consortium, T.H.G.P. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature, 2012, 486(7402), 207-214.
[http://dx.doi.org/10.1038/nature11234] [PMID: 22699609]
[23]
Sommer, F.; Bäckhed, F. The gut microbiota-masters of host development and physiology. Nat. Rev. Microbiol., 2013, 11(4), 227-238.
[http://dx.doi.org/10.1038/nrmicro2974] [PMID: 23435359]
[24]
Jefferson, A.; Adolphus, K. The effects of intact cereal grain fibers, including wheat bran on the gut microbiota composition of healthy adults: a systematic review. Front. Nutr., 2019, 6, 33.
[http://dx.doi.org/10.3389/fnut.2019.00033]
[25]
Cardinelli, C.S.; Sala, P.C.; Alves, C.C.; Torrinhas, R.S.; Waitzberg, D.L. Influence of intestinal microbiota on body weight gain: a narrative review of the literature. Obes. Surg., 2015, 25(2), 346-353.
[http://dx.doi.org/10.1007/s11695-014-1525-2] [PMID: 25511750]
[26]
Tanaka, M.; Nakayama, J. Development of the gut microbiota in infancy and its impact on health in later life. Allergol. Int., 2017, 66(4), 515-522.
[http://dx.doi.org/10.1016/j.alit.2017.07.010] [PMID: 28826938]
[27]
Biesalski, H.K. Nutrition meets the microbiome: micronutrients and the microbiota. Ann. N. Y. Acad. Sci., 2016, 1372(1), 53-64.
[http://dx.doi.org/10.1111/nyas.13145] [PMID: 27362360]
[28]
LeBlanc, J.G.; Laiño, J.E.; del Valle, M.J.; Vannini, V. B-Group vitamin production by lactic acid bacteria-current knowledge and potential applications. J. Appl. Microbiol., 2011, 111, 1297-1309.
[http://dx.doi.org/10.1111/j.1365-2672.2011.05157.x]
[29]
Zelante, T.; Iannitti, R.G.; Cunha, C.; De Luca, A.; Giovannini, G.; Pieraccini, G.; Zecchi, R.; D’Angelo, C.; Massi-Benedetti, C.; Fallarino, F.; Carvalho, A.; Puccetti, P.; Romani, L. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity, 2013, 39(2), 372-385.
[http://dx.doi.org/10.1016/j.immuni.2013.08.003] [PMID: 23973224]
[30]
Inagaki, T.; Moschetta, A.; Lee, Y-K.; Peng, L.; Zhao, G.; Downes, M.; Yu, R.T.; Shelton, J.M.; Richardson, J.A.; Repa, J.J.; Mangelsdorf, D.J.; Kliewer, S.A. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc. Natl. Acad. Sci. USA, 2006, 103(10), 3920-3925.
[http://dx.doi.org/10.1073/pnas.0509592103] [PMID: 16473946]
[31]
Vavassori, P.; Mencarelli, A.; Renga, B.; Distrutti, E.; Fiorucci, S. The bile acid receptor FXR is a modulator of intestinal innate immunity. J. Immunol., 2009, 183(10), 6251-6261.
[http://dx.doi.org/10.4049/jimmunol.0803978] [PMID: 19864602]
[32]
Kho, Z.Y.; Lal, S.K. The human gut microbiome - a potential controller of wellness and disease. Front. Microbiol., 2018, 9, 1835.
[http://dx.doi.org/10.3389/fmicb.2018.01835] [PMID: 30154767]
[33]
Larrosa, M.; González-Sarrías, A.; Yáñez-Gascón, M.J. Anti-inflammatory properties of a pomegranate extract and its metabolite urolithin-A in a colitis rat model and the effect of colon inflammation on phenolic metabolism. J. Nutr. Biochem., 2010, 21, 717-725.
[http://dx.doi.org/10.1016/j.jnutbio.2009.04.012]
[34]
Johnson, C.H.; Dejea, C.M.; Edler, D.; Hoang, L.T. Metabolism links bacterial biofilms and colon carcinogenesis. Cell Metab., 2015, 21, 891-897.
[http://dx.doi.org/10.1016/j.cmet.2015.04.011]
[35]
Garrett, W.S. Cancer and the microbiota. Science, 2015, 348(6230), 80-86.
[http://dx.doi.org/10.1126/science.aaa4972] [PMID: 25838377]
[36]
Tsilimigras, M.C.; Fodor, A.; Jobin, C. Carcinogenesis and therapeutics: the microbiota perspective. Nat. Microbiol., 2017, 2, 17008.
[http://dx.doi.org/10.1038/nmicrobiol.2017.8] [PMID: 28225000]
[37]
Boursi, B.; Mamtani, R.; Haynes, K.; Yang, Y.X. Recurrent antibiotic exposure may promote cancer formation-Another step in understanding the role of the human microbiota? Eur. J. Cancer, 2015, 51(17), 2655-2664.
[http://dx.doi.org/10.1016/j.ejca.2015.08.015] [PMID: 26338196]
[38]
Helmink, B.A.; Khan, M.A.W.; Hermann, A.; Gopalakrishnan, V.; Wargo, J.A. The microbiome, cancer, and cancer therapy. Nat. Med., 2019, 25(3), 377-388.
[http://dx.doi.org/10.1038/s41591-019-0377-7] [PMID: 30842679]
[39]
Purcell, R.V.; Pearson, J.; Aitchison, A.; Dixon, L.; Frizelle, F.A.; Keenan, J.I. Colonization with enterotoxigenic Bacteroides fragilis is associated with early-stage colorectal neoplasia. PLoS One, 2017, 12(2) , e0171602.
[http://dx.doi.org/10.1371/journal.pone.0171602] [PMID: 28151975]
[40]
Boleij, A.; Hechenbleikner, E.M.; Goodwin, A.C.; Badani, R.; Stein, E.M.; Lazarev, M.G.; Ellis, B.; Carroll, K.C.; Albesiano, E.; Wick, E.C.; Platz, E.A.; Pardoll, D.M.; Sears, C.L. The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin. Infect. Dis., 2015, 60(2), 208-215.
[http://dx.doi.org/10.1093/cid/ciu787] [PMID: 25305284]
[41]
Kostic, A.D.; Chun, E.; Robertson, L.; Glickman, J.N.; Gallini, C.A.; Michaud, M.; Clancy, T.E.; Chung, D.C.; Lochhead, P.; Hold, G.L.; El-Omar, E.M.; Brenner, D.; Fuchs, C.S.; Meyerson, M.; Garrett, W.S. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe, 2013, 14(2), 207-215.
[http://dx.doi.org/10.1016/j.chom.2013.07.007] [PMID: 23954159]
[42]
Tomkovich, S.; Yang, Y.; Winglee, K.; Gauthier, J.; Mühlbauer, M.; Sun, X.; Mohamadzadeh, M.; Liu, X.; Martin, P.; Wang, G.P.; Oswald, E.; Fodor, A.A.; Jobin, C. Locoregional effects of microbiota in a preclinical model of colon carcinogenesis. Cancer Res., 2017, 77(10), 2620-2632.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-3472] [PMID: 28416491]
[43]
He, Z.; Gharaibeh, R.Z.; Newsome, R.C.; Pope, J.L.; Dougherty, M.W.; Tomkovich, S.; Pons, B.; Mirey, G.; Vignard, J.; Hendrixson, D.R.; Jobin, C. Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. Gut, 2019, 68(2), 289-300.
[http://dx.doi.org/10.1136/gutjnl-2018-317200] [PMID: 30377189]
[44]
Poutahidis, T.; Kearney, S.M.; Levkovich, T.; Qi, P.; Varian, B.J.; Lakritz, J.R.; Ibrahim, Y.M.; Chatzigiagkos, A.; Alm, E.J.; Erdman, S.E. Microbial symbionts accelerate wound healing via the neuropeptide hormone oxytocin. PLoS One, 2013, 8(10) , e78898.
[http://dx.doi.org/10.1371/journal.pone.0078898] [PMID: 24205344]
[45]
Rao, V.P.; Poutahidis, T.; Ge, Z.; Nambiar, P.R.; Boussahmain, C.; Wang, Y.Y.; Horwitz, B.H.; Fox, J.G.; Erdman, S.E. Innate immune inflammatory response against enteric bacteria Helicobacter hepaticus induces mammary adenocarcinoma in mice. Cancer Res., 2006, 66(15), 7395-7400.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0558] [PMID: 16885333]
[46]
Farrell, J.J.; Zhang, L.; Zhou, H.; Chia, D.; Elashoff, D.; Akin, D.; Paster, B.J.; Joshipura, K.; Wong, D.T. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut, 2012, 61(4), 582-588.
[http://dx.doi.org/10.1136/gutjnl-2011-300784] [PMID: 21994333]
[47]
Fan, X.; Alekseyenko, A.V.; Wu, J.; Peters, B.A.; Jacobs, E.J.; Gapstur, S.M.; Purdue, M.P.; Abnet, C.C.; Stolzenberg-Solomon, R.; Miller, G.; Ravel, J.; Hayes, R.B.; Ahn, J. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut, 2018, 67(1), 120-127.
[http://dx.doi.org/10.1136/gutjnl-2016-312580] [PMID: 27742762]
[48]
Buti, L.; Spooner, E.; Van der Veen, A.G.; Rappuoli, R.; Covacci, A.; Ploegh, H.L. Helicobacter pylori cytotoxin-associated gene A (CagA) subverts the apoptosis-stimulating protein of p53 (ASPP2) tumor suppressor pathway of the host. Proc. Natl. Acad. Sci. USA, 2011, 108(22), 9238-9243.
[http://dx.doi.org/10.1073/pnas.1106200108] [PMID: 21562218]
[49]
Murata-Kamiya, N.; Kurashima, Y.; Teishikata, Y.; Yamahashi, Y.; Saito, Y.; Higashi, H.; Aburatani, H.; Akiyama, T.; Peek, R.M., Jr; Azuma, T.; Hatakeyama, M. Helicobacter pylori CagA interacts with E-cadherin and deregulates the beta-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. Oncogene, 2007, 26(32), 4617-4626.
[http://dx.doi.org/10.1038/sj.onc.1210251] [PMID: 17237808]
[50]
Matozaki, T.; Murata, Y.; Saito, Y.; Okazawa, H.; Ohnishi, H. Protein tyrosine phosphatase SHP-2: a proto-oncogene product that promotes Ras activation. Cancer Sci., 2009, 100(10), 1786-1793.
[http://dx.doi.org/10.1111/j.1349-7006.2009.01257.x] [PMID: 19622105]
[51]
Chaturvedi, R.; Asim, M.; Romero-Gallo, J.; Barry, D.P.; Hoge, S.; de Sablet, T.; Delgado, A.G.; Wroblewski, L.E.; Piazuelo, M.B.; Yan, F.; Israel, D.A.; Casero, R.A., Jr; Correa, P.; Gobert, A.P.; Polk, D.B.; Peek, R.M., Jr; Wilson, K.T. Spermine oxidase mediates the gastric cancer risk associated with Helicobacter pylori CagA. Gastroenterology, 2011, 141(5), 1696-1708.
[http://dx.doi.org/10.1053/j.gastro.2011.07.045] [PMID: 21839041]
[52]
Lara-Tejero, M.; Galán, J.E. A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I-like protein. Science, 2000, 290(5490), 354-357.
[http://dx.doi.org/10.1126/science.290.5490.354] [PMID: 11030657]
[53]
Bergounioux, J.; Elisee, R.; Prunier, A.L.; Donnadieu, F.; Sperandio, B.; Sansonetti, P.; Arbibe, L. Calpain activation by the Shigella flexneri effector VirA regulates key steps in the formation and life of the bacterium’s epithelial niche. Cell Host Microbe, 2012, 11(3), 240-252.
[http://dx.doi.org/10.1016/j.chom.2012.01.013] [PMID: 22423964]
[54]
Rubinstein, M.R.; Wang, X.; Liu, W.; Hao, Y.; Cai, G.; Han, Y.W. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe, 2013, 14(2), 195-206.
[http://dx.doi.org/10.1016/j.chom.2013.07.012] [PMID: 23954158]
[55]
Wu, S.; Rhee, K.J.; Zhang, M.; Franco, A.; Sears, C.L. Bacteroides fragilis toxin stimulates intestinal epithelial cell shedding and gamma-secretase-dependent E-cadherin cleavage. J. Cell Sci., 2007, 120(Pt 11), 1944-1952.
[http://dx.doi.org/10.1242/jcs.03455] [PMID: 17504810]
[56]
Goodwin, A.C.; Destefano Shields, C.E.; Wu, S.; Huso, D.L.; Wu, X.; Murray-Stewart, T.R.; Hacker-Prietz, A.; Rabizadeh, S.; Woster, P.M.; Sears, C.L.; Casero, R.A., Jr Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc. Natl. Acad. Sci. USA, 2011, 108(37), 15354-15359.
[http://dx.doi.org/10.1073/pnas.1010203108] [PMID: 21876161]
[57]
Lu, R.; Wu, S.; Zhang, Y.G.; Xia, Y.; Liu, X.; Zheng, Y.; Chen, H.; Schaefer, K.L.; Zhou, Z.; Bissonnette, M.; Li, L.; Sun, J. Enteric bacterial protein AvrA promotes colonic tumorigenesis and activates colonic beta-catenin signaling pathway. Oncogenesis, 2014, 3 , e105.
[http://dx.doi.org/10.1038/oncsis.2014.20] [PMID: 24911876]
[58]
Huycke, M.M.; Moore, D.; Joyce, W.; Wise, P.; Shepard, L.; Kotake, Y.; Gilmore, M.S. Extracellular superoxide production by Enterococcus faecalis requires demethylmenaquinone and is attenuated by functional terminal quinol oxidases. Mol. Microbiol., 2001, 42(3), 729-740.
[http://dx.doi.org/10.1046/j.1365-2958.2001.02638.x] [PMID: 11722738]
[59]
Gur, C.; Ibrahim, Y.; Isaacson, B.; Yamin, R.; Abed, J.; Gamliel, M.; Enk, J.; Bar-On, Y.; Stanietsky-Kaynan, N.; Coppenhagen-Glazer, S.; Shussman, N.; Almogy, G.; Cuapio, A.; Hofer, E.; Mevorach, D.; Tabib, A.; Ortenberg, R.; Markel, G.; Miklić, K.; Jonjic, S.; Brennan, C.A.; Garrett, W.S.; Bachrach, G.; Mandelboim, O. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity, 2015, 42(2), 344-355.
[http://dx.doi.org/10.1016/j.immuni.2015.01.010] [PMID: 25680274]
[60]
Plottel, C.S.; Blaser, M.J. Microbiome and malignancy. Cell Host Microbe, 2011, 10(4), 324-335.
[http://dx.doi.org/10.1016/j.chom.2011.10.003] [PMID: 22018233]
[61]
Doisneau-Sixou, S.F.; Sergio, C.M.; Carroll, J.S.; Hui, R.; Musgrove, E.A.; Sutherland, R.L. Estrogen and antiestrogen regulation of cell cycle progression in breast cancer cells. Endocr. Relat. Cancer, 2003, 10(2), 179-186.
[http://dx.doi.org/10.1677/erc.0.0100179] [PMID: 12790780]
[62]
Peek, R.M., Jr; Crabtree, J.E. Helicobacter infection and gastric neoplasia. J. Pathol., 2006, 208(2), 233-248.
[http://dx.doi.org/10.1002/path.1868] [PMID: 16362989]
[63]
Aviles-Jimenez, F.; Vazquez-Jimenez, F.; Medrano-Guzman, R.; Mantilla, A.; Torres, J. Stomach microbiota composition varies between patients with non-atrophic gastritis and patients with intestinal type of gastric cancer. Sci. Rep., 2014, 4, 4202.
[http://dx.doi.org/10.1038/srep04202] [PMID: 24569566]
[64]
Eun, C.S.; Eun, B.K.; Han, D.S. Differences in gastric mucosal microbiota profiling in patients with chronic gastritis, intestinal metaplasia, and gastric cancer using pyrosequencing methods. Helicobacter, 2014, 19, 407-416.
[65]
Coker, O.O.; Dai, Z.; Nie, Y.; Zhao, G.; Cao, L.; Nakatsu, G.; Wu, W.K.; Wong, S.H.; Chen, Z.; Sung, J.J.Y.; Yu, J. Mucosal microbiome dysbiosis in gastric carcinogenesis. Gut, 2018, 67(6), 1024-1032.
[http://dx.doi.org/10.1136/gutjnl-2017-314281] [PMID: 28765474]
[66]
Lichtenstein, P.; Holm, N.V.; Verkasalo, P.K.; Iliadou, A.; Kaprio, J.; Koskenvuo, M.; Pukkala, E.; Skytthe, A.; Hemminki, K. Environmental and heritable factors in the causation of cancer-analyses of cohorts of twins from Sweden, Denmark, and Finland. N. Engl. J. Med., 2000, 343(2), 78-85.
[http://dx.doi.org/10.1056/NEJM200007133430201] [PMID: 10891514]
[67]
Foulkes, W.D. Inherited susceptibility to common cancers. N. Engl. J. Med., 2008, 359(20), 2143-2153.
[http://dx.doi.org/10.1056/NEJMra0802968] [PMID: 19005198]
[68]
Munro, M.J.; Wickremesekera, S.K.; Peng, L.; Tan, S.T.; Itinteang, T. Cancer stem cells in colorectal cancer: a review. J. Clin. Pathol., 2018, 71(2), 110-116.
[http://dx.doi.org/10.1136/jclinpath-2017-204739] [PMID: 28942428]
[69]
Wong, S.H.; Yu, J. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat. Rev. Gastroenterol. Hepatol., 2019, 16(11), 690-704.
[http://dx.doi.org/10.1038/s41575-019-0209-8] [PMID: 31554963]
[70]
Cremonesi, E.; Governa, V.; Garzon, J.F.G.; Mele, V.; Amicarella, F.; Muraro, M.G.; Trella, E.; Galati-Fournier, V.; Oertli, D.; Däster, S.R.; Droeser, R.A.; Weixler, B.; Bolli, M.; Rosso, R.; Nitsche, U.; Khanna, N.; Egli, A.; Keck, S.; Slotta-Huspenina, J.; Terracciano, L.M.; Zajac, P.; Spagnoli, G.C.; Eppenberger-Castori, S.; Janssen, K.P.; Borsig, L.; Iezzi, G. Gut microbiota modulate T cell trafficking into human colorectal cancer. Gut, 2018, 67(11), 1984-1994.
[http://dx.doi.org/10.1136/gutjnl-2016-313498] [PMID: 29437871]
[71]
Park, C.H.; Eun, C.S.; Han, D.S. Intestinal microbiota, chronic inflammation, and colorectal cancer. Intest. Res., 2018, 16(3), 338-345.
[http://dx.doi.org/10.5217/ir.2018.16.3.338] [PMID: 30090032]
[72]
Wu, S.; Rhee, K.J.; Albesiano, E.; Rabizadeh, S.; Wu, X.; Yen, H.R.; Huso, D.L.; Brancati, F.L.; Wick, E.; McAllister, F.; Housseau, F.; Pardoll, D.M.; Sears, C.L. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med., 2009, 15(9), 1016-1022.
[http://dx.doi.org/10.1038/nm.2015] [PMID: 19701202]
[73]
Cuevas-Ramos, G.; Petit, C.R.; Marcq, I.; Boury, M.; Oswald, E.; Nougayrède, J.P. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc. Natl. Acad. Sci. USA, 2010, 107(25), 11537-11542.
[http://dx.doi.org/10.1073/pnas.1001261107] [PMID: 20534522]
[74]
Castellarin, M.; Warren, R.L.; Freeman, J.D.; Dreolini, L.; Krzywinski, M.; Strauss, J.; Barnes, R.; Watson, P.; Allen-Vercoe, E.; Moore, R.A.; Holt, R.A. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res., 2012, 22(2), 299-306.
[http://dx.doi.org/10.1101/gr.126516.111] [PMID: 22009989]
[75]
McCoy, A.N.; Araújo-Pérez, F.; Azcárate-Peril, A.; Yeh, J.J.; Sandler, R.S.; Keku, T.O. Fusobacterium is associated with colorectal adenomas. PLoS One, 2013, 8(1) , e53653.
[http://dx.doi.org/10.1371/journal.pone.0053653] [PMID: 23335968]
[76]
Yang, Y.; Weng, W.; Peng, J.; Hong, L.; Yang, L.; Toiyama, Y.; Gao, R.; Liu, M.; Yin, M.; Pan, C.; Li, H.; Guo, B.; Zhu, Q.; Wei, Q.; Moyer, M.P.; Wang, P.; Cai, S.; Goel, A.; Qin, H.; Ma, Y. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear factor-κB, and up-regulating expression of MicroRNA-21. Gastroenterology, 2017, 152(4), 851-866.
[http://dx.doi.org/10.1053/j.gastro.2016.11.018] [PMID: 27876571]
[77]
Yu, T.C.; Guo, F.; Yu, Y.; Sun, T. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell, 2017, 170, 548-563.
[78]
Dejea, C.M.; Fathi, P.; Craig, J.M.; Boleij, A.; Taddese, R.; Geis, A.L.; Wu, X.; DeStefano Shields, C.E.; Hechenbleikner, E.M.; Huso, D.L.; Anders, R.A.; Giardiello, F.M.; Wick, E.C.; Wang, H.; Wu, S.; Pardoll, D.M.; Housseau, F.; Sears, C.L. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science, 2018, 359(6375), 592-597.
[http://dx.doi.org/10.1126/science.aah3648] [PMID: 29420293]
[79]
Arthur, J.C.; Perez-Chanona, E.; Mühlbauer, M.; Tomkovich, S.; Uronis, J.M.; Fan, T.J.; Campbell, B.J.; Abujamel, T.; Dogan, B.; Rogers, A.B.; Rhodes, J.M.; Stintzi, A.; Simpson, K.W.; Hansen, J.J.; Keku, T.O.; Fodor, A.A.; Jobin, C. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science, 2012, 338(6103), 120-123.
[http://dx.doi.org/10.1126/science.1224820] [PMID: 22903521]
[80]
Ogura, Y.; Bonen, D.K.; Inohara, N.; Nicolae, D.L.; Chen, F.F.; Ramos, R.; Britton, H.; Moran, T.; Karaliuskas, R.; Duerr, R.H.; Achkar, J.P.; Brant, S.R.; Bayless, T.M.; Kirschner, B.S.; Hanauer, S.B.; Nuñez, G.; Cho, J.H. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature, 2001, 411(6837), 603-606.
[http://dx.doi.org/10.1038/35079114] [PMID: 11385577]
[81]
Hugot, J.P.; Chamaillard, M.; Zouali, H.; Lesage, S.; Cézard, J.P.; Belaiche, J.; Almer, S.; Tysk, C.; O’Morain, C.A.; Gassull, M.; Binder, V.; Finkel, Y.; Cortot, A.; Modigliani, R.; Laurent-Puig, P.; Gower-Rousseau, C.; Macry, J.; Colombel, J.F.; Sahbatou, M.; Thomas, G. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature, 2001, 411(6837), 599-603.
[http://dx.doi.org/10.1038/35079107] [PMID: 11385576]
[82]
Franchimont, D.; Vermeire, S.; El Housni, H.; Pierik, M.; Van Steen, K.; Gustot, T.; Quertinmont, E.; Abramowicz, M.; Van Gossum, A.; Devière, J.; Rutgeerts, P. Deficient host-bacteria interactions in inflammatory bowel disease? The Toll-Like Receptor (TLR)-4 Asp299gly polymorphism is associated with Crohn’s disease and ulcerative colitis. Gut, 2004, 53(7), 987-992.
[http://dx.doi.org/10.1136/gut.2003.030205] [PMID: 15194649]
[83]
Fox, J.G.; Feng, Y.; Theve, E.J.; Raczynski, A.R.; Fiala, J.L.; Doernte, A.L.; Williams, M.; McFaline, J.L.; Essigmann, J.M.; Schauer, D.B.; Tannenbaum, S.R.; Dedon, P.C.; Weinman, S.A.; Lemon, S.M.; Fry, R.C.; Rogers, A.B. Gut microbes define liver cancer risk in mice exposed to chemical and viral transgenic hepatocarcinogens. Gut, 2010, 59(1), 88-97.
[http://dx.doi.org/10.1136/gut.2009.183749] [PMID: 19850960]
[84]
Fatima, N.; Akhtar, T.; Sheikh, N. Prebiotics: a novel approach to treat hepatocellular carcinoma. Can. J. Gastroenterol. Hepatol., 2017, 2017 , 6238106.
[http://dx.doi.org/10.1155/2017/6238106] [PMID: 28573132]
[85]
Plaza-Díaz, J.; Álvarez-Mercado, A.I.; Ruiz-Marín, C.M.; Reina-Pérez, I.; Pérez-Alonso, A.J.; Sánchez-Andujar, M.B.; Torné, P.; Gallart-Aragón, T.; Sánchez-Barrón, M.T.; Reyes Lartategui, S.; García, F.; Chueca, N.; Moreno-Delgado, A.; Torres-Martínez, K.; Sáez-Lara, M.J.; Robles-Sánchez, C.; Fernández, M.F.; Fontana, L. Association of breast and gut microbiota dysbiosis and the risk of breast cancer: a case-control clinical study. BMC Cancer, 2019, 19(1), 495.
[http://dx.doi.org/10.1186/s12885-019-5660-y] [PMID: 31126257]
[86]
Buchta Rosean, C.; Bostic, R.R.; Ferey, J.C.M.; Feng, T.Y.; Azar, F.N.; Tung, K.S.; Dozmorov, M.G.; Smirnova, E.; Bos, P.D.; Rutkowski, M.R. Pre-existing commensal dysbiosis is a host-intrinsic regulator of tissue inflammation and tumor cell dissemination in hormone receptor-positive breast cancer. Cancer Res., 2019, 79(14), 3662-3675.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-3464] [PMID: 31064848]
[87]
Ingman, W.V. The gut microbiome: a new player in breast cancer metastasis. Cancer Res., 2019, 79(14), 3539-3541.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-1698] [PMID: 31308136]
[88]
Hieken, T.J.; Chen, J.; Hoskin, T.L.; Walther-Antonio, M.; Johnson, S.; Ramaker, S.; Xiao, J.; Radisky, D.C.; Knutson, K.L.; Kalari, K.R.; Yao, J.Z.; Baddour, L.M.; Chia, N.; Degnim, A.C. The microbiome of aseptically collected human breast tissue in benign and malignant disease. Sci. Rep., 2016, 6, 30751.
[http://dx.doi.org/10.1038/srep30751] [PMID: 27485780]
[89]
Urbaniak, C.; Gloor, G.B.; Brackstone, M.; Scott, L.; Tangney, M.; Reid, G. The microbiota of breast tissue and its association with breast cancer. Appl. Environ. Microbiol., 2016, 82(16), 5039-5048.
[http://dx.doi.org/10.1128/AEM.01235-16] [PMID: 27342554]
[90]
Fernández, M.F.; Reina-Pérez, I.; Astorga, J.M.; Rodríguez-Carrillo, A.; Plaza-Díaz, J.; Fontana, L. Breast cancer and its relationship with the microbiota. Int. J. Environ. Res. Public Health, 2018, 15(8), 1747.
[http://dx.doi.org/10.3390/ijerph15081747] [PMID: 30110974]
[91]
Barroso-Sousa, R.; Teles, L.T. Gut microbiome and breast cancer in the era of cancer immunotherapy. Curr. Breast Cancer Rep., 2019, 11, 272-276.
[http://dx.doi.org/10.1007/s12609-019-00346-y]
[92]
Eslami-S, Z.; Majidzadeh-A, K.; Halvaei, S.; Babapirali, F.; Esmaeili, R. Microbiome and breast cancer: new role for an ancient ppulation. Front. Oncol., 2020, 10, 120.
[http://dx.doi.org/10.3389/fonc.2020.00120] [PMID: 32117767]
[93]
De Spiegeleer, B.; Verbeke, F.; D’Hondt, M.; Hendrix, A.; Van De Wiele, C.; Burvenich, C.; Peremans, K.; De Wever, O.; Bracke, M.; Wynendaele, E. The quorum sensing peptides PhrG, CSP and EDF promote angiogenesis and invasion of breast cancer cells in vitro. PLoS One, 2015, 10(3) , e0119471.
[http://dx.doi.org/10.1371/journal.pone.0119471] [PMID: 25780927]
[94]
Kaaks, R.; Rinaldi, S.; Key, T.J.; Berrino, F.; Peeters, P.H.; Biessy, C.; Dossus, L.; Lukanova, A.; Bingham, S.; Khaw, K.T.; Allen, N.E.; Bueno-de-Mesquita, H.B.; van Gils, C.H.; Grobbee, D.; Boeing, H.; Lahmann, P.H.; Nagel, G.; Chang-Claude, J.; Clavel-Chapelon, F.; Fournier, A.; Thiébaut, A.; González, C.A.; Quirós, J.R.; Tormo, M.J.; Ardanaz, E.; Amiano, P.; Krogh, V.; Palli, D.; Panico, S.; Tumino, R.; Vineis, P.; Trichopoulou, A.; Kalapothaki, V.; Trichopoulos, D.; Ferrari, P.; Norat, T.; Saracci, R.; Riboli, E. Postmenopausal serum androgens, oestrogens and breast cancer risk: the European prospective investigation into cancer and nutrition. Endocr. Relat. Cancer, 2005, 12(4), 1071-1082.
[http://dx.doi.org/10.1677/erc.1.01038] [PMID: 16322344]
[95]
Baker, J.M.; Al-Nakkash, L.; Herbst-Kralovetz, M.M. Estrogen-gut microbiome axis: physiological and clinical implications. Maturitas, 2017, 103, 45-53.
[http://dx.doi.org/10.1016/j.maturitas.2017.06.025] [PMID: 28778332]
[96]
Falk, R.T.; Brinton, L.A.; Dorgan, J.F.; Fuhrman, B.J.; Veenstra, T.D.; Xu, X.; Gierach, G.L. Relationship of serum estrogens and estrogen metabolites to postmenopausal breast cancer risk: a nested case-control study. Breast Cancer Res., 2013, 15(2), R34.
[http://dx.doi.org/10.1186/bcr3416] [PMID: 23607871]
[97]
Landete, J.M.; Arqués, J.; Medina, M.; Gaya, P.; de Las Rivas, B.; Muñoz, R. Bioactivation of phytoestrogens: intestinal bacteria and health. Crit. Rev. Food Sci. Nutr., 2016, 56(11), 1826-1843.
[http://dx.doi.org/10.1080/10408398.2013.789823] [PMID: 25848676]
[98]
Buck, K.; Zaineddin, A.K.; Vrieling, A.; Linseisen, J.; Chang-Claude, J. Meta-analyses of lignans and enterolignans in relation to breast cancer risk. Am. J. Clin. Nutr., 2010, 92(1), 141-153.
[http://dx.doi.org/10.3945/ajcn.2009.28573] [PMID: 20463043]
[99]
Zaineddin, A.K.; Vrieling, A.; Buck, K.; Becker, S.; Linseisen, J.; Flesch-Janys, D.; Kaaks, R.; Chang-Claude, J. Serum enterolactone and postmenopausal breast cancer risk by estrogen, progesterone and herceptin 2 receptor status. Int. J. Cancer, 2012, 130(6), 1401-1410.
[http://dx.doi.org/10.1002/ijc.26157] [PMID: 21544804]
[100]
Yaghjyan, L.; Colditz, G.A. Estrogens in the breast tissue: a systematic review. Cancer Causes Control, 2011, 22(4), 529-540.
[http://dx.doi.org/10.1007/s10552-011-9729-4] [PMID: 21286801]
[101]
Fuhrman, B.J.; Feigelson, H.S.; Flores, R.; Gail, M.H.; Xu, X.; Ravel, J.; Goedert, J.J. Associations of the fecal microbiome with urinary estrogens and estrogen metabolites in postmenopausal women. J. Clin. Endocrinol. Metab., 2014, 99(12), 4632-4640.
[http://dx.doi.org/10.1210/jc.2014-2222] [PMID: 25211668]
[102]
Benakis, C.; Martin-Gallausiaux, C.; Trezzi, J-P.; Melton, P.; Liesz, A.; Wilmes, P. The microbiome-gut-brain axis in acute and chronic brain diseases. Curr. Opin. Neurobiol., 2020, 61, 1-9.
[http://dx.doi.org/10.1016/j.conb.2019.11.009] [PMID: 31812830]
[103]
Sampson, T.R.; Mazmanian, S.K. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe, 2015, 17(5), 565-576.
[http://dx.doi.org/10.1016/j.chom.2015.04.011] [PMID: 25974299]
[104]
Chu, C.; Murdock, M.H.; Jing, D.; Won, T.H.; Chung, H.; Kressel, A.M.; Tsaava, T.; Addorisio, M.E.; Putzel, G.G.; Zhou, L.; Bessman, N.J.; Yang, R.; Moriyama, S.; Parkhurst, C.N.; Li, A.; Meyer, H.C.; Teng, F.; Chavan, S.S.; Tracey, K.J.; Regev, A.; Schroeder, F.C.; Lee, F.S.; Liston, C.; Artis, D. The microbiota regulate neuronal function and fear extinction learning. Nature, 2019, 574(7779), 543-548.
[http://dx.doi.org/10.1038/s41586-019-1644-y] [PMID: 31645720]
[105]
Gieryng, A.; Pszczolkowska, D.; Walentynowicz, K.A.; Rajan, W.D.; Kaminska, B. Immune microenvironment of gliomas. Lab. Invest., 2017, 97(5), 498-518.
[http://dx.doi.org/10.1038/labinvest.2017.19] [PMID: 28287634]
[106]
Mehrian-Shai, R.; Reichardt, J.K.V.; Harris, C.C.; Toren, A. The gut-brain aaxis, paving the way to brain cancer. Trends Cancer, 2019, 5(4), 200-207.
[http://dx.doi.org/10.1016/j.trecan.2019.02.008] [PMID: 30961828]
[107]
Hambardzumyan, D.; Gutmann, D.H.; Kettenmann, H. The role of microglia and macrophages in glioma maintenance and progression. Nat. Neurosci., 2016, 19(1), 20-27.
[http://dx.doi.org/10.1038/nn.4185] [PMID: 26713745]
[108]
Hussain, S.F.; Yang, D.; Suki, D.; Aldape, K.; Grimm, E.; Heimberger, A.B. The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. Neuro-oncol., 2006, 8(3), 261-279.
[http://dx.doi.org/10.1215/15228517-2006-008] [PMID: 16775224]
[109]
Poli, A.; Kmiecik, J.; Domingues, O.; Hentges, F.; Bléry, M.; Chekenya, M.; Boucraut, J.; Zimmer, J. NK cells in central nervous system disorders. J. Immunol., 2013, 190(11), 5355-5362.
[http://dx.doi.org/10.4049/jimmunol.1203401] [PMID: 23687193]
[110]
Braganhol, E.; Kukulski, F.; Lévesque, S.A.; Fausther, M.; Lavoie, E.G.; Zanotto-Filho, A.; Bergamin, L.S.; Pelletier, J.; Bahrami, F.; Ben Yebdri, F.; Fonseca Moreira, J.C.; Battastini, A.M.; Sévigny, J. Nucleotide receptors control IL-8/CXCL8 and MCP-1/CCL2 secretions as well as proliferation in human glioma cells. Biochim. Biophys. Acta, 2015, 1852(1), 120-130.
[http://dx.doi.org/10.1016/j.bbadis.2014.10.014] [PMID: 25445541]
[111]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[112]
McFarland, B.C.; Hong, S.W.; Rajbhandari, R.; Twitty, G.B., Jr; Gray, G.K.; Yu, H.; Benveniste, E.N.; Nozell, S.E. NF-κB-induced IL-6 ensures STAT3 activation and tumor aggressiveness in glioblastoma. PLoS One, 2013, 8(11) , e78728.
[http://dx.doi.org/10.1371/journal.pone.0078728] [PMID: 24244348]
[113]
Gibson, G.R.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr., 1995, 125(6), 1401-1412.
[http://dx.doi.org/10.1093/jn/125.6.1401] [PMID: 7782892]
[114]
Bindels, L.B.; Delzenne, N.M.; Cani, P.D.; Walter, J. Towards a more comprehensive concept for prebiotics. Nat. Rev. Gastroenterol. Hepatol., 2015, 12(5), 303-310.
[http://dx.doi.org/10.1038/nrgastro.2015.47] [PMID: 25824997]
[115]
Gibson, G.R.; Hutkins, R.; Sanders, M.E.; Prescott, S.L.; Reimer, R.A.; Salminen, S.J.; Scott, K.; Stanton, C.; Swanson, K.S.; Cani, P.D.; Verbeke, K.; Reid, G. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol., 2017, 14(8), 491-502.
[http://dx.doi.org/10.1038/nrgastro.2017.75] [PMID: 28611480]
[116]
Vandeputte, D.; Falony, G.; Vieira-Silva, S.; Wang, J.; Sailer, M.; Theis, S.; Verbeke, K.; Raes, J. Prebiotic inulin-type fructans induce specific changes in the human gut microbiota. Gut, 2017, 66(11), 1968-1974.
[http://dx.doi.org/10.1136/gutjnl-2016-313271] [PMID: 28213610]
[117]
Codex Alimentarius Committee. Guidelines on nutrition labeling CAC/GL 2- 1985 as last amended 2010, 2010.
[118]
Florowska, A.; Krygier, K.; Florowski, T.; Dłużewska, E. Prebiotics as functional food ingredients preventing diet-related diseases. Food Funct., 2016, 7, 2147-2155.
[http://dx.doi.org/10.1039/C5FO01459J]
[119]
Tzounis, X.; Rodriguez-Mateos, A.; Vulevic, J.; Gibson, G.R.; Kwik-Uribe, C.; Spencer, J.P. Prebiotic evaluation of cocoa-derived flavanols in healthy humans by using a randomized, controlled, double-blind, crossover intervention study. Am. J. Clin. Nutr., 2011, 93(1), 62-72.
[http://dx.doi.org/10.3945/ajcn.110.000075] [PMID: 21068351]
[120]
Khangwal, I.; Shukla, P. Potential prebiotics and their transmission mechanisms: recent approaches. Yao Wu Shi Pin Fen Xi, 2019, 27(3), 649-656.
[http://dx.doi.org/10.1016/j.jfda.2019.02.003] [PMID: 31324281]
[121]
Manning, T.S.; Gibson, G.R. Microbial-gut interactions in health and disease. Prebiotics. Best Pract. Res. Clin. Gastroenterol., 2004, 18(2), 287-298.
[http://dx.doi.org/10.1016/j.bpg.2003.10.008] [PMID: 15123070]
[122]
Bornet, F.R.; Brouns, F.; Tashiro, Y.; Duvillier, V. Nutritional aspects of short-chain fructooligosaccharides: natural occurrence, chemistry, physiology and health implications. Dig. Liver Dis., 2002, 34(Suppl. 2), S111-S120.
[http://dx.doi.org/10.1016/S1590-8658(02)80177-3] [PMID: 12408453]
[123]
Neeraj, G.; Ravi, S.; Somdutt, R. Immobilized inulinase: a new horizon of paramount importance driving the production of sweetener and prebiotics. Crit. Rev. Biotechnol., 2018, 38, 409-422.
[124]
Clarke, S.T.; Green-Johnson, J.M.; Brooks, S.P.; Ramdath, D.D.; Bercik, P.; Avila, C.; Inglis, G.D.; Green, J.; Yanke, L.J.; Selinger, L.B.; Kalmokoff, M. β2-1 Fructan supplementation alters host immune responses in a manner consistent with increased exposure to microbial components: results from a double-blinded, randomised, cross-over study in healthy adults. Br. J. Nutr., 2016, 115(10), 1748-1759.
[http://dx.doi.org/10.1017/S0007114516000908] [PMID: 26987626]
[125]
Lomax, A.R.; Cheung, L.V.; Noakes, P.S.; Miles, E.A.; Calder, P.C. Inulin-type β-2-1 fructans have some effect on the antibody response to seasonal influenza vaccination in healthy middle-aged humans. Front. Immunol., 2015, 6, 490.
[http://dx.doi.org/10.3389/fimmu.2015.00490] [PMID: 26441994]
[126]
Quezada, M.P.; Salinas, C.; Gotteland, M.; Cardemil, L. Acemannan and fructans from aloe vera (aloe barbadensis miller) plants as novel prebiotics. J. Agric. Food Chem., 2017, 65, 10029-39.
[127]
Duarte, F.N.D.; Rodrigues, J.B.; da Costa Lima, M.; Lima, M. Potential prebiotic properties of cashew apple (Anacardium occidentale L.) agro-industrial byproduct on Lactobacillus species. J. Sci. Food Agric., 2017, 97, 3712-3719.
[128]
Terada, A.; Hara, H.; Kataoka, M.; Mitsuoka, T. Effect of lactulose on the composition and metabolic activity of the human faecal flora. Microb. Ecol. Health Dis., 1992, 5, 43-50.
[129]
O’Bryan, C.A.; Pak, D.; Crandall, P.G.; Lee, S.O.; Ricke, S.C. The role of prebiotics and probiotics in human health. J. Prob. Health, 2013, 1, 108.
[http://dx.doi.org/10.4172/2329-8901.1000108]
[130]
Moure, A.; Gullón, P.; Domínguez, H.; Parajó, J.C. Advances in the manufacture, purification and applications of xylo-oligosaccharides as food additives and nutraceuticals. Process Biochem., 2006, 41, 1913-1923.
[http://dx.doi.org/10.1016/j.procbio.2006.05.011]
[131]
Samanta, S. Microbial pectinases: a review on molecular and biotechnological perspectives. J. Microbiol. Biotechnol. Food Sci., 2019, 9(2), 248-266.
[http://dx.doi.org/10.15414/jmbfs.2019.9.2.248-266]
[132]
Tian, T.; Freeman, S.; Corey, M.; German, J.B.; Barile, D. Chemical characterization of potentially prebiotic oligosaccharides in brewed coffee and spent coffee grounds. J. Agric. Food Chem., 2017, 65, 2784-92.
[http://dx.doi.org/10.1021/acs.jafc.6b04716]
[133]
Okolie, C.L.; Rajendran, C.K.; Udenigwem, C.C.; Aryee, A.N.A.; Mason, B. Prospects of brown seaweed polysaccharides (BSP) as prebiotics and potential immunomodulators. J. Food Biochem., 2017, 41 , e12392.
[http://dx.doi.org/10.1111/jfbc.12392]
[134]
Macfarlane, S.; Macfarlane, G.T.; Cummings, J.H. Review article: prebiotics in the gastrointestinal tract. Aliment. Pharmacol. Ther., 2006, 24(5), 701-714.
[http://dx.doi.org/10.1111/j.1365-2036.2006.03042.x] [PMID: 16918875]
[135]
Depeint, F.; Tzortzis, G.; Vulevic, J.; I’anson, K.; Gibson, G.R. Prebiotic evaluation of a novel galactooligosaccharide mixture produced by the enzymatic activity of Bifidobacterium bifidum NCIMB 41171, in healthy humans: a randomized, double-blind, crossover, placebo-controlled intervention study. Am. J. Clin. Nutr., 2008, 87(3), 785-791.
[http://dx.doi.org/10.1093/ajcn/87.3.785] [PMID: 18326619]
[136]
Fanaro, S.; Boehm, G.; Garssen, J.; Knol, J.; Mosca, F.; Stahl, B.; Vigi, V. Galacto-oligosaccharides and long-chain fructo-oligosaccharides as prebiotics in infant formulas: a review. Acta Paediatr. Suppl., 2005, 94(449), 22-26.
[http://dx.doi.org/10.1111/j.1651-2227.2005.tb02150.x] [PMID: 16214761]
[137]
Vulevic, J.; Juric, A.; Walton, G.E.; Claus, S.P.; Tzortzis, G.; Toward, R.E.; Gibson, G.R. Influence of galacto-oligosaccharide mixture (B-GOS) on gut microbiota, immune parameters and metabonomics in elderly persons. Br. J. Nutr., 2015, 114(4), 586-595.
[http://dx.doi.org/10.1017/S0007114515001889] [PMID: 26218845]
[138]
Silvi, S.; Rumney, C.J.; Cresci, A.; Rowland, I.R. Resistant starch modifies gut microflora and microbial metabolism in human flora-associated rats inoculated with faeces from Italian and UK donors. J. Appl. Microbiol., 1999, 86(3), 521-530.
[http://dx.doi.org/10.1046/j.1365-2672.1999.00696.x] [PMID: 10196757]
[139]
Birt, D.F.; Boylston, T.; Hendrich, S.; Jane, J.L.; Hollis, J.; Li, L.; McClelland, J.; Moore, S.; Phillips, G.J.; Rowling, M.; Schalinske, K.; Scott, M.P.; Whitley, E.M. Resistant starch: promise for improving human health. Adv. Nutr., 2013, 4(6), 587-601.
[http://dx.doi.org/10.3945/an.113.004325] [PMID: 24228189]
[140]
Wang, X.; Conway, P.L.; Brown, I.L.; Evans, A.J. In vitro utilization of amylopectin and high-amylose maize (Amylomaize) starch granules by human colonic bacteria. Appl. Environ. Microbiol., 1999, 65(11), 4848-4854.
[http://dx.doi.org/10.1128/AEM.65.11.4848-4854.1999] [PMID: 10543795]
[141]
Topping, D.L.; Clifton, P.M. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol. Rev., 2001, 81(3), 1031-1064.
[http://dx.doi.org/10.1152/physrev.2001.81.3.1031] [PMID: 11427691]
[142]
Blacher, E.; Levy, M.; Tatirovsky, E.; Elinav, E. Microbiome-modulated metabolites at the interface of host immunity. J. Immunol., 2017, 198(2), 572-580.
[http://dx.doi.org/10.4049/jimmunol.1601247] [PMID: 28069752]
[143]
Louis, P.; Duncan, S.H.; McCrae, S.I.; Millar, J.; Jackson, M.S.; Flint, H.J. Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J. Bacteriol., 2004, 186(7), 2099-2106.
[http://dx.doi.org/10.1128/JB.186.7.2099-2106.2004] [PMID: 15028695]
[144]
Zhu, Y.; Liu, X.; Yang, S.T. Construction and characterization of pta gene-deleted mutant of Clostridium tyrobutyricum for enhanced butyric acid fermentation. Biotechnol. Bioeng., 2005, 90(2), 154-166.
[http://dx.doi.org/10.1002/bit.20354] [PMID: 15759261]
[145]
Duncan, S.H.; Hold, G.L.; Barcenilla, A.; Stewart, C.S.; Flint, H.J. Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from human faeces. Int. J. Syst. Evol. Microbiol., 2002, 52(Pt 5), 1615-1620.
[PMID: 12361264]
[146]
Belenguer, A.; Duncan, S.H.; Calder, A.G.; Holtrop, G.; Louis, P.; Lobley, G.E.; Flint, H.J. Two routes of metabolic cross-feeding between Bifidobacterium adolescentis and butyrate-producing anaerobes from the human gut. Appl. Environ. Microbiol., 2006, 72(5), 3593-3599.
[http://dx.doi.org/10.1128/AEM.72.5.3593-3599.2006] [PMID: 16672507]
[147]
Lockyer, S.; Nugent, A.P. Health effects of resistant starch. Nutr. Bull., 2017, 42(1), 10-41.
[http://dx.doi.org/10.1111/nbu.12244]
[148]
Macfarlane, S.; Macfarlane, G.T. Regulation of short-chain fatty acid production. Proc. Nutr. Soc., 2003, 62(1), 67-72.
[http://dx.doi.org/10.1079/PNS2002207] [PMID: 12740060]
[149]
Clarke, J.M.; Young, G.P.; Topping, D.L.; Bird, A.R.; Cobiac, L.; Scherer, B.L.; Winkler, J.G.; Lockett, T.J. Butyrate delivered by butyrylated starch increases distal colonic epithelial apoptosis in carcinogen-treated rats. Carcinogenesis, 2012, 33(1), 197-202.
[http://dx.doi.org/10.1093/carcin/bgr254] [PMID: 22080572]
[150]
Zhang, S.; Hu, H.; Wang, L.; Liu, F.; Pan, S. Preparation and prebiotic potential of pectin oligosaccharides obtained from citrus peel pectin. Food Chem., 2018, 244, 232-237.
[http://dx.doi.org/10.1016/j.foodchem.2017.10.071]
[151]
Khodaei, N.; Karboune, S. Optimization of enzymatic production of prebiotic galacto/galacto (arabino)-oligosaccharides and oligomers from potato rhamnogalacturonan. I. Carbohydr. Polym., 2018, 181, 1153-1159.
[152]
Mohanan, N.; Satyanarayana, T. Amylases.In Encyclopedia of Microbiology (Fourth Edition); Elsevier Pub., 2019, pp. 107-126.
[153]
Kaur, N.; Gupta, A.K. Applications of inulin and oligofructose in health and nutrition. J. Biosci., 2002, 27(7), 703-714.
[http://dx.doi.org/10.1007/BF02708379] [PMID: 12571376]
[154]
Nair, K.K.; Kharb, S.; Thompkinson, D.K. Inulin dietary fiber with functional and health attributes- a review. Food Rev. Int., 2010, 26, 189-203.
[http://dx.doi.org/10.1080/87559121003590664]
[155]
Yadav, R.; Shukla, P. An overview of advanced technologies for selection of probiotics and their expediency: a review. Crit. Rev. Food Sci. Nutr., 2017, 57, 3233-42.
[http://dx.doi.org/10.1080/10408398.2015.1108957]
[156]
Morishita, Y.; Oowada, T.; Ozaki, A.; Mizutani, T. Galactooligosaccharide in combination with Bifidobacterium and Bacteroides affects the population of Clostridium perfringens in the intestine of gnotobiotic mice. Nutr. Res., 2002, 22, 1333-1341.
[http://dx.doi.org/10.1016/S0271-5317(02)00455-4]
[157]
Olano-Martin, E.; Gibson, G.R.; Rastell, R.A. Comparison of the in vitro bifidogenic properties of pectins and pectic-oligosaccharides. J. Appl. Microbiol., 2002, 93(3), 505-511.
[http://dx.doi.org/10.1046/j.1365-2672.2002.01719.x] [PMID: 12174051]
[158]
Lecerf, J.M.; Dépeint, F.; Clerc, E.; Dugenet, Y.; Niamba, C.N.; Rhazi, L.; Cayzeele, A.; Abdelnour, G.; Jaruga, A.; Younes, H.; Jacobs, H.; Lambrey, G.; Abdelnour, A.M.; Pouillart, P.R. Xylo-oligosaccharide (XOS) in combination with inulin modulates both the intestinal environment and immune status in healthy subjects, while XOS alone only shows prebiotic properties. Br. J. Nutr., 2012, 108(10), 1847-1858.
[http://dx.doi.org/10.1017/S0007114511007252] [PMID: 22264499]
[159]
Mano, M.C.R.; Neri-Numa, I.A.; da Silva, J.B. Oligosaccharide biotechnology: an approach of prebiotic revolution on the industry. Appl. Microbiol. Biotechnol., 2018, 102, 17-37.
[http://dx.doi.org/10.1007/s00253-017-8564-2]
[160]
Lamsal, B.P.; Faubion, J.M. The beneficial use of cereal and cereal components in probiotic foods. Food Rev. Int., 2009, 25, 103-114.
[http://dx.doi.org/10.1080/87559120802682573]
[161]
Zhou, A.L.; Hergert, N.; Rompato, G.; Lefevre, M. Whole grain oats improve insulin sensitivity and plasma cholesterol profile and modify gut microbiota composition in C57BL/6J mice. J. Nutr., 2015, 145(2), 222-230.
[http://dx.doi.org/10.3945/jn.114.199778] [PMID: 25644341]
[162]
Préstamo, G.; Pedrazuela, A.; Peñas, E.; Lasunción, M.; Arroyo, G. Role of buckwheat diet on rats as prebiotic and healthy food. Nutr. Res., 2003, 23(6), 803-814.
[http://dx.doi.org/10.1016/S0271-5317(03)00074-5]
[163]
Carvalho-Wells, A.L.; Helmolz, K.; Nodet, C.; Molzer, C.; Leonard, C.; McKevith, B.; Thielecke, F.; Jackson, K.G.; Tuohy, K.M. Determination of the in vivo prebiotic potential of a maize-based whole grain breakfast cereal: a human feeding study. Br. J. Nutr., 2010, 104(9), 1353-1356.
[http://dx.doi.org/10.1017/S0007114510002084] [PMID: 20487589]
[164]
Gogineni, V.K.; Morrow, L.E.; Gregory, P.J.; Malesker, M.A. Probiotics: history and evolution. J. Anc. Dis. Prev. Rem, 2013, 1(2)
[http://dx.doi.org/10.4172/2329-8731.1000107]
[165]
Lilly, D.M.; Stillwell, R.H. Probiotics. Growth promoting factors produced by micro-organisms. Science, 1965, 147(3659), 747-748.
[http://dx.doi.org/10.1126/science.147.3659.747] [PMID: 14242024]
[166]
Parker, R.B. The other half of the antibiotic story. Anim. Nutr. Health, 1974, 29, 4-8.
[167]
Schrezenmeir, J.; de Vrese, M. Probiotics, prebiotics, and synbiotics-approaching a definition. Am. J. Clin. Nutr., 2001, 73(2)(Suppl.), 361S-364S.
[http://dx.doi.org/10.1093/ajcn/73.2.361s] [PMID: 11157342]
[168]
Sanders, M.E. Probiotics: definition, sources, selection, and uses. Clin. Infect. Dis., 2008, 46(Suppl. 2), S58-S61.
[http://dx.doi.org/10.1086/523341] [PMID: 18181724]
[169]
Food and Agriculture Organization of the United Nations and World Health Organization. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. World HealthOrganization,, 2001.http://www.who.int/foodsafety/publications/fs_management/en/probiotics.pdf
[170]
Quigley, E.M.M. Microbiome-directed therapies: past, present, and future. Clin. Gastroenterol. Hepatol., 2019, 17, 333-344.
[http://dx.doi.org/10.1016/j.cgh.2018.09.028] [PMID: 30267869]
[171]
Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; Calder, P.C.; Sanders, M.E. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol., 2014, 11(8), 506-514.
[http://dx.doi.org/10.1038/nrgastro.2014.66] [PMID: 24912386]
[172]
Lebeer, S.; Vanderleyden, J.; De Keersmaecker, S.C.J. Genes and molecules of lactobacilli supporting probiotic action. Microbiol. Mol. Biol. Rev., 2008, 72(4), 728-764.
[http://dx.doi.org/10.1128/MMBR.00017-08] [PMID: 19052326]
[173]
Flint, H.J.; Duncan, S.H.; Scott, K.P.; Louis, P. Interactions and competition within the microbial community of the human colon: links between diet and health. Environ. Microbiol., 2007, 9(5), 1101-1111.
[http://dx.doi.org/10.1111/j.1462-2920.2007.01281.x] [PMID: 17472627]
[174]
Davani-Davari, D.; Negahdaripour, M.; Karimzadeh, I.; Seifan, M. Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods, 2019, 8, 92.
[175]
Barrangou, R.; Altermann, E.; Hutkins, R.; Cano, R.; Klaenhammer, T.R. Functional and comparative genomic analyses of an operon involved in fructooligosaccharide utilization by Lactobacillus acidophilus. Proc. Natl. Acad. Sci. USA, 2003, 100(15), 8957-8962.
[http://dx.doi.org/10.1073/pnas.1332765100] [PMID: 12847288]
[176]
Goh, Y.J.; Zhang, C.; Benson, A.K.; Schlegel, V.; Lee, J.H.; Hutkins, R.W. Identification of a putative operon involved in fructooligosaccharide utilization by Lactobacillus paracasei. Appl. Environ. Microbiol., 2006, 72(12), 7518-7530.
[http://dx.doi.org/10.1128/AEM.00877-06] [PMID: 17028235]
[177]
Saulnier, D.M.; Molenaar, D.; de Vos, W.M.; Gibson, G.R.; Kolida, S. Identification of prebiotic fructooligosaccharide metabolism in Lactobacillus plantarum WCFS1 through microarrays. Appl. Environ. Microbiol., 2007, 73(6), 1753-1765.
[http://dx.doi.org/10.1128/AEM.01151-06] [PMID: 17261521]
[178]
Falony, G.; Vlachou, A.; Verbrugghe, K.; De Vuyst, L. Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Appl. Environ. Microbiol., 2006, 72(12), 7835-7841.
[http://dx.doi.org/10.1128/AEM.01296-06] [PMID: 17056678]
[179]
Duncan, S.H.; Louis, P.; Thomson, J.M.; Flint, H.J. The role of pH in determining the species composition of the human colonic microbiota. Environ. Microbiol., 2009, 11(8), 2112-2122.
[http://dx.doi.org/10.1111/j.1462-2920.2009.01931.x] [PMID: 19397676]
[180]
Gibson, G.R.; Probert, H.M.; Loo, J.V.; Rastall, R.A.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr. Res. Rev., 2004, 17(2), 259-275.
[http://dx.doi.org/10.1079/NRR200479] [PMID: 19079930]
[181]
Scott, K.P.; Gratz, S.W.; Sheridan, P.O.; Flint, H.J.; Duncan, S.H. The influence of diet on the gut microbiota. Pharmacol. Res., 2013, 69, 52-60.
[http://dx.doi.org/10.1016/j.phrs.2012.10.020]
[182]
Huda-Faujan, N.; Abdulamir, A.S.; Fatimah, A.B.; Anas, O.M.; Shuhaimi, M.; Yazid, A.M.; Loong, Y.Y. The impact of the level of the intestinal short chain Fatty acids in inflammatory bowel disease patients versus healthy subjects. Open Biochem. J., 2010, 4, 53-58.
[http://dx.doi.org/10.2174/1874091X01004010053] [PMID: 20563285]
[183]
Wang, H.B.; Wang, P.Y.; Wang, X.; Wan, Y.L.; Liu, Y.C. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription. Dig. Dis. Sci., 2012, 57(12), 3126-3135.
[http://dx.doi.org/10.1007/s10620-012-2259-4] [PMID: 22684624]
[184]
Ritzhaupt, A.; Wood, I.S.; Ellis, A.; Hosie, K.B.; Shirazi-Beechey, S.P. Identification and characterization of a monocarboxylate transporter (MCT1) in pig and human colon: its potential to transport L-lactate as well as butyrate. J. Physiol., 1998, 513(Pt 3), 719-732.
[http://dx.doi.org/10.1111/j.1469-7793.1998.719ba.x] [PMID: 9824713]
[185]
Chang, P.V.; Hao, L.; Offermanns, S.; Medzhitov, R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc. Natl. Acad. Sci. USA, 2014, 111(6), 2247-2252.
[http://dx.doi.org/10.1073/pnas.1322269111] [PMID: 24390544]
[186]
Buda, A.; Qualtrough, D.; Jepson, M.A.; Martines, D.; Paraskeva, C.; Pignatelli, M. Butyrate downregulates alpha2beta1 integrin: a possible role in the induction of apoptosis in colorectal cancer cell lines. Gut, 2003, 52(5), 729-734.
[http://dx.doi.org/10.1136/gut.52.5.729] [PMID: 12692060]
[187]
Klampfer, L.; Huang, J.; Sasazuki, T.; Shirasawa, S.; Augenlicht, L. Inhibition of interferon gamma signaling by the short chain fatty acid butyrate. Mol. Cancer Res., 2003, 1(11), 855-862.
[PMID: 14517348]
[188]
Schwab, M.; Reynders, V.; Ulrich, S.; Zahn, N.; Stein, J.; Schröder, O. PPARgamma is a key target of butyrate-induced caspase-3 activation in the colorectal cancer cell line Caco-2. Apoptosis, 2006, 11(10), 1801-1811.
[http://dx.doi.org/10.1007/s10495-006-9788-2] [PMID: 16927016]
[189]
Vieira, A.T.; Teixeira, M.M.; Martins, F.S. The role of probiotics and prebiotics in inducing gut immunity. Front. Immunol., 2013, 4, 445.
[http://dx.doi.org/10.3389/fimmu.2013.00445] [PMID: 24376446]
[190]
Brown, A.J.; Goldsworthy, S.M.; Barnes, A.A.; Eilert, M.M.; Tcheang, L.; Daniels, D.; Muir, A.I.; Wigglesworth, M.J.; Kinghorn, I.; Fraser, N.J.; Pike, N.B.; Strum, J.C.; Steplewski, K.M.; Murdock, P.R.; Holder, J.C.; Marshall, F.H.; Szekeres, P.G.; Wilson, S.; Ignar, D.M.; Foord, S.M.; Wise, A.; Dowell, S.J. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem., 2003, 278(13), 11312-11319.
[http://dx.doi.org/10.1074/jbc.M211609200] [PMID: 12496283]
[191]
Maslowski, K.M.; Vieira, A.T.; Ng, A.; Kranich, J.; Sierro, F.; Yu, D.; Schilter, H.C.; Rolph, M.S.; Mackay, F.; Artis, D.; Xavier, R.J.; Teixeira, M.M.; Mackay, C.R. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature, 2009, 461(7268), 1282-1286.
[http://dx.doi.org/10.1038/nature08530] [PMID: 19865172]
[192]
Smith, P.M.; Howitt, M.R.; Panikov, N.; Michaud, M.; Gallini, C.A.; Bohlooly-Y, M.; Glickman, J.N.; Garrett, W.S. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science, 2013, 341(6145), 569-573.
[http://dx.doi.org/10.1126/science.1241165] [PMID: 23828891]
[193]
Singh, N.; Gurav, A.; Sivaprakasam, S.; Brady, E.; Padia, R.; Shi, H.; Thangaraju, M.; Prasad, P.D.; Manicassamy, S.; Munn, D.H.; Lee, J.R.; Offermanns, S.; Ganapathy, V. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity, 2014, 40(1), 128-139.
[http://dx.doi.org/10.1016/j.immuni.2013.12.007] [PMID: 24412617]
[194]
Furusawa, Y.; Obata, Y.; Fukuda, S.; Endo, T.A.; Nakato, G.; Takahashi, D.; Nakanishi, Y.; Uetake, C.; Kato, K.; Kato, T.; Takahashi, M.; Fukuda, N.N.; Murakami, S.; Miyauchi, E.; Hino, S.; Atarashi, K.; Onawa, S.; Fujimura, Y.; Lockett, T.; Clarke, J.M.; Topping, D.L.; Tomita, M.; Hori, S.; Ohara, O.; Morita, T.; Koseki, H.; Kikuchi, J.; Honda, K.; Hase, K.; Ohno, H. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature, 2013, 504(7480), 446-450.
[http://dx.doi.org/10.1038/nature12721] [PMID: 24226770]
[195]
Fung, K.Y.; Cosgrove, L.; Lockett, T.; Head, R.; Topping, D.L. A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. Br. J. Nutr., 2012, 108(5), 820-831.
[http://dx.doi.org/10.1017/S0007114512001948] [PMID: 22676885]
[196]
Malcomson, F.C.; Willis, N.D.; Mathers, J.C. Is resistant starch protective against colorectal cancer via modulation of the WNT signalling pathway? Proc. Nutr. Soc., 2015, 74(3), 282-291.
[http://dx.doi.org/10.1017/S002966511500004X] [PMID: 25697451]
[197]
Holzapfel, W.H.; Haberer, P.; Geisen, R.; Björkroth, J.; Schillinger, U. Taxonomy and important features of probiotic microorganisms in food and nutrition. Am. J. Clin. Nutr., 2001, 73(2)(Suppl.), 365S-373S.
[http://dx.doi.org/10.1093/ajcn/73.2.365s] [PMID: 11157343]
[198]
Klein, G.; Pack, A.; Bonaparte, C.; Reuter, G. Taxonomy and physiology of probiotic lactic acid bacteria.. Int. J. Food Microbiol, 1998, 41(2), 03-125.
[http://dx.doi.org/10.1016/S0168-1605(98)00049-X]
[199]
Nazir, Y.; Hussain, S.A.; Abdul Hamid, A.; Song, Y.Y. Probiotics and their potential preventive and therapeutic role for cancer, high serum cholesterol, and allergic and HIV diseases. BioMed Res. Int., 2018, 2018 , 3428437.
[http://dx.doi.org/10.1155/2018/3428437] [PMID: 30246019]
[200]
Dubey, A.P.; Rajeshwari, K.; Chakravarty, A.; Famularo, G. Use of VSL[sharp]3 in the treatment of rotavirus diarrhea in children: preliminary results. J. Clin. Gastroenterol., 2008, 42(Suppl. 3 Pt 1), S126-S129.
[http://dx.doi.org/10.1097/MCG.0b013e31816fc2f6] [PMID: 18806703]
[201]
Miele, E.; Pascarella, F.; Giannetti, E.; Quaglietta, L.; Baldassano, R.N.; Staiano, A. Effect of a probiotic preparation (VSL#3) on induction and maintenance of remission in children with ulcerative colitis. Am. J. Gastroenterol., 2009, 104(2), 437-443.
[http://dx.doi.org/10.1038/ajg.2008.118] [PMID: 19174792]
[202]
Dong, J.; Teng, G.; Wei, T.; Gao, W.; Wang, H. Methodological quality assessment of meta-analyses and systematic reviews of probiotics in inflammatory bowel disease and pouchitis. PLoS One, 2016, 11(12) , e0168785.
[http://dx.doi.org/10.1371/journal.pone.0168785] [PMID: 28005973]
[203]
Ma, E.L.; Choi, Y.J.; Choi, J.; Pothoulakis, C.; Rhee, S.H.; Im, E. The anticancer effect of probiotic Bacillus polyfermenticus on human colon cancer cells is mediated through ErbB2 and ErbB3 inhibition. Int. J. Cancer, 2010, 127(4), 780-790.
[PMID: 19876926]
[204]
El-Nezami, H.S.; Polychronaki, N.N.; Ma, J.; Zhu, H.; Ling, W.; Salminen, E.K.; Juvonen, R.O.; Salminen, S.J.; Poussa, T.; Mykkänen, H.M. Probiotic supplementation reduces a biomarker for increased risk of liver cancer in young men from Southern China. Am. J. Clin. Nutr., 2006, 83(5), 1199-1203.
[http://dx.doi.org/10.1093/ajcn/83.5.1199] [PMID: 16685066]
[205]
Toi, M.; Hirota, S.; Tomotaki, A.; Sato, N.; Hozumi, Y.; Anan, K.; Nagashima, T.; Tokuda, Y.; Masuda, N.; Ohsumi, S.; Ohno, S.; Takahashi, M.; Hayashi, H.; Yamamoto, S.; Ohashi, Y. Probiotic beverage with soy isoflavone consumption for breast cancer prevention: a case-control study. Curr. Nutr. Food Sci., 2013, 9(3), 194-200.
[http://dx.doi.org/10.2174/15734013113099990001] [PMID: 23966890]
[206]
Ohashi, Y.; Nakai, S.; Tsukamoto, T.; Masumori, N.; Akaza, H.; Miyanaga, N.; Kitamura, T.; Kawabe, K.; Kotake, T.; Kuroda, M.; Naito, S.; Koga, H.; Saito, Y.; Nomata, K.; Kitagawa, M.; Aso, Y. Habitual intake of lactic acid bacteria and risk reduction of bladder cancer. Urol. Int., 2002, 68(4), 273-280.
[http://dx.doi.org/10.1159/000058450] [PMID: 12053032]
[207]
Nami, Y.; Haghshenas, B.; Haghshenas, M.; Abdullah, N.; Yari Khosroushahi, A. The prophylactic effect of probiotic Enterococcus lactis IW5 against different human cancer cells. Front. Microbiol., 2015, 6, 1317.
[http://dx.doi.org/10.3389/fmicb.2015.01317] [PMID: 26635778]
[208]
Lee, J.W.; Shin, J.G.; Kim, E.H.; Kang, H.E.; Yim, I.B.; Kim, J.Y.; Joo, H.G.; Woo, H.J. Immunomodulatory and antitumor effects in vivo by the cytoplasmic fraction of Lactobacillus casei and Bifidobacterium longum. J. Vet. Sci., 2004, 5(1), 41-48.
[http://dx.doi.org/10.4142/jvs.2004.5.1.41] [PMID: 15028884]
[209]
Russo, F.; Orlando, A.; Linsalata, M.; Cavallini, A.; Messa, C. Effects of Lactobacillus rhamnosus GG on the cell growth and polyamine metabolism in HGC-27 human gastric cancer cells. Nutr. Cancer, 2007, 59(1), 106-114.
[http://dx.doi.org/10.1080/01635580701365084] [PMID: 17927509]
[210]
Orlando, A.; Refolo, M.G.; Messa, C.; Amati, L.; Lavermicocca, P.; Guerra, V.; Russo, F. Antiproliferative and proapoptotic effects of viable or heat-killed Lactobacillus paracasei IMPC2.1 and Lactobacillus rhamnosus GG in HGC-27 gastric and DLD-1 colon cell lines. Nutr. Cancer, 2012, 64(7), 1103-1111.
[http://dx.doi.org/10.1080/01635581.2012.717676] [PMID: 23061912]
[211]
Kim, Y.; Lee, D.; Kim, D.; Cho, J.; Yang, J.; Chung, M.; Kim, K.; Ha, N. Inhibition of proliferation in colon cancer cell lines and harmful enzyme activity of colon bacteria by Bifidobacterium adolescentis SPM0212. Arch. Pharm. Res., 2008, 31(4), 468-473.
[http://dx.doi.org/10.1007/s12272-001-1180-y] [PMID: 18449504]
[212]
Kim, Y.; Oh, S.; Yun, H.S.; Oh, S.; Kim, S.H. Cell-bound exopolysaccharide from probiotic bacteria induces autophagic cell death of tumour cells. Lett. Appl. Microbiol., 2010, 51(2), 123-130.
[http://dx.doi.org/10.1111/j.1472-765X.2010.02859.x] [PMID: 20536712]
[213]
Borowicki, A.; Michelmann, A.; Stein, K.; Scharlau, D.; Scheu, K.; Obst, U.; Glei, M. Fermented wheat aleurone enriched with probiotic strains LGG and Bb12 modulates markers of tumor progression in human colon cells. Nutr. Cancer, 2011, 63(1), 151-160.
[PMID: 21161821]
[214]
Stein, K.; Borowicki, A.; Scharlau, D.; Schettler, A.; Scheu, K.; Obst, U.; Glei, M. Effects of synbiotic fermentation products on primary chemoprevention in human colon cells. J. Nutr. Biochem., 2012, 23(7), 777-784.
[http://dx.doi.org/10.1016/j.jnutbio.2011.03.022] [PMID: 21840698]
[215]
Cousin, F.J.; Jouan-Lanhouet, S.; Dimanche-Boitrel, M-T.; Corcos, L.; Jan, G. Milk fermented by Propionibacterium freudenreichii induces apoptosis of HGT-1 human gastric cancer cells. PLoS One, 2012, 7(3) , e31892.
[http://dx.doi.org/10.1371/journal.pone.0031892] [PMID: 22442660]
[216]
Cha, M.K.; Lee, D.K.; An, H.M.; Lee, S.W.; Shin, S.H.; Kwon, J.H.; Kim, K.J.; Ha, N.J. Antiviral activity of Bifidobacterium adolescentis SPM1005-A on human papillomavirus type 16. BMC Med., 2012, 10(1), 72.
[http://dx.doi.org/10.1186/1741-7015-10-72] [PMID: 22788922]
[217]
Azam, R.; Ghafouri-Fard, S.; Tabrizi, M.; Modarressi, M.H.; Ebrahimzadeh-Vesal, R.; Daneshvar, M.; Mobasheri, M.B.; Motevaseli, E. Lactobacillus acidophilus and Lactobacillus crispatus culture supernatants downregulate expression of cancer-testis genes in the MDA-MB-231 cell line. Asian Pac. J. Cancer Prev., 2014, 15(10), 4255-4259.
[http://dx.doi.org/10.7314/APJCP.2014.15.10.4255] [PMID: 24935380]
[218]
Ghoneum, M.; Gimzewski, J. Apoptotic effect of a novel kefir product, PFT, on multidrug-resistant myeloid leukemia cells via a hole-piercing mechanism. Int. J. Oncol., 2014, 44(3), 830-837.
[http://dx.doi.org/10.3892/ijo.2014.2258] [PMID: 24430613]
[219]
Oh, Y.; Osato, M.S.; Han, X.; Bennett, G.; Hong, W.K. Folk yoghurt kills Helicobacter pylori. J. Appl. Microbiol., 2002, 93(6), 1083-1088.
[http://dx.doi.org/10.1046/j.1365-2672.2002.01779.x] [PMID: 12452966]
[220]
Chen, X.; Liu, X-M.; Tian, F.; Zhang, Q.; Zhang, H.P.; Zhang, H.; Chen, W. Antagonistic activities of lactobacilli against Helicobacter pylori growth and infection in human gastric epithelial cells. J. Food Sci., 2012, 77(1), M9-M14.
[http://dx.doi.org/10.1111/j.1750-3841.2011.02498.x] [PMID: 22181017]
[221]
Makras, L.; Triantafyllou, V.; Fayol-Messaoudi, D.; Adriany, T.; Zoumpopoulou, G.; Tsakalidou, E.; Servin, A.; De Vuyst, L. Kinetic analysis of the antibacterial activity of probiotic lactobacilli towards Salmonella enterica serovar Typhimurium reveals a role for lactic acid and other inhibitory compounds. Res. Microbiol., 2006, 157(3), 241-247.
[http://dx.doi.org/10.1016/j.resmic.2005.09.002] [PMID: 16266797]
[222]
Nielsen, D.S.; Cho, G-S.; Hanak, A.; Huch, M.; Franz, C.M.A.P.; Arneborg, N. The effect of bacteriocin-producing Lactobacillus plantarum strains on the intracellular pH of sessile and planktonic Listeria monocytogenes single cells. Int. J. Food Microbiol., 2010, 141(Suppl. 1), S53-S59.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2010.03.040] [PMID: 20447709]
[223]
Li, J.; Sung, C.Y.; Lee, N.; Ni, Y.; Pihlajamäki, J.; Panagiotou, G.; El-Nezami, H. Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. Proc. Natl. Acad. Sci. USA, 2016, 113(9), E1306-E1315.
[http://dx.doi.org/10.1073/pnas.1518189113] [PMID: 26884164]
[224]
Roy, S.; Trinchieri, G. Microbiota: a key orchestrator of cancer therapy. Nat. Rev. Cancer, 2017, 17(5), 271-285.
[http://dx.doi.org/10.1038/nrc.2017.13] [PMID: 28303904]
[225]
Bermudez-Brito, M.; Plaza-Díaz, J.; Muñoz-Quezada, S.; Gómez-Llorente, C.; Gil, A. Probiotic mechanisms of action. Ann. Nutr. Metab., 2012, 61(2), 160-174.
[http://dx.doi.org/10.1159/000342079] [PMID: 23037511]
[226]
Monteagudo-Mera, A.; Rastall, R.A.; Gibson, G.R.; Charalampopoulos, D.; Chatzifragkou, A. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl. Microbiol. Biotechnol., 2019, 103(16), 6463-6472.
[http://dx.doi.org/10.1007/s00253-019-09978-7] [PMID: 31267231]
[227]
Larsson, J.M.H.; Karlsson, H.; Crespo, J.G.; Johansson, M.E.; Eklund, L.; Sjövall, H.; Hansson, G.C. Altered O-glycosylation profile of MUC2 mucin occurs in active ulcerative colitis and is associated with increased inflammation. Inflamm. Bowel Dis., 2011, 17(11), 2299-2307.
[http://dx.doi.org/10.1002/ibd.21625] [PMID: 21290483]
[228]
Sommer, F.; Adam, N.; Johansson, M.E.V.; Xia, L.; Hansson, G.C.; Bäckhed, F. Altered mucus glycosylation in core 1 O-glycan-deficient mice affects microbiota composition and intestinal architecture. PLoS One, 2014, 9(1) , e85254.
[http://dx.doi.org/10.1371/journal.pone.0085254] [PMID: 24416370]
[229]
Lebeer, S.; Vanderleyden, J.; De Keersmaecker, S.C.J. Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat. Rev. Microbiol., 2010, 8(3), 171-184.
[http://dx.doi.org/10.1038/nrmicro2297] [PMID: 20157338]
[230]
Popowska, M.; Krawczyk-Balska, A.; Ostrowski, R.; Desvaux, M. InlL from Listeria monocytogenes is involved in biofilm formation and adhesion to mucin. Front. Microbiol., 2017, 8, 660.
[http://dx.doi.org/10.3389/fmicb.2017.00660] [PMID: 28473809]
[231]
Van Tassell, M.L.; Miller, M.J. Lactobacillus adhesion to mucus. Nutrients, 2011, 3(5), 613-636.
[http://dx.doi.org/10.3390/nu3050613] [PMID: 22254114]
[232]
Hospenthal, M.K.; Costa, T.R.D.; Waksman, G. A comprehensive guide to pilus biogenesis in Gram-negative bacteria. Nat. Rev. Microbiol., 2017, 15(6), 365-379.
[http://dx.doi.org/10.1038/nrmicro.2017.40] [PMID: 28496159]
[233]
Piepenbrink, K.H.; Sundberg, E.J. Motility and adhesion through type IV pili in Gram-positive bacteria. Biochem. Soc. Trans., 2016, 44(6), 1659-1666.
[http://dx.doi.org/10.1042/BST20160221] [PMID: 27913675]
[234]
Reunanen, J.; von Ossowski, I.; Hendrickx, A.P.A.; Palva, A.; de Vos, W.M. Characterization of the SpaCBA pilus fibers in the probiotic Lactobacillus rhamnosus GG. Appl. Environ. Microbiol., 2012, 78(7), 2337-2344.
[http://dx.doi.org/10.1128/AEM.07047-11] [PMID: 22247175]
[235]
Hymes, J.P.; Johnson, B.R.; Barrangou, R.; Klaenhammer, T.R. Functional analysis of an S-layer-associated fibronectin-binding protein in Lactobacillus acidophilus NCFM. Appl. Environ. Microbiol., 2016, 82(9), 2676-2685.
[http://dx.doi.org/10.1128/AEM.00024-16] [PMID: 26921419]
[236]
Wang, R.; Jiang, L.; Zhang, M.; Zhao, L.; Hao, Y.; Guo, H.; Sang, Y.; Zhang, H.; Ren, F. The adhesion of Lactobacillus salivarius REN to a human intestinal epithelial cell line requires S-layer proteins. Sci. Rep., 2017, 7, 44029.
[http://dx.doi.org/10.1038/srep44029] [PMID: 28281568]
[237]
Konstantinov, S.R.; Smidt, H.; de Vos, W.M.; Bruijns, S.C.M.; Singh, S.K.; Valence, F.; Molle, D.; Lortal, S.; Altermann, E.; Klaenhammer, T.R.; van Kooyk, Y. S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc. Natl. Acad. Sci. USA, 2008, 105(49), 19474-19479.
[http://dx.doi.org/10.1073/pnas.0810305105] [PMID: 19047644]
[238]
McIntosh, G.H.; Royle, P.J.; Playne, M.J. A probiotic strain of L. acidophilus reduces DMH-induced large intestinal tumors in male Sprague-Dawley rats. Nutr. Cancer, 1999, 35(2), 153-159.
[http://dx.doi.org/10.1207/S15327914NC352_9] [PMID: 10693169]
[239]
Le Leu, R.K.; Brown, I.L.; Hu, Y.; Bird, A.R.; Jackson, M.; Esterman, A.; Young, G.P. A synbiotic combination of resistant starch and Bifidobacterium lactis facilitates apoptotic deletion of carcinogen-damaged cells in rat colon. J. Nutr., 2005, 135(5), 996-1001.
[http://dx.doi.org/10.1093/jn/135.5.996] [PMID: 15867271]
[240]
Le Leu, R.K.; Hu, Y.; Brown, I.L. Synbiotic intervention of Bifidobacterium lactis and resistant starch protects against colorectal cancer development in rats. Carcinogenesis, 2010, 31, 246-251.
[241]
Dolara, P.; Luceri, C.; De Filippo, C.; Femia, A.P.; Giovannelli, L.; Caderni, G.; Cecchini, C.; Silvi, S.; Orpianesi, C.; Cresci, A. Red wine polyphenols influence carcinogenesis, intestinal microflora, oxidative damage and gene expression profiles of colonic mucosa in F344 rats. Mutat. Res., 2005, 591(1-2), 237-246.
[http://dx.doi.org/10.1016/j.mrfmmm.2005.04.022] [PMID: 16293270]
[242]
Commane, D.; Hughes, R.; Shortt, C.; Rowland, I. The potential mechanisms involved in the anti-carcinogenic action of probiotics. Mutat. Res., 2005, 591(1-2), 276-289.
[http://dx.doi.org/10.1016/j.mrfmmm.2005.02.027] [PMID: 16095630]
[243]
Park, E.; Jeon, G-I.; Park, J-S.; Paik, H-D. A probiotic strain of Bacillus polyfermenticus reduces DMH induced precancerous lesions in F344 male rat. Biol. Pharm. Bull., 2007, 30(3), 569-574.
[http://dx.doi.org/10.1248/bpb.30.569] [PMID: 17329858]
[244]
de Moreno de LeBlanc, A.; Perdigón, G. Reduction of β-glucuronidase and nitroreductase activity by yoghurt in a murine colon cancer model. Biocell, 2005, 29(1), 15-24.
[PMID: 15954463]
[245]
D’Argenio, V. The prenatal microbiome: a new player for human health. High Throughput, 2018, 7(4), 38.
[http://dx.doi.org/10.3390/ht7040038] [PMID: 30544936]
[246]
Eberl, G.; Marmon, S.; Sunshine, M.J.; Rennert, P.D.; Choi, Y.; Littman, D.R. An essential function for the nuclear receptor RORgamma(t) in the generation of fetal lymphoid tissue inducer cells. Nat. Immunol., 2004, 5(1), 64-73.
[http://dx.doi.org/10.1038/ni1022] [PMID: 14691482]
[247]
Lipp, M.; Müller, G. Lymphoid organogenesis: getting the green light from RORgamma(t). Nat. Immunol., 2004, 5(1), 12-14.
[http://dx.doi.org/10.1038/ni0104-12] [PMID: 14699400]
[248]
He, Y.W. Orphan nuclear receptors in T lymphocyte development. J. Leukoc. Biol., 2002, 72(3), 440-446.
[PMID: 12223510]
[249]
Jetten, A.M.; Joo, J.H. Retinoid-related Orphan Receptors (RORs): roles in cellular differentiation and development. Adv. Dev. Biol., 2006, 16, 313-355.
[http://dx.doi.org/10.1016/S1574-3349(06)16010-X] [PMID: 18418469]
[250]
Jetten, A.M. Retinoid-related Orphan Receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism. Nucl. Recept. Signal., 2009, 7 , e003.
[http://dx.doi.org/10.1621/nrs.07003] [PMID: 19381306]
[251]
Eberl, G.; Littman, D.R. The role of the nuclear hormone receptor RORgammat in the development of lymph nodes and Peyer’s patches. Immunol. Rev., 2003, 195, 81-90.
[http://dx.doi.org/10.1034/j.1600-065X.2003.00074.x] [PMID: 12969312]
[252]
Cupedo, T.; Crellin, N.K.; Papazian, N.; Rombouts, E.J.; Weijer, K.; Grogan, J.L.; Fibbe, W.E.; Cornelissen, J.J.; Spits, H. Human fetal lymphoid tissue-inducer cells are interleukin 17-producing precursors to RORC+ CD127+ natural killer-like cells. Nat. Immunol., 2009, 10(1), 66-74.
[http://dx.doi.org/10.1038/ni.1668] [PMID: 19029905]
[253]
Cupedo, T.; Mebius, R.E. Cellular interactions in lymph node development. J. Immunol., 2005, 174(1), 21-25.
[http://dx.doi.org/10.4049/jimmunol.174.1.21] [PMID: 15611222]
[254]
Stary, G.; Olive, A.; Radovic-Moreno, A.F.; Gondek, D.; Alvarez, D.; Basto, P.A.; Perro, M.; Vrbanac, V.D.; Tager, A.M.; Shi, J.; Yethon, J.A.; Farokhzad, O.C.; Langer, R.; Starnbach, M.N.; von Andrian, U.H. VACCINES. A mucosal vaccine against Chlamydia trachomatis generates two waves of protective memory T cells. Science, 2015, 348(6241) , aaa8205.
[http://dx.doi.org/10.1126/science.aaa8205] [PMID: 26089520]
[255]
Matson, V.; Fessler, J.; Bao, R.; Chongsuwat, T.; Zha, Y.; Alegre, M.L.; Luke, J.J.; Gajewski, T.F. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science, 2018, 359(6371), 104-108.
[http://dx.doi.org/10.1126/science.aao3290] [PMID: 29302014]
[256]
Chaput, N.; Lepage, P.; Coutzac, C.; Soularue, E.; Le Roux, K.; Monot, C.; Boselli, L.; Routier, E.; Cassard, L.; Collins, M.; Vaysse, T.; Marthey, L.; Eggermont, A.; Asvatourian, V.; Lanoy, E.; Mateus, C.; Robert, C.; Carbonnel, F. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann. Oncol., 2017, 28(6), 1368-1379.
[http://dx.doi.org/10.1093/annonc/mdx108] [PMID: 28368458]
[257]
Frankel, A.E.; Coughlin, L.A.; Kim, J.; Froehlich, T.W.; Xie, Y.; Frenkel, E.P.; Koh, A.Y. Metagenomic shotgun sequencing and unbiased metabolomic profiling identify specific human gut microbiota and metabolites associated with immune checkpoint therapy efficacy in melanoma patients. Neoplasia, 2017, 19(10), 848-855.
[http://dx.doi.org/10.1016/j.neo.2017.08.004] [PMID: 28923537]
[258]
Gopalakrishnan, V.; Spencer, C.N.; Nezi, L.; Reuben, A.; Andrews, M.C.; Karpinets, T.V.; Prieto, P.A.; Vicente, D.; Hoffman, K.; Wei, S.C.; Cogdill, A.P.; Zhao, L.; Hudgens, C.W.; Hutchinson, D.S.; Manzo, T.; Petaccia de Macedo, M.; Cotechini, T.; Kumar, T.; Chen, W.S.; Reddy, S.M.; Szczepaniak Sloane, R.; Galloway-Pena, J.; Jiang, H.; Chen, P.L.; Shpall, E.J.; Rezvani, K.; Alousi, A.M.; Chemaly, R.F.; Shelburne, S.; Vence, L.M.; Okhuysen, P.C.; Jensen, V.B.; Swennes, A.G.; McAllister, F.; Marcelo Riquelme Sanchez, E.; Zhang, Y.; Le Chatelier, E.; Zitvogel, L.; Pons, N.; Austin-Breneman, J.L.; Haydu, L.E.; Burton, E.M.; Gardner, J.M.; Sirmans, E.; Hu, J.; Lazar, A.J.; Tsujikawa, T.; Diab, A.; Tawbi, H.; Glitza, I.C.; Hwu, W.J.; Patel, S.P.; Woodman, S.E.; Amaria, R.N.; Davies, M.A.; Gershenwald, J.E.; Hwu, P.; Lee, J.E.; Zhang, J.; Coussens, L.M.; Cooper, Z.A.; Futreal, P.A.; Daniel, C.R.; Ajami, N.J.; Petrosino, J.F.; Tetzlaff, M.T.; Sharma, P.; Allison, J.P.; Jenq, R.R.; Wargo, J.A. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science, 2018, 359(6371), 97-103.
[http://dx.doi.org/10.1126/science.aan4236] [PMID: 29097493]
[259]
Routy, B.; Le Chatelier, E.; Derosa, L.; Duong, C.P.M.; Alou, M.T.; Daillère, R.; Fluckiger, A.; Messaoudene, M.; Rauber, C.; Roberti, M.P.; Fidelle, M.; Flament, C.; Poirier-Colame, V.; Opolon, P.; Klein, C.; Iribarren, K.; Mondragón, L.; Jacquelot, N.; Qu, B.; Ferrere, G.; Clémenson, C.; Mezquita, L.; Masip, J.R.; Naltet, C.; Brosseau, S.; Kaderbhai, C.; Richard, C.; Rizvi, H.; Levenez, F.; Galleron, N.; Quinquis, B.; Pons, N.; Ryffel, B.; Minard-Colin, V.; Gonin, P.; Soria, J.C.; Deutsch, E.; Loriot, Y.; Ghiringhelli, F.; Zalcman, G.; Goldwasser, F.; Escudier, B.; Hellmann, M.D.; Eggermont, A.; Raoult, D.; Albiges, L.; Kroemer, G.; Zitvogel, L. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science, 2018, 359(6371), 91-97.
[http://dx.doi.org/10.1126/science.aan3706] [PMID: 29097494]
[260]
Lakritz, J.R.; Poutahidis, T.; Levkovich, T.; Varian, B.J.; Ibrahim, Y.M.; Chatzigiagkos, A.; Mirabal, S.; Alm, E.J.; Erdman, S.E. Beneficial bacteria stimulate host immune cells to counteract dietary and genetic predisposition to mammary cancer in mice. Int. J. Cancer, 2014, 135(3), 529-540.
[http://dx.doi.org/10.1002/ijc.28702] [PMID: 24382758]
[261]
Yamazaki, K.; Tsunoda, A.; Sibusawa, M.; Tsunoda, Y.; Kusano, M.; Fukuchi, K.; Yamanaka, M.; Kushima, M.; Nomoto, K.; Morotomi, M. The effect of an oral administration of Lactobacillus casei strain shirota on azoxymethane-induced colonic aberrant crypt foci and colon cancer in the rat. Oncol. Rep., 2000, 7(5), 977-982.
[http://dx.doi.org/10.3892/or.7.5.977] [PMID: 10948325]
[262]
Takagi, A.; Matsuzaki, T.; Sato, M.; Nomoto, K.; Morotomi, M.; Yokokura, T. Enhancement of natural killer cytotoxicity delayed murine carcinogenesis by a probiotic microorganism. Carcinogenesis, 2001, 22(4), 599-605.
[http://dx.doi.org/10.1093/carcin/22.4.599] [PMID: 11285195]
[263]
Foo, N-P.; Ou Yang, H. Chiu, H-H.; Chan, H.Y.; Liao, C.C.; Yu, C.K.; Wang, Y.J.. Probiotics prevent the development of 1,2-dimethylhydrazine (DMH)-induced colonic tumorigenesis through suppressed colonic mucosa cellular proliferation and increased stimulation of macrophages. J. Agric. Food Chem., 2011, 59(24), 13337-13345.
[http://dx.doi.org/10.1021/jf203444d] [PMID: 22049926]
[264]
Lee, D.K.; Jang, S.; Kim, M.J.; Kim, J.H.; Chung, M.J.; Kim, K.J.; Ha, N.J. Anti-proliferative effects of Bifidobacterium adolescentis SPM0212 extract on human colon cancer cell lines. BMC Cancer, 2008, 8, 310.
[http://dx.doi.org/10.1186/1471-2407-8-310] [PMID: 18950540]
[265]
Rossi, M.; Mirbagheri, S.E.Y.E.D.S.; Keshavarzian, A.; Bishehsari, F. Nutraceuticals in colorectal cancer: a mechanistic approach. Eur. J. Pharmacol., 2018, 833, 396-402.
[http://dx.doi.org/10.1016/j.ejphar.2018.06.027] [PMID: 29935172]
[266]
El-Deeb, N.M.; Yassin, A.M.; Al-Madboly, L.A.; El-Hawiet, A. A novel purified Lactobacillus acidophilus 20079 exopolysaccharide, LA-EPS-20079, molecularly regulates both apoptotic and NF-κB inflammatory pathways in human colon cancer. Microb. Cell Fact., 2018, 17(1), 29.
[http://dx.doi.org/10.1186/s12934-018-0877-z] [PMID: 29466981]
[267]
Routy, B.; Gopalakrishnan, V.; Daillère, R.; Zitvogel, L.; Wargo, J.A.; Kroemer, G. The gut microbiota influences anticancer immunosurveillance and general health. Nat. Rev. Clin. Oncol., 2018, 15(6), 382-396.
[http://dx.doi.org/10.1038/s41571-018-0006-2] [PMID: 29636538]
[268]
Sivan, A.; Corrales, L.; Hubert, N.; Williams, J.B.; Aquino-Michaels, K.; Earley, Z.M.; Benyamin, F.W.; Lei, Y.M.; Jabri, B.; Alegre, M.L.; Chang, E.B.; Gajewski, T.F. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science, 2015, 350(6264), 1084-1089.
[http://dx.doi.org/10.1126/science.aac4255] [PMID: 26541606]
[269]
Vétizou, M.; Pitt, J.M.; Daillère, R.; Lepage, P.; Waldschmitt, N.; Flament, C.; Rusakiewicz, S.; Routy, B.; Roberti, M.P.; Duong, C.P.; Poirier-Colame, V.; Roux, A.; Becharef, S.; Formenti, S.; Golden, E.; Cording, S.; Eberl, G.; Schlitzer, A.; Ginhoux, F.; Mani, S.; Yamazaki, T.; Jacquelot, N.; Enot, D.P.; Bérard, M.; Nigou, J.; Opolon, P.; Eggermont, A.; Woerther, P.L.; Chachaty, E.; Chaput, N.; Robert, C.; Mateus, C.; Kroemer, G.; Raoult, D.; Boneca, I.G.; Carbonnel, F.; Chamaillard, M.; Zitvogel, L. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science, 2015, 350(6264), 1079-1084.
[http://dx.doi.org/10.1126/science.aad1329] [PMID: 26541610]
[270]
Daillère, R.; Vétizou, M.; Waldschmitt, N.; Yamazaki, T.; Isnard, C.; Poirier-Colame, V.; Duong, C.P.M.; Flament, C.; Lepage, P.; Roberti, M.P.; Routy, B.; Jacquelot, N.; Apetoh, L.; Becharef, S.; Rusakiewicz, S.; Langella, P.; Sokol, H.; Kroemer, G.; Enot, D.; Roux, A.; Eggermont, A.; Tartour, E.; Johannes, L.; Woerther, P.L.; Chachaty, E.; Soria, J.C.; Golden, E.; Formenti, S.; Plebanski, M.; Madondo, M.; Rosenstiel, P.; Raoult, D.; Cattoir, V.; Boneca, I.G.; Chamaillard, M.; Zitvogel, L. Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects. Immunity, 2016, 45(4), 931-943.
[http://dx.doi.org/10.1016/j.immuni.2016.09.009] [PMID: 27717798]
[271]
Kim, H.; Roh, H.S.; Kim, J.E.; Park, S.D.; Park, W.H.; Moon, J.Y. Compound K attenuates stromal cell-derived growth factor 1 (SDF-1)-induced migration of C6 glioma cells. Nutr. Res. Pract., 2016, 10(3), 259-264.
[http://dx.doi.org/10.4162/nrp.2016.10.3.259] [PMID: 27247721]
[272]
Malik, S.S.; Saeed, A.; Baig, M. Anticarcinogenecity of microbiota and probiotics in breast cancer. Int. J. Food Prop., 2018, 21, 655-666.
[http://dx.doi.org/10.1080/10942912.2018.1448994]
[273]
Kumar, M.; Kumar, A.; Nagpal, R.; Mohania, D.; Behare, P.; Verma, V.; Kumar, P.; Poddar, D.; Aggarwal, P.K.; Henry, C.J.; Jain, S.; Yadav, H. Cancer-preventing attributes of probiotics: an update. Int. J. Food Sci. Nutr., 2010, 61(5), 473-496.
[http://dx.doi.org/10.3109/09637480903455971] [PMID: 20187714]
[274]
Reid, G.; Sanders, M.E.; Gaskins, H.R.; Gibson, G.R.; Mercenier, A.; Rastall, R.; Roberfroid, M.; Rowland, I.; Cherbut, C.; Klaenhammer, T.R. New scientific paradigms for probiotics and prebiotics. J. Clin. Gastroenterol., 2003, 37(2), 105-118.
[http://dx.doi.org/10.1097/00004836-200308000-00004] [PMID: 12869879]
[275]
Hix, L.M.; Shi, Y.H.; Brutkiewicz, R.R.; Stein, P.L.; Wang, C.R.; Zhang, M. CD1d-expressing breast cancer cells modulate NKT cell-mediated antitumor immunity in a murine model of breast cancer metastasis. PLoS One, 2011, 6(6) , e20702.
[http://dx.doi.org/10.1371/journal.pone.0020702] [PMID: 21695190]
[276]
Synowiec, E.; Stefanska, J.; Morawiec, Z.; Blasiak, J.; Wozniak, K. Association between DNA damage, DNA repair genes variability and clinical characteristics in breast cancer patients. Mutat. Res., 2008, 648(1-2), 65-72.
[http://dx.doi.org/10.1016/j.mrfmmm.2008.09.014] [PMID: 18977234]
[277]
Jara, L.; Dubois, K.; Gaete, D.; de Mayo, T.; Ratkevicius, N.; Bravo, T.; Margarit, S.; Blanco, R.; Gómez, F.; Waugh, E.; Peralta, O.; Reyes, J.M.; Ibáñez, G.; González-Hormazábal, P. Variants in DNA double-strand break repair genes and risk of familial breast cancer in a South American population. Breast Cancer Res. Treat., 2010, 122(3), 813-822.
[http://dx.doi.org/10.1007/s10549-009-0709-2] [PMID: 20054644]
[278]
Kim, P.I.; Jung, M.Y.; Chang, Y.H.; Kim, S.; Kim, S.J.; Park, Y.H. Probiotic properties of Lactobacillus and Bifidobacterium strains isolated from porcine gastrointestinal tract. Appl. Microbiol. Biotechnol., 2007, 74(5), 1103-1111.
[http://dx.doi.org/10.1007/s00253-006-0741-7] [PMID: 17136367]
[279]
Tan, H.K.; Foo, H.L.; Loh, T.C.; Alitheen, N.B.M.; Rahim, R.A. Cytotoxic Effect of proteinaceous postbiotic metabolites produced by Lactobacillus plantarum I-UL4 cultivated in different media composition on MCF-7 breast cancer cell. Malays. J. Microbiol., 2015, 11(2), 207-214.
[280]
Hassan, Z.; Mustafa, S.; Rahim, R.A.; Isa, N.M. Anti-breast cancer effects of live, heat-killed and cytoplasmic fractions of Enterococcus faecalis and Staphylococcus hominis isolated from human breast milk. In Vitro Cell. Dev. Biol. Anim., 2016, 52(3), 337-348.
[http://dx.doi.org/10.1007/s11626-015-9978-8] [PMID: 26659392]
[281]
de Moreno, de LeBlanc, A.; Matar, C.; Theriault, C.; Perdigon, G. Effects of milk fermented by Lactobacillus helveticus R389 on immune cells associated to mammary glands in normal and a breast cancer model. Immunobiol., 2005, 210, 349-358.
[http://dx.doi.org/10.1016/j.imbio.2005.05.024]
[282]
Thirunavukkarasan, M.; Wang, C.; Rao, A.; Hind, T.; Teo, Y.R.; Siddiquee, A.A.; Goghari, M.A.I.; Kumar, A.P.; Herr, D.R. Short-chain fatty acid receptors inhibit invasive phenotypes in breast cancer cells. PLoS One, 2017, 12(10) , e0186334.
[http://dx.doi.org/10.1371/journal.pone.0186334] [PMID: 29049318]
[283]
Verma, S.; Tabb, M.M.; Blumberg, B. Activation of the steroid and xenobiotic receptor, SXR, induces apoptosis in breast cancer cells. BMC Cancer, 2009, 9, 3.
[http://dx.doi.org/10.1186/1471-2407-9-3] [PMID: 19123943]
[284]
Pondugula, S.R.; Pavek, P.; Mani, S. Pregnane X receptor and cancer:context-specificity is key. Nucl. Recept. Res.,, 2016, 3
[285]
Kovács, T.; Mikó, E.; Vida, A.; Sebő, É.; Toth, J.; Csonka, T.; Boratkó, A.; Ujlaki, G.; Lente, G.; Kovács, P.; Tóth, D.; Árkosy, P.; Kiss, B.; Méhes, G.; Goedert, J.J.; Bai, P. Cadaverine, a metabolite of the microbiome, reduces breast cancer aggressiveness through trace amino acid receptors. Sci. Rep., 2019, 9(1), 1300.
[http://dx.doi.org/10.1038/s41598-018-37664-7] [PMID: 30718646]
[286]
Mikó, E.; Vida, A.; Kovács, T.; Ujlaki, G.; Trencsényi, G.; Márton, J.; Sári, Z. Lithocholic acid, a bacterial metabolite reduces breast cancer cell proliferation and aggressiveness. Biochim. Et Biophys. Acta. (BBA)-. Bioenerg., 1859, 2018, 958-974.
[287]
Parida, S.; Sharma, D. Microbial alterations and risk factors of breast cancer: connections and mechanistic insights. Cells, 2020, 9(5), 1091.
[http://dx.doi.org/10.3390/cells9051091] [PMID: 32354130]
[288]
Iida, N.; Dzutsev, A.; Stewart, C.A.; Smith, L.; Bouladoux, N.; Weingarten, R.A.; Molina, D.A.; Salcedo, R.; Back, T.; Cramer, S.; Dai, R.M.; Kiu, H.; Cardone, M.; Naik, S.; Patri, A.K.; Wang, E.; Marincola, F.M.; Frank, K.M.; Belkaid, Y.; Trinchieri, G.; Goldszmid, R.S. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science, 2013, 342(6161), 967-970.
[http://dx.doi.org/10.1126/science.1240527] [PMID: 24264989]
[289]
Viaud, S.; Saccheri, F.; Mignot, G.; Yamazaki, T.; Daillère, R.; Hannani, D.; Enot, D.P.; Pfirschke, C.; Engblom, C.; Pittet, M.J.; Schlitzer, A.; Ginhoux, F.; Apetoh, L.; Chachaty, E.; Woerther, P.L.; Eberl, G.; Bérard, M.; Ecobichon, C.; Clermont, D.; Bizet, C.; Gaboriau-Routhiau, V.; Cerf-Bensussan, N.; Opolon, P.; Yessaad, N.; Vivier, E.; Ryffel, B.; Elson, C.O.; Doré, J.; Kroemer, G.; Lepage, P.; Boneca, I.G.; Ghiringhelli, F.; Zitvogel, L. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science, 2013, 342(6161), 971-976.
[http://dx.doi.org/10.1126/science.1240537] [PMID: 24264990]
[290]
Sharma, P.; Allison, J.P. The future of immune checkpoint therapy. Science, 2015, 348(6230), 56-61.
[http://dx.doi.org/10.1126/science.aaa8172] [PMID: 25838373]
[291]
Pitt, J.M.; Vétizou, M.; Daillère, R.; Roberti, M.P.; Yamazaki, T.; Routy, B.; Lepage, P.; Boneca, I.G.; Chamaillard, M.; Kroemer, G.; Zitvogel, L. Resistance mechanisms to immune-checkpoint blockade in cancer: tumor-intrinsic and -extrinsic factors. Immunity, 2016, 44(6), 1255-1269.
[http://dx.doi.org/10.1016/j.immuni.2016.06.001] [PMID: 27332730]
[292]
Pitt, J.M.; Vétizou, M.; Waldschmitt, N.; Kroemer, G.; Chamaillard, M.; Boneca, I.G.; Zitvogel, L. Fine-tuning cancer immunotherapy: optimizing the gut microbiome. Cancer Res., 2016, 76(16), 4602-4607.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0448] [PMID: 27474734]
[293]
Lee, H.; Lee, Y.; Kim, J.; An, J.; Lee, S.; Kong, H.; Song, Y.; Lee, C.K.; Kim, K. Modulation of the gut microbiota by metformin improves metabolic profiles in aged obese mice. Gut Microbes, 2018, 9(2), 155-165.
[http://dx.doi.org/10.1080/19490976.2017.1405209] [PMID: 29157127]
[294]
Cramer, P.; Bresalier, R.S. Gastrointestinal and hepatic complications of immune checkpoint inhibitors. Curr. Gastroenterol. Rep., 2017, 19(1), 3.
[http://dx.doi.org/10.1007/s11894-017-0540-6] [PMID: 28124291]
[295]
Pitt, J.M.; Vétizou, M.; Gomperts Boneca, I.; Lepage, P.; Chamaillard, M.; Zitvogel, L. Enhancing the clinical coverage and anticancer efficacy of immune checkpoint blockade through manipulation of the gut microbiota. OncoImmunology, 2016, 6(1) , e1132137.
[http://dx.doi.org/10.1080/2162402X.2015.1132137] [PMID: 28197360]
[296]
Ma, W.; Mao, Q.; Xia, W.; Dong, G.; Yu, C.; Jiang, F. Gut microbiota shapes the efficiency of cancer therapy. Front. Microbiol., 2019, 10, 1050.
[http://dx.doi.org/10.3389/fmicb.2019.01050] [PMID: 31293523]
[297]
Guiducci, C.; Vicari, A.P.; Sangaletti, S.; Trinchieri, G.; Colombo, M.P. Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res., 2005, 65, 3437-3446.
[298]
Stewart, C.A.; Metheny, H.; Iida, N.; Smith, L.; Hanson, M. Interferon-dependent IL-10 production by Tregs limits tumor Th17 inflammation. J. Clin. Invest., 2013, 123, 4859-4874.
[http://dx.doi.org/10.1172/JCI65180]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy