Generic placeholder image

Anti-Infective Agents

Editor-in-Chief

ISSN (Print): 2211-3525
ISSN (Online): 2211-3533

Review Article

Management of COVID-19 - A Review

Author(s): Rishabh Verma, Kanchan Devi, Farheen Fatima Qizilbash, Surajpal Verma*, Manish Vyas, Anzarul Haque and Mohamad Taleuzzaman*

Volume 20, Issue 2, 2022

Published on: 08 December, 2020

Article ID: e130621188859 Pages: 15

DOI: 10.2174/2211352518999201208201557

Price: $65

Abstract

Coronavirus disease-2019 (COVID-19) has gained much popularity not only in the Wuhan city of China but internationally also; in January 2020, the corona rapidly spread to many countries like the USA, Italy, Russia, India, Singapore, Pakistan, Thailand, Canada, Australia, England, and so on through passengers traveling to other countries.

Corona patients can be cured with synthetic drugs, traditional herbal medicines (THM), use of Vitamin D and the quarantine approach. Different allopathic medicines, herbal extracts, and vitamin D have been observed to be useful in the treatment of novel coronavirus, like Remdesivir, hydroxychloroquine, Teicoplanin, Lopinavir+ Ritonavir, Ribavirin + corticosteroids, Glycyrrhizin, Sanguisorbae radix, Acanthopanacis cortex, Sophorae radix, etc. Various antiviral drugs are used to treat COVID-19, alone or in combination with other medications like Interferon-α, Lopinavir + Ritonavir, Arbidol, corticosteroids, etc., and some herbal extracts; also quarantine approach and Vitamin D are used that not only cure the infection but also boost up our immunity.

For this review article, different papers were searched on Google Scholar, Scopus, WHO’s website, PubMed, clinicaltrials.gov and other relevant scientific research websites.

In this review article, we have discussed the current strategies that are being used to treat COVID-19. Along with allopathic drugs, some herbal extracts can also be used to treat this novel coronavirus, like Glycyrrhizin, Sanguisorbae radix, Acanthopanacis cortex, Sophorae radix, etc. and even vitamin D.

Keywords: Coronavirus disease 2019, pneumonia, vitamin D, ritonavir, glycyrrhizin, sanguisorbae radix.

Graphical Abstract
[1]
Zumla, A.; Hui, D.S.; Perlman, S. Middle East respiratory syndrome. Lancet, 2015, 386(9997), 995-1007.
[http://dx.doi.org/10.1016/S0140-6736(15)60454-8] [PMID: 26049252]
[2]
Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; Zhao, Y.; Li, Y.; Wang, X.; Peng, Z. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA, 2020, 323(11), 1061-1069.
[http://dx.doi.org/10.1001/jama.2020.1585] [PMID: 32031570]
[3]
Huynh, J.; Li, S.; Yount, B.; Smith, A.; Sturges, L.; Olsen, J.C.; Nagel, J.; Johnson, J.B.; Agnihothram, S.; Gates, J.E.; Frieman, M.B.; Baric, R.S.; Donaldson, E.F. Evidence supporting a zoonotic origin of human coronavirus strain NL63. J. Virol., 2012, 86(23), 12816-12825.
[http://dx.doi.org/10.1128/JVI.00906-12] [PMID: 22993147]
[4]
Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; Mulders, D.G.; Haagmans, B.L.; van der Veer, B.; van den Brink, S.; Wijsman, L.; Goderski, G.; Romette, J.L.; Ellis, J.; Zambon, M.; Peiris, M.; Goossens, H.; Reusken, C.; Koopmans, M.P.; Drosten, C. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill., 2020, 25(3), 1-8.
[http://dx.doi.org/10.2807/1560-7917.ES.2020.25.3.2000045] [PMID: 31992387]
[5]
Fung, T.S.; Liao, Y.; Liu, D.X. Regulation of Stress Responses and Translational Control by Coronavirus. Viruses, 2016, 8(7), 184.
[http://dx.doi.org/10.3390/v8070184] [PMID: 27384577]
[6]
Ge, H.; Wang, X.; Yuan, X.; Xiao, G.; Wang, C.; Deng, T.; Yuan, Q.; Xiao, X. The epidemiology and clinical information about COVID-19. Eur. J. Clin. Microbiol. Infect. Dis., 2020, 39(6), 1011-1019.
[http://dx.doi.org/10.1007/s10096-020-03874-z] [PMID: 32291542]
[7]
Siordia, J.A., Jr Epidemiology and clinical features of COVID-19: A review of current literature. J. Clin. Virol., 2020, 127
[http://dx.doi.org/10.1016/j.jcv.2020.104357] [PMID: 32305884]
[8]
Common- V. SARS-Associated Coronavirus N. Engl. J. Med., 2003, 1948-1951.
[9]
Dong, L.; Hu, S.; Gao, J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov. Ther., 2020, 14(1), 58-60.
[http://dx.doi.org/10.5582/ddt.2020.01012] [PMID: 32147628]
[10]
Wang, M.; Cao, R.; Zhang, L.; Yang, X.; Liu, J.; Xu, M.; Shi, Z.; Hu, Z.; Zhong, W.; Xiao, G. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res., 2020, 30(3), 269-271.
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[11]
Martinez, M.A. Compounds with Therapeutic Potential against Novel Respiratory 2019 Coronavirus. Antimicrob. Agents Chemother., 2020, 64(5), e00399-e20.
[http://dx.doi.org/10.1128/AAC.00399-20] [PMID: 32152082]
[12]
Jang, S; Rhee, JY Three cases of treatment with Nafamostat in elderly patients with COVID-19 pneumonia who need oxygen therapy. Int. J. Infect. Dis., 2020.
[http://dx.doi.org/10.1016/j.ijid.2020.05.072]
[13]
Ko, W-C.; Rolain, J-M.; Lee, N-Y.; Chen, P-L.; Huang, C-T.; Lee, P-I.; Hsueh, P.R. Arguments in favour of remdesivir for treating SARS-CoV-2 infections. Int. J. Antimicrob. Agents, 2020, 55(4)
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105933] [PMID: 32147516]
[14]
Baron, S.A.; Devaux, C.; Colson, P.; Raoult, D.; Rolain, J-M. Teicoplanin: an alternative drug for the treatment of COVID-19? Int. J. Antimicrob. Agents, 2020, 55(4), 105944.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105944] [PMID: 32179150]
[15]
de Wilde, A.H.; Jochmans, D.; Posthuma, C.C.; Zevenhoven-Dobbe, J.C.; van Nieuwkoop, S.; Bestebroer, T.M.; van den Hoogen, B.G.; Neyts, J.; Snijder, E.J. Screening of an FDA-approved compound library identifies four small-molecule inhibitors of Middle East respiratory syndrome coronavirus replication in cell culture. Antimicrob. Agents Chemother., 2014, 58(8), 4875-4884.
[http://dx.doi.org/10.1128/AAC.03011-14] [PMID: 24841269]
[16]
Dyall, J.; Coleman, C.M.; Hart, B.J.; Venkataraman, T.; Holbrook, M.R.; Kindrachuk, J.; Johnson, R.F.; Olinger, G.G., Jr; Jahrling, P.B.; Laidlaw, M.; Johansen, L.M.; Lear-Rooney, C.M.; Glass, P.J.; Hensley, L.E.; Frieman, M.B. Repurposing of clinically developed drugs for treatment of Middle East respiratory syndrome coronavirus infection. Antimicrob. Agents Chemother., 2014, 58(8), 4885-4893.
[http://dx.doi.org/10.1128/AAC.03036-14] [PMID: 24841273]
[17]
Zumla, A.; Chan, J.F.W.; Azhar, E.I.; Hui, D.S.C.; Yuen, K.Y. Coronaviruses - drug discovery and therapeutic options. Nat. Rev. Drug Discov., 2016, 15(5), 327-347.
[http://dx.doi.org/10.1038/nrd.2015.37] [PMID: 26868298]
[18]
Yao, X.; Ye, F.; Zhang, M.; Cui, C.; Huang, B.; Niu, P. In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Main point : Hydroxychloroquine was found to be more potent than chloroquine at inhibiting SARS-CoV-2 in vit. Clin. Infect. Dis., 2020, 2, 1-25.
[19]
Vincent, M.J.; Bergeron, E.; Benjannet, S.; Erickson, B.R.; Rollin, P.E.; Ksiazek, T.G.; Seidah, N.G.; Nichol, S.T. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J., 2005, 2, 69.
[http://dx.doi.org/10.1186/1743-422X-2-69] [PMID: 16115318]
[20]
Wu, C.J.; Jan, J.T.; Chen, C.M.; Hsieh, H.P.; Hwang, D.R.; Liu, H.W.; Liu, C.Y.; Huang, H.W.; Chen, S.C.; Hong, C.F.; Lin, R.K.; Chao, Y.S.; Hsu, J.T. Inhibition of severe acute respiratory syndrome coronavirus replication by niclosamide. Antimicrob. Agents Chemother., 2004, 48(7), 2693-2696.
[http://dx.doi.org/10.1128/AAC.48.7.2693-2696.2004] [PMID: 15215127]
[21]
Liu, X.; Wang, X-J. Potential inhibitors against 2019-nCoV coronavirus M protease from clinically approved medicines. J. Genet. Genomics, 2020, 47(2), 119-121.
[http://dx.doi.org/10.1016/j.jgg.2020.02.001] [PMID: 32173287]
[22]
Lu, H. Drug treatment options for the 2019-new coronavirus (2019-nCoV). 2020, 14(1), 69-71.
[23]
Jin, Y.H.; Cai, L.; Cheng, Z.S.; Cheng, H.; Deng, T.; Fan, Y.P.; Fang, C.; Huang, D.; Huang, L.Q.; Huang, Q.; Han, Y.; Hu, B.; Hu, F.; Li, B.H.; Li, Y.R.; Liang, K.; Lin, L.K.; Luo, L.S.; Ma, J.; Ma, L.L.; Peng, Z.Y.; Pan, Y.B.; Pan, Z.Y.; Ren, X.Q.; Sun, H.M.; Wang, Y.; Wang, Y.Y.; Weng, H.; Wei, C.J.; Wu, D.F.; Xia, J.; Xiong, Y.; Xu, H.B.; Yao, X.M.; Yuan, Y.F.; Ye, T.S.; Zhang, X.C.; Zhang, Y.W.; Zhang, Y.G.; Zhang, H.M.; Zhao, Y.; Zhao, M.J.; Zi, H.; Zeng, X.T.; Wang, Y.Y.; Wang, X.H. for the Zhongnan Hospital of Wuhan University Novel Coronavirus Management and Research Team, Evidence-Based Medicine Chapter of China International Exchange and Promotive Association for Medical and Health Care (CPAM). A rapid advice guideline for the diagnosis and treatment of 2019 novel coronavirus (2019-nCoV) infected pneumonia (standard version). Mil. Med. Res., 2020, 7(1), 4.
[http://dx.doi.org/10.1186/s40779-020-0233-6] [PMID: 32029004]
[24]
Chen, Z.M.; Fu, J.F.; Shu, Q.; Chen, Y.H.; Hua, C.Z.; Li, F.B.; Lin, R.; Tang, L.F.; Wang, T.L.; Wang, W.; Wang, Y.S.; Xu, W.Z.; Yang, Z.H.; Ye, S.; Yuan, T.M.; Zhang, C.M.; Zhang, Y.Y. Diagnosis and treatment recommendations for pediatric respiratory infection caused by the 2019 novel coronavirus. World J. Pediatr., 2020, 16(3), 240-246.
[http://dx.doi.org/10.1007/s12519-020-00345-5] [PMID: 32026148]
[25]
Wang, Y.; Zhu, L.Q. Pharmaceutical care recommendations for antiviral treatments in children with coronavirus disease 2019. World J. Pediatr., 2020, 16(3), 271-274.
[http://dx.doi.org/10.1007/s12519-020-00353-5] [PMID: 32166483]
[26]
de Wilde, A.H.; Raj, V.S.; Oudshoorn, D.; Bestebroer, T.M.; van Nieuwkoop, S.; Limpens, R.W.A.L.; Posthuma, C.C.; van der Meer, Y.; Bárcena, M.; Haagmans, B.L.; Snijder, E.J.; van den Hoogen, B.G. MERS-coronavirus replication induces severe in vitro cytopathology and is strongly inhibited by cyclosporin A or interferon-α treatment. J. Gen. Virol., 2013, 94(Pt 8), 1749-1760.
[http://dx.doi.org/10.1099/vir.0.052910-0] [PMID: 23620378]
[27]
Haagmans, B.L.; Kuiken, T.; Martina, B.E.; Fouchier, R.A.M.; Rimmelzwaan, G.F.; van Amerongen, G.; van Riel, D.; de Jong, T.; Itamura, S.; Chan, K.H.; Tashiro, M.; Osterhaus, A.D. Pegylated interferon-α protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nat. Med., 2004, 10(3), 290-293.
[http://dx.doi.org/10.1038/nm1001] [PMID: 14981511]
[28]
Tan, E.L.C.; Ooi, E.E.; Lin, C.Y.; Tan, H.C.; Ling, A.E.; Lim, B.; Stanton, L.W. Inhibition of SARS coronavirus infection in vitro with clinically approved antiviral drugs. Emerg. Infect. Dis., 2004, 10(4), 581-586.
[http://dx.doi.org/10.3201/eid1004.030458] [PMID: 15200845]
[29]
Kim, H-Y.; Eo, E-Y.; Park, H.; Kim, Y-C.; Park, S.; Shin, H-J.; Kim, K. Medicinal herbal extracts of Sophorae radix, Acanthopanacis cortex, Sanguisorbae radix and Torilis fructus inhibit coronavirus replication in vitro. Antivir. Ther., 2010, 15(5), 697-709.
[http://dx.doi.org/10.3851/IMP1615] [PMID: 20710051]
[30]
de Wilde, A.H.; Zevenhoven-Dobbe, J.C.; van der Meer, Y.; Thiel, V.; Narayanan, K.; Makino, S.; Snijder, E.J.; van Hemert, M.J. Cyclosporin A inhibits the replication of diverse coronaviruses. J. Gen. Virol., 2011, 92(Pt 11), 2542-2548.
[http://dx.doi.org/10.1099/vir.0.034983-0] [PMID: 21752960]
[31]
Falzarano, D.; de Wit, E.; Martellaro, C.; Callison, J.; Munster, V.J.; Feldmann, H. Inhibition of novel β coronavirus replication by a combination of interferon-α2b and ribavirin. Sci. Rep., 2013, 3, 1686.
[http://dx.doi.org/10.1038/srep01686] [PMID: 23594967]
[32]
Rossignol, J-F. Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. J. Infect. Public Health, 2016, 9(3), 227-230.
[http://dx.doi.org/10.1016/j.jiph.2016.04.001] [PMID: 27095301]
[33]
de Wilde, A.H.; Falzarano, D.; Zevenhoven-Dobbe, J.C.; Beugeling, C.; Fett, C.; Martellaro, C.; Posthuma, C.C.; Feldmann, H.; Perlman, S.; Snijder, E.J. Alisporivir inhibits MERS- and SARS-coronavirus replication in cell culture, but not SARS-coronavirus infection in a mouse model. Virus Res., 2017, 228, 7-13.
[http://dx.doi.org/10.1016/j.virusres.2016.11.011] [PMID: 27840112]
[34]
Li, S.Y.; Chen, C.; Zhang, H.Q.; Guo, H.Y.; Wang, H.; Wang, L.; Zhang, X.; Hua, S.N.; Yu, J.; Xiao, P.G.; Li, R.S.; Tan, X. Identification of natural compounds with antiviral activities against SARS-associated coronavirus. Antiviral Res., 2005, 67(1), 18-23.
[http://dx.doi.org/10.1016/j.antiviral.2005.02.007] [PMID: 15885816]
[35]
Kim, H.Y.; Shin, H.S.; Park, H.; Kim, Y.C.; Yun, Y.G.; Park, S.; Shin, H.J.; Kim, K. In vitro inhibition of coronavirus replications by the traditionally used medicinal herbal extracts, Cimicifuga rhizoma, Meliae cortex, Coptidis rhizoma, and Phellodendron cortex. J. Clin. Virol., 2008, 41(2), 122-128.
[http://dx.doi.org/10.1016/j.jcv.2007.10.011] [PMID: 18036887]
[36]
Hoever, G.; Baltina, L.; Michaelis, M.; Kondratenko, R.; Baltina, L.; Tolstikov, G.A.; Doerr, H.W.; Cinatl, J., Jr Antiviral activity of glycyrrhizic acid derivatives against SARS-coronavirus. J. Med. Chem., 2005, 48(4), 1256-1259.
[http://dx.doi.org/10.1021/jm0493008] [PMID: 15715493]
[37]
Chen, C.J.; Michaelis, M.; Hsu, H.K.; Tsai, C.C.; Yang, K.D.; Wu, Y.C.; Cinatl, J., Jr; Doerr, H.W. Toona sinensis Roem tender leaf extract inhibits SARS coronavirus replication. J. Ethnopharmacol., 2008, 120(1), 108-111.
[http://dx.doi.org/10.1016/j.jep.2008.07.048] [PMID: 18762235]
[38]
Ho, T.Y.; Wu, S.L.; Chen, J.C.; Li, C.C.; Hsiang, C.Y. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res., 2007, 74(2), 92-101.
[http://dx.doi.org/10.1016/j.antiviral.2006.04.014] [PMID: 16730806]
[40]
Ren, J.L.; Zhang, A.H.; Wang, X.J. Traditional Chinese medicine for COVID-19 treatment. Pharmacol. Res., 2020, 155
[http://dx.doi.org/10.1016/j.phrs.2020.104743] [PMID: 32145402]
[41]
Li, Y.; Liu, X.; Guo, L. Traditional Chinese herbal medicine for treating novel coronavirus (COVID-19) pneumonia: protocol for a systematic review and meta-analysis. Syst. Re, 2020, 8, 75.
[42]
Xu, J.; Zhang, Y. Traditional Chinese Medicine treatment of COVID-19. Complement. Ther. Clin. Pract., 2020, 39(39)
[http://dx.doi.org/10.1016/j.ctcp.2020.101165] [PMID: 32379692]
[43]
Lin YC, Chen CJ. A strategy of traditional Chinese medicine against COVID-19: linking current basic research and ancient medicine texts. Int. J. Complement Alt Med., 2020, 13(2), 79-81.
[44]
Holick, M.F. Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am. J. Clin. Nutr., 2004, 80(6)(Suppl.), 1678S-1688S.
[http://dx.doi.org/10.1093/ajcn/80.6.1678S] [PMID: 15585788]
[45]
Vitamin D - Health Professional Fact Sheet. https://ods.od.nih.gov/factsheets/VitaminD-HealthProfessional/#en1
[46]
Chiuso-Minicucci, F.; Ishikawa, L.L.W.; Mimura, L.A.N.; Fraga-Silva, T.F de C.; França, T.G.D.; Zorzella-Pezavento, S.F.G. Treatment with Vitamin D/MOG Association Suppresses Experimental Autoimmune Encephalomyelitis. Forsthuber T, editor. PLoS One, 2015, 10(5)
[47]
Van Belle, T.L.; Vanherwegen, A-S.; Feyaerts, D.; De Clercq, P.; Verstuyf, A.; Korf, H.; Gysemans, C.; Mathieu, C. 1,25-Dihydroxyvitamin D3 and its analog TX527 promote a stable regulatory T cell phenotype in T cells from type 1 diabetes patients. PLoS One, 2014, 9(10), e109194.
[http://dx.doi.org/10.1371/journal.pone.0109194] [PMID: 25279717]
[48]
Zhang, Z.; Zhang, H.; Hu, Z.; Wang, P.; Wan, J.; Li, B. Synergy of 1,25-dihydroxyvitamin D3 and carboplatin in growth suppression of SKOV-3 cells. Oncol. Lett., 2014, 8(3), 1348-1354.
[http://dx.doi.org/10.3892/ol.2014.2307] [PMID: 25120722]
[49]
Cantorna, M.T.; Zhu, Y.; Froicu, M.; Wittke, A. Vitamin D status, 1,25-dihydroxyvitamin D3, and the immune system. Am. J. Clin. Nutr., 2004, 80(6)(Suppl.), 1717S-1720S.
[http://dx.doi.org/10.1093/ajcn/80.6.1717S] [PMID: 15585793]
[50]
Wilson, L.R.; Tripkovic, L.; Hart, K.H.; Lanham-New, S.A. Vitamin D deficiency as a public health issue: using vitamin D2 or vitamin D3 in future fortification strategies. Proc. Nutr. Soc., 2017, 76(3), 392-399.
[http://dx.doi.org/10.1017/S0029665117000349] [PMID: 28347378]
[51]
Vegan Vitamin D: Sources, Supplements, Benefits, More. https://www.healthline.com/health/vegan-vitamin-d#vegan-sources
[52]
Cashman, K.D.; Kiely, M. EURRECA-Estimating vitamin D requirements for deriving dietary reference values. Crit. Rev. Food Sci. Nutr., 2013, 53(10), 1097-1109.
[http://dx.doi.org/10.1080/10408398.2012.742862] [PMID: 23952090]
[53]
Cashman, K.D.; Kiely, M.; Seamans, K.M.; Urbain, P. Effect of Ultraviolet Light-Exposed Mushrooms on Vitamin D Status: Liquid Chromatography-Tandem Mass Spectrometry Reanalysis of Biobanked Sera from a Randomized Controlled Trial and a Systematic Review plus Meta-Analysis. J. Nutr., 2016, 146(3), 565-575.
[http://dx.doi.org/10.3945/jn.115.223784] [PMID: 26865648]
[54]
Baeke, F.; Takiishi, T.; Korf, H.; Gysemans, C.; Mathieu, C. Vitamin D: modulator of the immune system. Curr. Opin. Pharmacol., 2010, 10(4), 482-496.
[http://dx.doi.org/10.1016/j.coph.2010.04.001] [PMID: 20427238]
[55]
Cantorna, M.T.; Mahon, B.D. Mounting evidence for vitamin D as an environmental factor affecting autoimmune disease prevalence. Exp. Biol. Med. (Maywood), 2004, 229(11), 1136-1142.
[http://dx.doi.org/10.1177/153537020422901108] [PMID: 15564440]
[56]
Booth, D.R.; Ding, N.; Parnell, G.P.; Shahijanian, F.; Coulter, S.; Schibeci, S.D.; Atkins, A.R.; Stewart, G.J.; Evans, R.M.; Downes, M.; Liddle, C. Cistromic and genetic evidence that the vitamin D receptor mediates susceptibility to latitude-dependent autoimmune diseases. Genes Immun., 2016, 17(4), 213-219.
[http://dx.doi.org/10.1038/gene.2016.12] [PMID: 26986782]
[57]
Veldman, C.M.; Cantorna, M.T.; DeLuca, H.F. Expression of 1,25-dihydroxyvitamin D(3) receptor in the immune system. Arch. Biochem. Biophys., 2000, 374(2), 334-338.
[http://dx.doi.org/10.1006/abbi.1999.1605] [PMID: 10666315]
[58]
Gombart, A.F.; Pierre, A.; Maggini, S. A Review of Micronutrients and the Immune System-Working in Harmony to Reduce the Risk of Infection. Nutrients, 2020, 12(1), 236.
[http://dx.doi.org/10.3390/nu12010236] [PMID: 31963293]
[59]
Takahashi, K.; Nakayama, Y.; Horiuchi, H.; Ohta, T.; Komoriya, K.; Ohmori, H.; Kamimura, T. Human neutrophils express messenger RNA of vitamin D receptor and respond to 1α,25-dihydroxyvitamin D3. Immunopharmacol. Immunotoxicol., 2002, 24(3), 335-347.
[http://dx.doi.org/10.1081/IPH-120014721] [PMID: 12375732]
[60]
Hirsch, D.; Archer, F.E.; Joshi-Kale, M.; Vetrano, A.M.; Weinberger, B. Decreased anti-inflammatory responses to vitamin D in neonatal neutrophils. Mediators Inflamm., 2011, 2011, 598345.
[http://dx.doi.org/10.1155/2011/598345] [PMID: 22219556]
[61]
Handono, K.; Sidarta, Y.O.; Pradana, B.A.; Nugroho, R.A.; Hartono, I.A.; Kalim, H.; Endharti, A.T. Vitamin D prevents endothelial damage induced by increased neutrophil extracellular traps formation in patients with systemic lupus erythematosus. Acta Med. Indones., 2014, 46(3), 189-198.
[PMID: 25348181]
[62]
Yang, H.; Long, F.; Zhang, Y.; Yu, R.; Zhang, P.; Li, W.; Li, S.; Jin, X.; Xia, J.; Dong, L.; Zhu, N.; Huang, Y.; Gong, Y.; Chen, X. 1α,25-Dihydroxyvitamin D3 Induces Neutrophil Apoptosis through the p38 MAPK Signaling Pathway in Chronic Obstructive Pulmonary Disease Patients. PLoS One, 2015, 10(4), e0120515.
[http://dx.doi.org/10.1371/journal.pone.0120515] [PMID: 25905635]
[63]
Murray, P.J.; Wynn, T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol., 2011, 11(11), 723-737.
[http://dx.doi.org/10.1038/nri3073] [PMID: 21997792]
[64]
Vanherwegen, A.S.; Gysemans, C.; Mathieu, C. Regulation of Immune Function by Vitamin D and Its Use in Diseases of Immunity. Endocrinol. Metab. Clin. North Am., 2017, 46(4), 1061-1094.
[http://dx.doi.org/10.1016/j.ecl.2017.07.010] [PMID: 29080635]
[65]
Korf, H.; Wenes, M.; Stijlemans, B.; Takiishi, T.; Robert, S.; Miani, M.; Eizirik, D.L.; Gysemans, C.; Mathieu, C. 1,25-Dihydroxyvitamin D3 curtails the inflammatory and T cell stimulatory capacity of macrophages through an IL-10-dependent mechanism. Immunobiology, 2012, 217(12), 1292-1300.
[http://dx.doi.org/10.1016/j.imbio.2012.07.018] [PMID: 22944250]
[66]
Ren, S.; Nguyen, L.; Wu, S.; Encinas, C.; Adams, J.S.; Hewison, M. Alternative splicing of vitamin D-24-hydroxylase: a novel mechanism for the regulation of extrarenal 1,25-dihydroxyvitamin D synthesis. J. Biol. Chem., 2005, 280(21), 20604-20611.
[http://dx.doi.org/10.1074/jbc.M414522200] [PMID: 15788398]
[67]
Krutzik, SR; Hewison, M; Liu, PT; Robles, JA; Stenger, S; Adams, JS IL-15 Links TLR2/1-Induced Macrophage Differentiation to the Vitamin D-Dependent Antimicrobial Pathway. J Immunol., 2008, 181(10), 7115-20.
[68]
Neve, A.; Corrado, A.; Cantatore, F.P. Immunomodulatory effects of vitamin D in peripheral blood monocyte-derived macrophages from patients with rheumatoid arthritis. Clin. Exp. Med., 2014, 14(3), 275-283.
[http://dx.doi.org/10.1007/s10238-013-0249-2] [PMID: 23824148]
[69]
Song, L.; Papaioannou, G.; Zhao, H.; Luderer, H.F.; Miller, C.; Dall’Osso, C.; Nazarian, R.M.; Wagers, A.J.; Demay, M.B. The Vitamin D Receptor Regulates Tissue Resident Macrophage Response to Injury. Endocrinology, 2016, 157(10), 4066-4075.
[http://dx.doi.org/10.1210/en.2016-1474] [PMID: 27526034]
[70]
Steinman, R.M. Some interfaces of dendritic cell biology. APMIS, 2003, 111(7-8), 675-697.
[http://dx.doi.org/10.1034/j.1600-0463.2003.11107802.x] [PMID: 12974772]
[71]
Adorini, L.; Penna, G. Dendritic cell tolerogenicity: a key mechanism in immunomodulation by vitamin D receptor agonists. Hum. Immunol., 2009, 70(5), 345-352.
[http://dx.doi.org/10.1016/j.humimm.2009.01.016] [PMID: 19405173]
[72]
Ferreira, G.B.; van Etten, E.; Verstuyf, A.; Waer, M.; Overbergh, L.; Gysemans, C.; Mathieu, C. 1,25-Dihydroxyvitamin D3 alters murine dendritic cell behaviour in vitro and in vivo. Diabetes Metab. Res. Rev., 2011, 27(8), 933-941.
[http://dx.doi.org/10.1002/dmrr.1275] [PMID: 22069288]
[73]
Ferreira, G.B.; Kleijwegt, F.S.; Waelkens, E.; Lage, K.; Nikolic, T.; Hansen, D.A.; Workman, C.T.; Roep, B.O.; Overbergh, L.; Mathieu, C. Differential protein pathways in 1,25-dihydroxyvitamin d(3) and dexamethasone modulated tolerogenic human dendritic cells. J. Proteome Res., 2012, 11(2), 941-971.
[http://dx.doi.org/10.1021/pr200724e] [PMID: 22103328]
[74]
Kleijwegt, F.S.; Laban, S.; Duinkerken, G.; Joosten, A.M.; Zaldumbide, A.; Nikolic, T.; Roep, B.O. Critical role for TNF in the induction of human antigen-specific regulatory T cells by tolerogenic dendritic cells. J. Immunol., 2010, 185(3), 1412-1418.
[http://dx.doi.org/10.4049/jimmunol.1000560] [PMID: 20574005]
[75]
Penna, G.; Roncari, A.; Amuchastegui, S.; Daniel, K.C.; Berti, E.; Colonna, M.; Adorini, L. Expression of the inhibitory receptor ILT3 on dendritic cells is dispensable for induction of CD4+Foxp3+ regulatory T cells by 1,25-dihydroxyvitamin D3. Blood, 2005, 106(10), 3490-3497.
[http://dx.doi.org/10.1182/blood-2005-05-2044] [PMID: 16030186]
[76]
Unger, W.W.; Laban, S.; Kleijwegt, F.S.; van der Slik, A.R.; Roep, B.O. Induction of Treg by monocyte-derived DC modulated by vitamin D3 or dexamethasone: differential role for PD-L1. Eur. J. Immunol., 2009, 39(11), 3147-3159.
[http://dx.doi.org/10.1002/eji.200839103] [PMID: 19688742]
[77]
Ferreira, G.B.; Vanherwegen, A.S.; Eelen, G.; Gutiérrez, A.C.F.; Van Lommel, L.; Marchal, K.; Verlinden, L.; Verstuyf, A.; Nogueira, T.; Georgiadou, M.; Schuit, F.; Eizirik, D.L.; Gysemans, C.; Carmeliet, P.; Overbergh, L.; Mathieu, C. Vitamin D3 Induces Tolerance in Human Dendritic Cells by Activation of Intracellular Metabolic Pathways. Cell Rep., 2015, 10(5), 711-725.
[http://dx.doi.org/10.1016/j.celrep.2015.01.013] [PMID: 25660022]
[78]
Naranjo-Gómez, M.; Raïch-Regué, D.; Oñate, C.; Grau-López, L.; Ramo-Tello, C.; Pujol-Borrell, R.; Martínez-Cáceres, E.; Borràs, F.E. Comparative study of clinical grade human tolerogenic dendritic cells. J. Transl. Med., 2011, 9, 89.
[http://dx.doi.org/10.1186/1479-5876-9-89] [PMID: 21658226]
[79]
Chen, S.; Sims, G.P.; Chen, X.X.; Gu, Y.Y.; Chen, S.; Lipsky, P.E. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J. Immunol., 2007, 179(3), 1634-1647.
[http://dx.doi.org/10.4049/jimmunol.179.3.1634] [PMID: 17641030]
[80]
Provvedini, D.M.; Tsoukas, C.D.; Deftos, L.J.; Manolagas, S.C. 1 alpha,25-Dihydroxyvitamin D3-binding macromolecules in human B lymphocytes: effects on immunoglobulin production. J. Immunol., 1986, 136(8), 2734-2740.
[PMID: 3007606]
[81]
Terrier, B.; Derian, N.; Schoindre, Y.; Chaara, W.; Geri, G.; Zahr, N.; Mariampillai, K.; Rosenzwajg, M.; Carpentier, W.; Musset, L.; Piette, J.C.; Six, A.; Klatzmann, D.; Saadoun, D.; Patrice, C.; Costedoat-Chalumeau, N. Restoration of regulatory and effector T cell balance and B cell homeostasis in systemic lupus erythematosus patients through vitamin D supplementation. Arthritis Res. Ther., 2012, 14(5), R221.
[http://dx.doi.org/10.1186/ar4060] [PMID: 23075451]
[82]
Drozdenko, G.; Scheel, T.; Heine, G.; Baumgrass, R.; Worm, M. Impaired T cell activation and cytokine production by calcitriol-primed human B cells. Clin. Exp. Immunol., 2014, 178(2), 364-372.
[http://dx.doi.org/10.1111/cei.12406] [PMID: 24965738]
[83]
Palmer, M.T.; Lee, Y.K.; Maynard, C.L.; Oliver, J.R.; Bikle, D.D.; Jetten, A.M.; Weaver, C.T. Lineage-specific effects of 1,25-dihydroxyvitamin D(3) on the development of effector CD4 T cells. J. Biol. Chem., 2011, 286(2), 997-1004.
[http://dx.doi.org/10.1074/jbc.M110.163790] [PMID: 21047796]
[84]
Jeffery, L.E.; Burke, F.; Mura, M.; Zheng, Y.; Qureshi, O.S.; Hewison, M.; Walker, L.S.; Lammas, D.A.; Raza, K.; Sansom, D.M. 1,25-Dihydroxyvitamin D3 and IL-2 combine to inhibit T cell production of inflammatory cytokines and promote development of regulatory T cells expressing CTLA-4 and FoxP3. J. Immunol., 2009, 183(9), 5458-5467.
[http://dx.doi.org/10.4049/jimmunol.0803217] [PMID: 19843932]
[85]
Tang, J.; Zhou, R.; Luger, D.; Zhu, W.; Silver, P.B.; Grajewski, R.S.; Su, S.B.; Chan, C.C.; Adorini, L.; Caspi, R.R. Calcitriol suppresses antiretinal autoimmunity through inhibitory effects on the Th17 effector response. J. Immunol., 2009, 182(8), 4624-4632.
[http://dx.doi.org/10.4049/jimmunol.0801543] [PMID: 19342637]
[86]
Cippitelli, M.; Santoni, A. Vitamin D3: a transcriptional modulator of the interferon-gamma gene. Eur. J. Immunol., 1998, 28(10), 3017-3030.
[http://dx.doi.org/10.1002/(SICI)1521-4141(199810)28:10<3017::AID-IMMU3017>3.0.CO;2-6] [PMID: 9808170]
[87]
Joshi, S.; Pantalena, L.C.; Liu, X.K.; Gaffen, S.L.; Liu, H.; Rohowsky-Kochan, C.; Ichiyama, K.; Yoshimura, A.; Steinman, L.; Christakos, S.; Youssef, S. 1,25-dihydroxyvitamin D(3) ameliorates Th17 autoimmunity via transcriptional modulation of interleukin-17A. Mol. Cell. Biol., 2011, 31(17), 3653-3669.
[http://dx.doi.org/10.1128/MCB.05020-11] [PMID: 21746882]
[88]
Abhimanyu, ; Coussens, A.K. The role of UV radiation and vitamin D in the seasonality and outcomes of infectious disease. Photochem. Photobiol. Sci., 2017, 16(3), 314-338.
[http://dx.doi.org/10.1039/C6PP00355A] [PMID: 28078341]
[89]
Lang, P.O.; Aspinall, R. Vitamin D Status and the Host Resistance to Infections: What It Is Currently (Not) Understood. Clin. Ther., 2017, 39(5), 930-945.
[http://dx.doi.org/10.1016/j.clinthera.2017.04.004] [PMID: 28457494]
[90]
R, M.; M, A.; L, S.; A, I.; R, A.; A, P. Self-Care for Common Colds: The Pivotal Role of Vitamin D, Vitamin C, Zinc, and Echinacea in Three Main Immune Interactive Clusters (Physical Barriers, Innate and Adaptive Immunity) Involved During an Episode of Common Colds-Practical Advice on Dosages and on the Time to Take These Nutrients/Botanicals in Order to Prevent or Treat Common Colds. Evid Based Complement Alternat Med., 2018.
[91]
Kast, J.I.; McFarlane, A.J.; Głobińska, A.; Sokolowska, M.; Wawrzyniak, P.; Sanak, M.; Schwarze, J.; Akdis, C.A.; Wanke, K. Respiratory syncytial virus infection influences tight junction integrity. Clin. Exp. Immunol., 2017, 190(3), 351-359.
[http://dx.doi.org/10.1111/cei.13042] [PMID: 28856667]
[92]
Schwalfenberg, G.K. A review of the critical role of vitamin D in the functioning of the immune system and the clinical implications of vitamin D deficiency. Mol. Nutr. Food Res., 2011, 55(1), 96-108.
[http://dx.doi.org/10.1002/mnfr.201000174] [PMID: 20824663]
[93]
Adams, J.S.; Ren, S.; Liu, P.T.; Chun, R.F.; Lagishetty, V.; Gombart, A.F.; Borregaard, N.; Modlin, R.L.; Hewison, M. Vitamin d-directed rheostatic regulation of monocyte antibacterial responses. J. Immunol., 2009, 182(7), 4289-4295.
[http://dx.doi.org/10.4049/jimmunol.0803736] [PMID: 19299728]
[94]
Laaksi, I. Vitamin D and respiratory infection in adults. Proc. Nutr. Soc., 2012, 71(1), 90-97.
[http://dx.doi.org/10.1017/S0029665111003351] [PMID: 22115013]
[95]
Herr, C.; Shaykhiev, R.; Bals, R. The role of cathelicidin and defensins in pulmonary inflammatory diseases. Expert Opin. Biol. Ther., 2007, 7(9), 1449-1461.
[http://dx.doi.org/10.1517/14712598.7.9.1449] [PMID: 17727333]
[96]
Agier, J.; Efenberger, M.; Brzezińska-Błaszczyk, E. Cathelicidin impact on inflammatory cells. Cent. Eur. J. Immunol., 2015, 40(2), 225-235.
[http://dx.doi.org/10.5114/ceji.2015.51359] [PMID: 26557038]
[97]
Barlow, P.G.; Svoboda, P.; Mackellar, A.; Nash, A.A.; York, I.A.; Pohl, J.; Davidson, D.J.; Donis, R.O. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37. PLoS One, 2011, 6(10), e25333.
[http://dx.doi.org/10.1371/journal.pone.0025333] [PMID: 22031815]
[98]
Zhao, Y; Ran, Z; Jiang, Q; Hu, N; Yu, B; Zhu, L Vitamin D Alleviates Rotavirus Infection through a Microrna-155-5p Mediated Regulation of the TBK1/IRF3 Signaling Pathway In Vivo and In Vitro. Int J Mol Sci., 2019, 20(14)
[99]
Martínez-Moreno, J.; Hernandez, J.C.; Urcuqui-Inchima, S. Effect of high doses of vitamin D supplementation on dengue virus replication, Toll-like receptor expression, and cytokine profiles on dendritic cells. Mol. Cell. Biochem., 2020, 464(1-2), 169-180.
[http://dx.doi.org/10.1007/s11010-019-03658-w] [PMID: 31758375]
[100]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[101]
Sharifi, A.; Vahedi, H.; Nedjat, S.; Rafiei, H.; Hosseinzadeh-Attar, M.J. Effect of single-dose injection of vitamin D on immune cytokines in ulcerative colitis patients: a randomized placebo-controlled trial. APMIS, 2019, 127(10), 681-687.
[http://dx.doi.org/10.1111/apm.12982] [PMID: 31274211]
[102]
Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor Recognition by the Novel Coronavirus from Wuhan: an Analysis Based on Decade-Long Structural Studies of SARS Coronavirus. J. Virol., 2020, 94(7), e00127-e20.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[103]
Jia, H.P.; Look, D.C.; Shi, L.; Hickey, M.; Pewe, L.; Netland, J.; Farzan, M.; Wohlford-Lenane, C.; Perlman, S.; McCray, P.B., Jr ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J. Virol., 2005, 79(23), 14614-14621.
[http://dx.doi.org/10.1128/JVI.79.23.14614-14621.2005] [PMID: 16282461]
[104]
Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; Xing, X.; Xiang, N.; Wu, Y.; Li, C.; Chen, Q.; Li, D.; Liu, T.; Zhao, J.; Liu, M.; Tu, W.; Chen, C.; Jin, L.; Yang, R.; Wang, Q.; Zhou, S.; Wang, R.; Liu, H.; Luo, Y.; Liu, Y.; Shao, G.; Li, H.; Tao, Z.; Yang, Y.; Deng, Z.; Liu, B.; Ma, Z.; Zhang, Y.; Shi, G.; Lam, T.T.Y.; Wu, J.T.; Gao, G.F.; Cowling, B.J.; Yang, B.; Leung, G.M.; Feng, Z. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N. Engl. J. Med., 2020, 382(13), 1199-1207.
[http://dx.doi.org/10.1056/NEJMoa2001316] [PMID: 31995857]
[105]
Tortorici, M.A.; Veesler, D. Structural insights into coronavirus entry. Adv. Virus Res., 2019, 105, 93-116.
[http://dx.doi.org/10.1016/bs.aivir.2019.08.002] [PMID: 31522710]
[106]
Zhang, N.; Jiang, S.; Du, L. Current advancements and potential strategies in the development of MERS-CoV vaccines. Expert Rev. Vaccines, 2014, 13(6), 761-774.
[http://dx.doi.org/10.1586/14760584.2014.912134] [PMID: 24766432]
[107]
Xia, S.; Zhu, Y.; Liu, M. Fusion mechanism of 2019-nCoV and fusion inhibitors targeting HR1 domain in spike protein [published online ahead of print. Cell. Mol. Immunol., 2020, 1-3.
[108]
Wu, J.; Chen, Z.J. Innate immune sensing and signaling of cytosolic nucleic acids. Annu. Rev. Immunol., 2014, 32, 461-488.
[http://dx.doi.org/10.1146/annurev-immunol-032713-120156] [PMID: 24655297]
[109]
Yoo, J.S.; Kato, H.; Fujita, T. Sensing viral invasion by RIG-I like receptors. Curr. Opin. Microbiol., 2014, 20, 131-138.
[http://dx.doi.org/10.1016/j.mib.2014.05.011] [PMID: 24968321]
[110]
Wu, J.; Sun, L.; Chen, X.; Du, F.; Shi, H.; Chen, C.; Chen, Z.J. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science, 2013, 339(6121), 826-830.
[http://dx.doi.org/10.1126/science.1229963] [PMID: 23258412]
[111]
Ishikawa, H.; Barber, G.N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature, 2008, 455(7213), 674-678.
[http://dx.doi.org/10.1038/nature07317] [PMID: 18724357]
[112]
Seth, R.B.; Sun, L.; Ea, C.K.; Chen, Z.J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell, 2005, 122(5), 669-682.
[http://dx.doi.org/10.1016/j.cell.2005.08.012] [PMID: 16125763]
[113]
Kawai, T.; Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol., 2010, 11(5), 373-384.
[http://dx.doi.org/10.1038/ni.1863] [PMID: 20404851]
[114]
Takeuchi, O.; Akira, S. Innate immunity to virus infection. Immunol. Rev., 2009, 227(1), 75-86.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00737.x] [PMID: 19120477]
[115]
Guo, Y.R.; Cao, Q.D.; Hong, Z.S.; Tan, Y.Y.; Chen, S.D.; Jin, H.J.; Tan, K.S.; Wang, D.Y.; Yan, Y. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil. Med. Res., 2020, 7(1), 11.
[http://dx.doi.org/10.1186/s40779-020-00240-0] [PMID: 32169119]
[116]
Chen, C; Zhang, XR; Ju, ZY; He, WF Advances in the research of cytokine storm mechanism induced by Corona Virus Disease 2019 and the corresponding immunotherapies. Zhonghua Shao Shang za zhi = Zhonghua Shaoshang Zazhi = Chinese Journal of Burns, 2020.
[117]
Liu, Y.; Yang, Y.; Zhang, C.; Huang, F.; Wang, F.; Yuan, J.; Wang, Z.; Li, J.; Li, J.; Feng, C.; Zhang, Z.; Wang, L.; Peng, L.; Chen, L.; Qin, Y.; Zhao, D.; Tan, S.; Yin, L.; Xu, J.; Zhou, C.; Jiang, C.; Liu, L. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci. China Life Sci., 2020, 63(3), 364-374.
[http://dx.doi.org/10.1007/s11427-020-1643-8] [PMID: 32048163]
[118]
Palacios, C; Gonzalez, L. Is vitamin D deficiency a major global public health problem? J Steroid Biochem Mol Biol., 2014, 144(A), 138-145.
[http://dx.doi.org/10.1016/j.jsbmb.2013.11.003]
[119]
MacLaughlin, J.; Holick, M.F. Aging decreases the capacity of human skin to produce vitamin D3. J. Clin. Invest., 1985, 76(4), 1536-1538.
[http://dx.doi.org/10.1172/JCI112134] [PMID: 2997282]
[120]
Adami, S.; Bertoldo, F.; Braga, V.; Fracassi, E.; Gatti, D.; Gandolini, G.; Minisola, S.; Battista Rini, G. 25-hydroxy vitamin D levels in healthy premenopausal women: association with bone turnover markers and bone mineral density. Bone, 2009, 45(3), 423-426.
[http://dx.doi.org/10.1016/j.bone.2009.05.012] [PMID: 19465168]
[121]
Valcour, A.; Blocki, F.; Hawkins, D.M.; Rao, S.D. Effects of age and serum 25-OH-vitamin D on serum parathyroid hormone levels. J. Clin. Endocrinol. Metab., 2012, 97(11), 3989-3995.
[http://dx.doi.org/10.1210/jc.2012-2276] [PMID: 22933544]
[122]
Christensen, M.H.; Lien, E.A.; Hustad, S.; Almås, B. Seasonal and age-related differences in serum 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D and parathyroid hormone in patients from Western Norway. Scand. J. Clin. Lab. Invest., 2010, 70(4), 281-286.
[http://dx.doi.org/10.3109/00365511003797172] [PMID: 20429698]
[123]
Nam, H.H.; Ison, M.G. Respiratory syncytial virus infection in adults. BMJ, 2019, 366, l5021.
[http://dx.doi.org/10.1136/bmj.l5021] [PMID: 31506273]
[124]
Cannell, J.J.; Vieth, R.; Umhau, J.C.; Holick, M.F.; Grant, W.B.; Madronich, S.; Garland, C.F.; Giovannucci, E. Epidemic influenza and vitamin D. Epidemiol. Infect., 2006, 134(6), 1129-1140.
[http://dx.doi.org/10.1017/S0950268806007175] [PMID: 16959053]
[125]
Feng, X.; Guo, T.; Wang, Y.; Kang, D.; Che, X.; Zhang, H.; Cao, W.; Wang, P. The vitamin D status and its effects on life quality among the elderly in Jinan, China. Arch. Gerontol. Geriatr., 2016, 62, 26-29.
[http://dx.doi.org/10.1016/j.archger.2015.09.002] [PMID: 26458289]
[126]
Vásárhelyi, B.; Sátori, A.; Olajos, F.; Szabó, A.; Beko, G. Alacsony D-vitamin-szint a Semmelweis Egyetem betegei körében: a központi laboratóriumban egy év alatt meghatározott D-vitamin-szintek retrospektív értékelése. Orv. Hetil., 2011, 152(32), 1272-1277. [Low vitamin D levels among patients at Semmelweis University: retrospective analysis during a one-year period].
[PMID: 21803724]
[127]
Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract., 2018, 138, 271-281.
[http://dx.doi.org/10.1016/j.diabres.2018.02.023] [PMID: 29496507]
[128]
Kim, H.J.; Jang, J.G.; Hong, K.S.; Park, J.K.; Choi, E.Y. Relationship between serum vitamin D concentrations and clinical outcome of community-acquired pneumonia. Int. J. Tuberc. Lung Dis., 2015, 19(6), 729-734.
[http://dx.doi.org/10.5588/ijtld.14.0696] [PMID: 25946368]
[129]
Naghshtabrizi, B.; Borzouei, S.; Bigvand, P.; Seifrabiei, M.A. Evaluation of the Relationship between Serum 25-Hydroxy Vitamin D and Hypertension in Hamadan, Iran-A Case Control Study. J. Clin. Diagn. Res., 2017, 11(7), LC01-LC03.
[PMID: 28892933]
[130]
Daneshkhah, A.; Agrawal, V.; Eshein, A.; Subramanian, H.; Roy, H.K.; Backman, V. The Possible Role of Vitamin D in Suppressing Cytokine Storm and Associated Mortality in COVID-19 Patients. medRxiv, 2020.http://medrxiv.org/content/early/2020/05/18/2020.04.08.20058578
[131]
Kong, J.; Zhu, X.; Shi, Y.; Liu, T.; Chen, Y.; Bhan, I.; Zhao, Q.; Thadhani, R.; Li, Y.C. VDR attenuates acute lung injury by blocking Ang-2-Tie-2 pathway and renin-angiotensin system. Mol. Endocrinol., 2013, 27(12), 2116-2125.
[http://dx.doi.org/10.1210/me.2013-1146] [PMID: 24196349]
[132]
Tsujino, I.; Ushikoshi-Nakayama, R.; Yamazaki, T.; Matsumoto, N.; Saito, I. Pulmonary activation of vitamin D3 and preventive effect against interstitial pneumonia. J. Clin. Biochem. Nutr., 2019, 65(3), 245-251.
[http://dx.doi.org/10.3164/jcbn.19-48] [PMID: 31777427]
[133]
Martineau, A.R.; Jolliffe, D.A.; Hooper, R.L.; Greenberg, L.; Aloia, J.F.; Bergman, P.; Dubnov-Raz, G.; Esposito, S.; Ganmaa, D.; Ginde, A.A.; Goodall, E.C.; Grant, C.C.; Griffiths, C.J.; Janssens, W.; Laaksi, I.; Manaseki-Holland, S.; Mauger, D.; Murdoch, D.R.; Neale, R.; Rees, J.R.; Simpson, S., Jr; Stelmach, I.; Kumar, G.T.; Urashima, M.; Camargo, C.A., Jr Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ, 2017, 356, i6583.
[http://dx.doi.org/10.1136/bmj.i6583] [PMID: 28202713]
[134]
Cetron, M.; Simone, P. Battling 21st-century scourges with a 14th-century toolbox. Emerg. Infect. Dis., 2004, 10(11), 2053-2054.
[http://dx.doi.org/10.3201/eid1011.040797_12] [PMID: 16010748]
[135]
Wilder-Smith, A; Freedman, DO Isolation, quarantine, social distancing and community containment: pivotal role for old-style public health measures in the novel coronavirus (2019-nCoV) outbreak. J Travel Med., 2020, 27(2)
[136]
Goh, K.T.; Cutter, J.; Heng, B.H.; Ma, S.; Koh, B.K.; Kwok, C.; Toh, C.M.; Chew, S.K. Epidemiology and control of SARS in Singapore. Ann. Acad. Med. Singapore, 2006, 35(5), 301-316.
[PMID: 16829997]
[137]
Giubilini, A.; Douglas, T.; Maslen, H.; Savulescu, J. Quarantine, isolation and the duty of easy rescue in public health. Developing World Bioeth., 2018, 18(2), 182-189.
[http://dx.doi.org/10.1111/dewb.12165] [PMID: 28922559]
[138]
Cetron, M.; Landwirth, J. Public health and ethical considerations in planning for quarantine. Yale J. Biol. Med., 2005, 78(5), 329-334.
[PMID: 17132339]
[139]
Parmet, W.E.; Sinha, M.S. Covid-19 - The Law and Limits of Quarantine. N. Engl. J. Med., 2020, 382(15), e28.
[http://dx.doi.org/10.1056/NEJMp2004211] [PMID: 32187460]
[140]
Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA, 2020, 323(13), 1239-1242.
[http://dx.doi.org/10.1001/jama.2020.2648] [PMID: 32091533]
[141]
Nasi, M; Patrizi, G; Pizzi, C; Landolfo, M; Boriani, G; Dei Cas, A; Cicero, AF; Fogacci, F; Rapezzi, C; Sisca, G; Capucci, A The role of physical activity in individuals with cardiovascular risk factors: an opinion paper from Italian Society of Cardiology-Emilia Romagna-Marche and SIC-Sport. Journal of Cardiovascular Medicine, 2019, 20(10), 631-9.
[142]
Mattioli, AV; Sciomer, S; Moscucci, F; Maiello, M; Cugusi, L; Gallina, S; Dei Cas, A; Lombardi, C; Pengo, M; Parati, G; Barilla, F Cardiovascular prevention in women: a narrative review from the Italian Society of Cardiology working groups on 'Cardiovascular Prevention, Hypertension and peripheral circulation'and on 'Women Disease'. Journal of Cardiovascular Medicine, 2019, 20(9), 575-83.
[143]
World Health Organization. Global action plan on physical activity 2018-2030: more active people for a healthier world. World Health Organization, 2019.
[144]
Karbach, S.; Wenzel, P.; Waisman, A.; Munzel, T.; Daiber, A. eNOS uncoupling in cardiovascular diseases--the role of oxidative stress and inflammation. Curr. Pharm. Des., 2014, 20(22), 3579-3594.
[http://dx.doi.org/10.2174/13816128113196660748] [PMID: 24180381]
[145]
Chait, A; den Hartigh, LJ Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front Cardiovasc Med., 2020.
[146]
Brooks, S.K.; Webster, R.K.; Smith, L.E.; Woodland, L.; Wessely, S.; Greenberg, N.; Rubin, G.J. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet, 2020, 395(10227), 912-920.
[http://dx.doi.org/10.1016/S0140-6736(20)30460-8] [PMID: 32112714]
[147]
Blendon, R.J.; Benson, J.M.; DesRoches, C.M.; Raleigh, E.; Taylor-Clark, K. The public’s response to severe acute respiratory syndrome in Toronto and the United States. Clin. Infect. Dis., 2004, 38(7), 925-931.
[http://dx.doi.org/10.1086/382355] [PMID: 15034821]
[148]
Jeong, H.; Yim, H.W.; Song, Y.J.; Ki, M.; Min, J.A.; Cho, J.; Chae, J.H. Mental health status of people isolated due to Middle East Respiratory Syndrome. Epidemiol. Health, 2016, 38, e2016048.
[http://dx.doi.org/10.4178/epih.e2016048] [PMID: 28196409]
[149]
Siti, H.N.; Kamisah, Y.; Kamsiah, J. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascul. Pharmacol., 2015, 71, 40-56.
[http://dx.doi.org/10.1016/j.vph.2015.03.005] [PMID: 25869516]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy