Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Exploring the Mystery of Osteoarthritis using Bioinformatics Analysis of Cartilage Tissue

Author(s): Bin Wang, Jun-Long Zhong, Ning Jiang, Jie Shang, Biao Wu, Yu-Feng Chen and Hua-Ding Lu*

Volume 25, Issue 1, 2022

Published on: 06 December, 2020

Page: [53 - 63] Pages: 11

DOI: 10.2174/1386207323666201207100905

Price: $65

Abstract

Background: Osteoarthritis (OA) is a kind of chronic disease relating to joints, which seriously affectsthe daily life activities of the elderly and can also lead to disability. However, the pathogenesis of OA is still unclear, which leads to limited treatment and the therapeutic effect far from people's expectations. This study aims to filter out key genes in the pathogenesis of OA and explore their potential role in the occurrence and development of OA.

Methods: The dataset of GSE117999 was obtained and analyzed in order to identify the differentially expressed genes (DEGs), hub genes and key genes. We also identified potential miRNAs which may play a major role in the pathogenesis of OA, and verified their difference in OA by real-time quantitative PCR (RT-qPCR). DGldb was found to serve as an indicator to identify drugs with potential therapeutic effects on key genes and Receiver Operating Characteristic (ROC) analysis was used for identifying underlying biomarkers of OA.

Results: We identified ten key genes, including MDM2, RB1, EGFR, ESR1, UBE2E3, WWP1, BCL2, OAS2, TYMS and MSH2. Then, we identified hsa-mir-3613-3p, hsa-mir-548e-5p and hsamir- 5692a to be potentially related to key genes. In addition, RT-qPCR confirmed the differential expression of identified genes in mouse cartilage with or without OA. We then identified Etoposide and Everolimus, which were potentially specific to the most key genes. Finally, we speculated that ESR1 might be a potential biomarker of OA.

Conclusion: In this study, potential key genes related to OA and their biological functions were identified, and their potential application value in the diagnosis and treatment of OA has been demonstrated, which will help us to improve the therapeutic effect of OA.

Keywords: Cartilage, gene expression profiling, MicroRNAs, osteoarthritis, receiver operating characteristic, drug.

Graphical Abstract
[1]
Kiadaliri, A.A.; Lohmander, L.S.; Moradi-Lakeh, M.; Petersson, I.F.; Englund, M. High and rising burden of hip and knee osteoarthritis in the Nordic region, 1990-2015. Acta Orthop., 2018, 89(2), 177-183.
[http://dx.doi.org/10.1080/17453674.2017.1404791] [PMID: 29160139]
[2]
Cross, M.; Smith, E.; Hoy, D.; Nolte, S.; Ackerman, I.; Fransen, M.; Bridgett, L.; Williams, S.; Guillemin, F.; Hill, C.L.; Laslett, L.L.; Jones, G.; Cicuttini, F.; Osborne, R.; Vos, T.; Buchbinder, R.; Woolf, A.; March, L. The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann. Rheum. Dis., 2014, 73(7), 1323-1330.
[http://dx.doi.org/10.1136/annrheumdis-2013-204763] [PMID: 24553908]
[3]
Hunt, L.P.; Ben-Shlomo, Y.; Clark, E.M.; Dieppe, P.; Judge, A.; MacGregor, A.J.; Tobias, J.H.; Vernon, K.; Blom, A.W. National Joint Registry for England and Wales. 45-day mortality after 467,779 knee replacements for osteoarthritis from the National Joint Registry for England and Wales: an observational study. Lancet, 2014, 384(9952), 1429-1436.
[http://dx.doi.org/10.1016/S0140-6736(14)60540-7] [PMID: 25012118]
[4]
Walkerbone, K.; Javaid, K.; Arden, N. Medical management of osteoarthritis. In: Bmj Chinese Edition; , 2000; 51, pp. (6)44-52.
[5]
Scarpignato, C.; Lanas, A.; Blandizzi, C. Safe prescribing of non-steroidal anti-inflammatory drugs in patients with osteoarthritis--an expert consensus addressing benefits as well as gastrointestinal and cardiovascular risks. BMC Med., 2015, 13(55)
[6]
Bjordal, J.M.; Ljunggren, A.E.; Klovning, A.; Slørdal, L. Non-steroidal anti-inflammatory drugs, including cyclo-oxygenase-2 inhibitors, in osteoarthritic knee pain: meta-analysis of randomised placebo controlled trials. BMJ, 2004, 329(7478), 1317.
[http://dx.doi.org/10.1136/bmj.38273.626655.63] [PMID: 15561731]
[7]
Roughley, P.J. Articular cartilage and changes in arthritis: noncollagenous proteins and proteoglycans in the extracellular matrix of cartilage. Arthritis Res., 2001, 3(6), 342-347.
[http://dx.doi.org/10.1186/ar326] [PMID: 11714388]
[8]
Eyre, D. Collagen of articular cartilage. Arthritis Res., 2002, 4(1), 30-35.
[http://dx.doi.org/10.1186/ar380] [PMID: 11879535]
[9]
Wang, W.; Lian, N.; Li, L.; Moss, H.E.; Wang, W.; Perrien, D.S.; Elefteriou, F.; Yang, X. Atf4 regulates chondrocyte proliferation and differentiation during endochondral ossification by activating Ihh transcription. Development, 2009, 136(24), 4143-4153.
[http://dx.doi.org/10.1242/dev.043281] [PMID: 19906842]
[10]
Szekanecz, Z.; Kim, J.; Koch, A.E. Chemokines and chemokine receptors in rheumatoid arthritis. Semin. Immunol., 2003, 15(1), 15-21.
[http://dx.doi.org/10.1016/S1044-5323(02)00124-0] [PMID: 12495637]
[11]
Merz, D.; Liu, R.; Johnson, K.; Terkeltaub, R. IL-8/CXCL8 and growth-related oncogene alpha/CXCL1 induce chondrocyte hypertrophic differentiation. J. Immunol., 2003, 171(8), 4406-4415.
[http://dx.doi.org/10.4049/jimmunol.171.8.4406] [PMID: 14530367]
[12]
Shu, B.; Fang, Y.; He, W. Identification of macrophage-related candidate genes in lupus nephritis using bioinformatics analysis. Cell. Signal., 2018, 46, 43-51.
[http://dx.doi.org/10.1016/j.cellsig.2018.02.006]
[13]
Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.; Phillippy, K.H.; Sherman, P.M.; Holko, M.; Yefanov, A.; Lee, H.; Zhang, N.; Robertson, C.L.; Serova, N.; Davis, S.; Soboleva, A. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res., 2013, 41(Database issue), D991-D995.
[http://dx.doi.org/10.1093/nar/gks1193] [PMID: 23193258]
[14]
Ludwig, N.; Fehlmann, T.; Kern, F.; Gogol, M.; Maetzler, W.; Deutscher, S.; Gurlit, S.; Schulte, C.; von Thaler, A.K.; Deuschle, C.; Metzger, F.; Berg, D.; Suenkel, U.; Keller, V.; Backes, C.; Lenhof, H.P.; Meese, E.; Keller, A. Machine learning to detect alzheimer’s disease from circulating non-coding RNAs. Genomics Proteomics Bioinformatics, 2019, 17(4), 430-440.
[http://dx.doi.org/10.1016/j.gpb.2019.09.004] [PMID: 31809862]
[15]
Wu, X.; Zhao, Z.; Khan, A. Identification of a novel signature and construction of a nomogram predicting overall survival in clear cell renal cell carcinoma. Front. Genet., 2020, 11(1017), 1017.
[16]
Singh, S.; Singh, V.K.; Rai, G. Identification of differentially expressed hematopoiesis-associated genes in term low birth weight newborns by systems genomics approach. Curr. Genomics, 2019, 20(7), 469-482.
[http://dx.doi.org/10.2174/1389202920666191203123025] [PMID: 32655286]
[17]
Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; Kuhn, M.; Bork, P.; Jensen, L.J.; von Mering, C. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res., 2015, 43(Database issue), D447-D452.
[http://dx.doi.org/10.1093/nar/gku1003] [PMID: 25352553]
[18]
Chen, Y.; Hu, J. ATP6V1G3 acts as a key gene in recurrent spontaneous abortion: an integrated bioinformatics analysis. Med. Sci. Monit., 2020, 26e927537
[19]
Scardoni, G.; Petterlini, M.; Laudanna, C. Analyzing biological network parameters with CentiScaPe. Bioinformatics, 2009, 25(21), 2857-2859.
[http://dx.doi.org/10.1093/bioinformatics/btp517] [PMID: 19729372]
[20]
Cline, M.S.; Smoot, M.; Cerami, E.; Kuchinsky, A.; Landys, N.; Workman, C.; Christmas, R.; Avila-Campilo, I.; Creech, M.; Gross, B.; Hanspers, K.; Isserlin, R.; Kelley, R.; Killcoyne, S.; Lotia, S.; Maere, S.; Morris, J.; Ono, K.; Pavlovic, V.; Pico, A.R.; Vailaya, A.; Wang, P.L.; Adler, A.; Conklin, B.R.; Hood, L.; Kuiper, M.; Sander, C.; Schmulevich, I.; Schwikowski, B.; Warner, G.J.; Ideker, T.; Bader, G.D. Integration of biological networks and gene expression data using Cytoscape. Nat. Protoc., 2007, 2(10), 2366-2382.
[http://dx.doi.org/10.1038/nprot.2007.324] [PMID: 17947979]
[21]
Bader, G.D.; Hogue, C.W. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics, 2003, 4(2)
[22]
Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; Mesirov, J.P. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA, 2005, 102(43), 15545-15550.
[http://dx.doi.org/10.1073/pnas.0506580102] [PMID: 16199517]
[23]
Dweep, H.; Gretz, N. miRWalk2.0: A comprehensive atlas of microRNA-target interactions. Nat. Methods, 2015, 12(8), 697.
[http://dx.doi.org/10.1038/nmeth.3485] [PMID: 26226356]
[24]
Wong, N.; Wang, X. miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Res., 2015, 43(Database issue), D146-D152.
[http://dx.doi.org/10.1093/nar/gku1104] [PMID: 25378301]
[25]
Hristovska, I.; Verdonk, F.; Comte, J.C.; Tsai, E.S.; Desestret, V.; Honnorat, J.; Chrétien, F.; Pascual, O. Ketamine/xylazine and barbiturates modulate microglial morphology and motility differently in a mouse model. PLoS One, 2020, 15(8)e0236594
[http://dx.doi.org/10.1371/journal.pone.0236594] [PMID: 32760073]
[26]
Sophocleous, A.; Huesa, C. Osteoarthritis mouse model of destabilization of the medial meniscus. Methods in Molecular Biology (Clifton, N.J.), 2019, 1914, 281-293.
[http://dx.doi.org/10.1007/978-1-4939-8997-3_15]
[27]
Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method. Methods, 2001, 25(4), 402-408.
[http://dx.doi.org/10.1006/meth.2001.1262] [PMID: 11846609]
[28]
Wei, X.; Sun, Y.; Han, T.; Zhu, J.; Xie, Y.; Wang, S.; Wu, Y.; Fan, Y.; Sun, X.; Zhou, J.; Zhao, Z.; Jing, Z. Upregulation of miR-330-5p is associated with carotid plaque’s stability by targeting Talin-1 in symptomatic carotid stenosis patients. BMC Cardiovasc. Disord., 2019, 19(1), 149.
[http://dx.doi.org/10.1186/s12872-019-1120-5] [PMID: 31215474]
[29]
Li, Y.H.; Yu, C.Y.; Li, X.X.; Zhang, P.; Tang, J.; Yang, Q.; Fu, T.; Zhang, X.; Cui, X.; Tu, G.; Zhang, Y.; Li, S.; Yang, F.; Sun, Q.; Qin, C.; Zeng, X.; Chen, Z.; Chen, Y.Z.; Zhu, F. Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics. Nucleic Acids Res., 2018, 46(D1), D1121-D1127.
[http://dx.doi.org/10.1093/nar/gkx1076] [PMID: 29140520]
[30]
Cotto, K.C.; Wagner, A.H.; Feng, Y.Y.; Kiwala, S.; Coffman, A.C.; Spies, G.; Wollam, A.; Spies, N.C.; Griffith, O.L.; Griffith, M. DGIdb 3.0: a redesign and expansion of the drug-gene interaction database. Nucleic Acids Res., 2018, 46(D1), D1068-D1073.
[http://dx.doi.org/10.1093/nar/gkx1143] [PMID: 29156001]
[31]
Zhang, X.; Bu, Y.; Zhu, B.; Zhao, Q.; Lv, Z.; Li, B.; Liu, J. Global transcriptome analysis to identify critical genes involved in the pathology of osteoarthritis. Bone Joint Res., 2018, 7(4), 298-307.
[http://dx.doi.org/10.1302/2046-3758.74.BJR-2017-0245.R1] [PMID: 29922448]
[32]
Lin, J.; Wu, G.; Zhao, Z.; Huang, Y.; Chen, J.; Fu, C.; Ye, J.; Liu, X. Bioinformatics analysis to identify key genes and pathways influencing synovial inflammation in osteoarthritis. Mol. Med. Rep., 2018, 18(6), 5594-5602.
[http://dx.doi.org/10.3892/mmr.2018.9575] [PMID: 30365099]
[33]
Musa, T.H.; Ahmad, T.; Li, W. A bibliometric analysis of global scientific research on Scrub Typhus. BioMed Res. Int., 2020.5737893
[http://dx.doi.org/10.1155/2020/5737893]
[34]
Schneider, K.; Chwa, M.; Atilano, S.R.; Shao, Z.; Park, J.; Karageozian, H.; Karageozian, V.; Kenney, M.C. Differential effects of risuteganib and bevacizumab on AMD cybrid cells. Exp. Eye Res., 2020.108287
[http://dx.doi.org/10.1016/j.exer.2020.108287] [PMID: 33075294]
[35]
Laupattarakasem, W.; Laopaiboon, M.; Laupattarakasem, P. Arthroscopic debridement for knee osteoarthritis. Cochrane Database Syst. Rev., 2008, 1.
[http://dx.doi.org/10.1002/14651858.CD0051.18.pub2]
[36]
Kak, V.; Chandrasekar, P.H. Bone and joint infections in injection drug users. Infect. Dis. Clin. North Am., 2002, 16(3), 681-695.
[http://dx.doi.org/10.1016/S0891-5520(02)00016-8] [PMID: 12371122]
[37]
Turgut, B.; Vural, O.; Demir, M.; Kaldir, M. Candida arthritis in a patient with chronic myelogenous leukemia (CML) in blastic transformation, unresponsive to fluconazole, but treated effectively with liposomal amphotericin B. Ann. Hematol., 2002, 81(9), 529-531.
[http://dx.doi.org/10.1007/s00277-002-0503-2] [PMID: 12373355]
[38]
Lee, G.W.; Kim, T.H.; Son, J.H. Primary Candida guilliermondii infection of the knee in a patient without predisposing factors. Case Rep. Med., 2012.375682
[39]
Wong, H.M.; Wu, S.; Chu, P.K.; Cheng, S.H.; Luk, K.D.; Cheung, K.M.; Yeung, K.W. Low-modulus Mg/PCL hybrid bone substitute for osteoporotic fracture fixation. Biomaterials, 2013, 34(29), 7016-7032.
[http://dx.doi.org/10.1016/j.biomaterials.2013.05.062] [PMID: 23787111]
[40]
Park, J.W.; Ko, H.J.; Jang, J.H.; Kang, H.; Suh, J.Y. Increased new bone formation with a surface magnesium-incorporated deproteinized porcine bone substitute in rabbit calvarial defects. J. Biomed. Mater. Res. A, 2012, 100(4), 834-840.
[http://dx.doi.org/10.1002/jbm.a.34017] [PMID: 22241729]
[41]
Yamasaki, Y.; Yoshida, Y.; Okazaki, M.; Shimazu, A.; Uchida, T.; Kubo, T.; Akagawa, Y.; Hamada, Y.; Takahashi, J.; Matsuura, N. Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion. J. Biomed. Mater. Res., 2002, 62(1), 99-105.
[http://dx.doi.org/10.1002/jbm.10220] [PMID: 12124791]
[42]
Karaman, Y.; Kayali, C.; Ozturk, H.; Kaya, A.; Bor, C. A comparison of analgesic effect of intra-articular levobupivacaine with bupivacaine following knee arthroscopy. Saudi Med. J., 2009, 30(5), 629-632.
[http://dx.doi.org/10.1016/j.rapm.2007.06.312] [PMID: 19417960]
[43]
Kastrup, J.; Petersen, P.; Dejgård, A.; Angelo, H.R.; Hilsted, J. Intravenous lidocaine infusion--a new treatment of chronic painful diabetic neuropathy? Pain, 1987, 28(1), 69-75.
[http://dx.doi.org/10.1016/0304-3959(87)91061-X] [PMID: 3822496]
[44]
Araujo, M.C.; Sinnott, C.J.; Strichartz, G.R. Multiple phases of relief from experimental mechanical allodynia by systemic lidocaine: responses to early and late infusions. Pain, 2003, 103(1-2), 21-29.
[http://dx.doi.org/10.1016/S0304-3959(02)00350-0] [PMID: 12749955]
[45]
DeChiara, T.M.; Kimble, R.B.; Poueymirou, W.T.; Rojas, J.; Masiakowski, P.; Valenzuela, D.M.; Yancopoulos, G.D. Ror2, encoding a receptor-like tyrosine kinase, is required for cartilage and growth plate development. Nat. Genet., 2000, 24(3), 271-274.
[http://dx.doi.org/10.1038/73488] [PMID: 10700181]
[46]
Asmar, A.; Barrett-Jolley, R.; Werner, A.; Kelly, R., Jr; Stacey, M. Membrane channel gene expression in human costal and articular chondrocytes. Organogenesis, 2016, 12(2), 94-107.
[http://dx.doi.org/10.1080/15476278.2016.1181238] [PMID: 27116676]
[47]
Wu, Q.; Kim, K.O.; Sampson, E.R.; Chen, D.; Awad, H.; O’Brien, T.; Puzas, J.E.; Drissi, H.; Schwarz, E.M.; O’Keefe, R.J.; Zuscik, M.J.; Rosier, R.N. Induction of an osteoarthritis-like phenotype and degradation of phosphorylated Smad3 by Smurf2 in transgenic mice. Arthritis Rheum., 2008, 58(10), 3132-3144.
[http://dx.doi.org/10.1002/art.23946] [PMID: 18821706]
[48]
Lüscher, C.; Slesinger, P.A. Emerging roles for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease. Nat. Rev. Neurosci., 2010, 11(5), 301-315.
[http://dx.doi.org/10.1038/nrn2834] [PMID: 20389305]
[49]
Rountree, R.B.; Schoor, M.; Chen, H.; Marks, M.E.; Harley, V.; Mishina, Y.; Kingsley, D.M. BMP receptor signaling is required for postnatal maintenance of articular cartilage. PLoS Biol., 2004, 2(11)e355
[http://dx.doi.org/10.1371/journal.pbio.0020355] [PMID: 15492776]
[50]
Takahashi, T.; Takahashi, I.; Komatsu, M.; Sawaishi, Y.; Higashi, K.; Nishimura, G.; Saito, H.; Takada, G. Mutations of the NOG gene in individuals with proximal symphalangism and multiple synostosis syndrome. Clin. Genet., 2001, 60(6), 447-451.
[http://dx.doi.org/10.1034/j.1399-0004.2001.600607.x] [PMID: 11846737]
[51]
Brunet, L.J.; McMahon, J.A.; McMahon, A.P.; Harland, R.M. Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science, 1998, 280(5368), 1455-1457.
[http://dx.doi.org/10.1126/science.280.5368.1455] [PMID: 9603738]
[52]
Del Pino, I.; García-Frigola, C.; Dehorter, N.; Brotons-Mas, J.R.; Alvarez-Salvado, E.; Martínez de Lagrán, M.; Ciceri, G.; Gabaldón, M.V.; Moratal, D.; Dierssen, M.; Canals, S.; Marín, O.; Rico, B. Erbb4 deletion from fast-spiking interneurons causes schizophrenia-like phenotypes. Neuron, 2013, 79(6), 1152-1168.
[http://dx.doi.org/10.1016/j.neuron.2013.07.010] [PMID: 24050403]
[53]
Fazzari, P.; Paternain, A.V.; Valiente, M.; Pla, R.; Luján, R.; Lloyd, K.; Lerma, J.; Marín, O.; Rico, B. Control of cortical GABA circuitry development by Nrg1 and ErbB4 signalling. Nature, 2010, 464(7293), 1376-1380.
[http://dx.doi.org/10.1038/nature08928] [PMID: 20393464]
[54]
Yin, D.M.; Sun, X.D.; Bean, J.C.; Lin, T.W.; Sathyamurthy, A.; Xiong, W.C.; Gao, T.M.; Chen, Y.J.; Mei, L. Regulation of spine formation by ErbB4 in PV-positive interneurons. J. Neurosci., 2013, 33(49), 19295-19303.
[http://dx.doi.org/10.1523/JNEUROSCI.2090-13.2013] [PMID: 24305825]
[55]
Kalinichev, M.; Donovan-Rodriguez, T.; Girard, F. ADX71943 and ADX71441,novel positive allosteric modulators of the GABAB receptor with distinct central/peripheral profiles, show efficacy in the monosodium iodoacetate model of chronic osteoarthritis pain in the rat. Eur. J. Pharmacol., 2017, 795, 43-49.
[56]
McCarson, K.E.; Enna, S.J. GABA pharmacology: the search for analgesics. Neurochem. Res., 2014, 39(10), 1948-1963.
[http://dx.doi.org/10.1007/s11064-014-1254-x] [PMID: 24532294]
[57]
Enna, S.J.; McCarson, K.E. The Role of GABA in the mediation and perception of pain. Adv. Pharmacol., 2006, 54, 1-27.
[http://dx.doi.org/10.1016/S1054-3589(06)54001-3]
[58]
Cheng, W.; Wu, D.; Zuo, Q.; Wang, Z.; Fan, W. Ginsenoside Rb1 prevents interleukin-1 beta induced inflammation and apoptosis in human articular chondrocytes. Int. Orthop., 2013, 37(10), 2065-2070.
[http://dx.doi.org/10.1007/s00264-013-1990-6] [PMID: 23835558]
[59]
Na, J.Y.; Kim, S.; Song, K.; Lim, K.H.; Shin, G.W.; Kim, J.H.; Kim, B.; Kwon, Y.B.; Kwon, J. Anti-apoptotic activity of ginsenoside rb1 in hydrogen peroxide-treated chondrocytes: stabilization of mitochondria and the inhibition of Caspase-3. J. Ginseng Res., 2012, 36(3), 242-247.
[http://dx.doi.org/10.5142/jgr.2012.36.3.242] [PMID: 23717124]
[60]
Shin, S.Y.; Pozzi, A.; Boyd, S.K.; Clark, A.L. Integrin α1β1 protects against signs of post-traumatic osteoarthritis in the female murine knee partially via regulation of epidermal growth factor receptor signalling. Osteoarthritis Cartilage, 2016, 24(10), 1795-1806.
[http://dx.doi.org/10.1016/j.joca.2016.05.013] [PMID: 27211864]
[61]
Staal, B.; Williams, B.O.; Beier, F.; Vande Woude, G.F.; Zhang, Y.W. Cartilage-specific deletion of Mig-6 results in osteoarthritis-like disorder with excessive articular chondrocyte proliferation. Proc. Natl. Acad. Sci. USA, 2014, 111(7), 2590-2595.
[http://dx.doi.org/10.1073/pnas.1400744111] [PMID: 24550287]
[62]
Roman-Blas, J.A.; Castañeda, S.; Largo, R.; Herrero-Beaumont, G. Osteoarthritis associated with estrogen deficiency. Arthritis Res. Ther., 2009, 11(5), 241.
[http://dx.doi.org/10.1186/ar2791] [PMID: 19804619]
[63]
Iannone, F.; De Bari, C.; Scioscia, C.; Patella, V.; Lapadula, G. Increased Bcl-2/p53 ratio in human osteoarthritic cartilage: a possible role in regulation of chondrocyte metabolism. Ann. Rheum. Dis., 2005, 64(2), 217-221.
[http://dx.doi.org/10.1136/ard.2004.022590] [PMID: 15647429]
[64]
Zhang, L.; Luo, J.; Wen, H. MDM2 promotes rheumatoid arthritis via activation of MAPK and NF-kappaB. Int. Immunopharmacol., 2016, 30, 69-73.
[65]
Senapati, S.; Singh, S.; Das, M.; Kumar, A.; Gupta, R.; Kumar, U.; Jain, S.; Juyal, R.C.; Thelma, B.K. Genome-wide analysis of methotrexate pharmacogenomics in rheumatoid arthritis shows multiple novel risk variants and leads for TYMS regulation. Pharmacogenet. Genomics, 2014, 24(4), 211-219.
[http://dx.doi.org/10.1097/FPC.0000000000000036] [PMID: 24583629]
[66]
Świerkot, J.; Ślęzak, R.; Karpiński, P.; Pawłowska, J.; Noga, L.; Szechiński, J.; Wiland, P. Associations between single-nucleotide polymorphisms of RFC-1, GGH, MTHFR, TYMS, and TCII genes and the efficacy and toxicity of methotrexate treatment in patients with rheumatoid arthritis. Pol. Arch. Med. Wewn., 2015, 125(3), 152-161.
[http://dx.doi.org/10.20452/pamw.2707] [PMID: 25599563]
[67]
Zeng, R.M.; Lu, X.H. Lin, J Knockdown of FOXM1 attenuates inflammatory response in human osteoarthritis chondrocytes. Int. Immunopharmacol., 2019, 68, 74-80.
[http://dx.doi.org/10.1016/j.intimp.2018.12.057]
[68]
Wang, X.; Li, F.; Fan, C.; Wang, C.; Ruan, H. Effects and relationship of ERK1 and ERK2 in interleukin-1β-induced alterations in MMP3, MMP13, type II collagen and aggrecan expression in human chondrocytes. Int. J. Mol. Med., 2011, 27(4), 583-589.
[http://dx.doi.org/10.3892/ijmm.2011.611] [PMID: 21305249]
[69]
Si, H.B.; Zeng, Y.; Liu, S.Y.; Zhou, Z.K.; Chen, Y.N.; Cheng, J.Q.; Lu, Y.R.; Shen, B. Intra-articular injection of microRNA-140 (miRNA-140) alleviates osteoarthritis (OA) progression by modulating extracellular matrix (ECM) homeostasis in rats. Osteoarthritis Cartilage, 2017, 25(10), 1698-1707.
[http://dx.doi.org/10.1016/j.joca.2017.06.002] [PMID: 28647469]
[70]
Hu, G.; Zhao, X.; Wang, C.; Geng, Y.; Zhao, J.; Xu, J.; Zuo, B.; Zhao, C.; Wang, C.; Zhang, X. MicroRNA-145 attenuates TNF-α-driven cartilage matrix degradation in osteoarthritis via direct suppression of MKK4. Cell Death Dis., 2017, 8(10)
[http://dx.doi.org/10.1038/cddis.2017.522] [PMID: 29072705]
[71]
Malaise, O.; Tachikart, Y.; Constantinides, M.; Mumme, M.; Ferreira-Lopez, R.; Noack, S.; Krettek, C.; Noël, D.; Wang, J.; Jorgensen, C.; Brondello, J.M. Mesenchymal stem cell senescence alleviates their intrinsic and seno-suppressive paracrine properties contributing to osteoarthritis development. Aging (Albany NY), 2019, 11(20), 9128-9146.
[http://dx.doi.org/10.18632/aging.102379] [PMID: 31644429]
[72]
Kim, K.M.; Kim, J.M.; Yoo, Y.H.; Kim, J.I.; Park, Y.C. Cilostazol induces cellular senescence and confers resistance to etoposide-induced apoptosis in articular chondrocytes. Int. J. Mol. Med., 2012, 29(4), 619-624.
[http://dx.doi.org/10.3892/ijmm.2012.892] [PMID: 22294024]
[73]
Ni, W.; Luo, L.; Zuo, P.; Li, R.; Xu, X.; Wen, F.; Hu, D. miR-374a inhibitor enhances etoposide-induced cytotoxicity against glioma cells through upregulation of FOXO1. Oncol. Res., 2019, 27(6), 703-712.
[http://dx.doi.org/10.3727/096504018X15426775024905] [PMID: 30841958]
[74]
Zhai, Y.; Ma, H.; Hui, Z. HELPER study: A phase II trial of continuous infusion of endostar combined with concurrent etoposide plus cisplatin and radiotherapy for treatment of unresectable stage III non-small-cell lung cancer. Radiother. Oncol., 2019, 131, 27-34.
[http://dx.doi.org/10.1016/j.radonc.2018.10.032]
[75]
Kakiuchi, Y.; Yurube, T.; Kakutani, K.; Takada, T.; Ito, M.; Takeoka, Y.; Kanda, Y.; Miyazaki, S.; Kuroda, R.; Nishida, K. Pharmacological inhibition of mTORC1 but not mTORC2 protects against human disc cellular apoptosis, senescence, and extracellular matrix catabolism through Akt and autophagy induction. Osteoarthritis Cartilage, 2019, 27(6), 965-976.
[http://dx.doi.org/10.1016/j.joca.2019.01.009] [PMID: 30716534]
[76]
Pusceddu, S.; Vernieri, C.; Di Maio, M.; Marconcini, R.; Spada, F.; Massironi, S.; Ibrahim, T.; Brizzi, M.P.; Campana, D.; Faggiano, A.; Giuffrida, D.; Rinzivillo, M.; Cingarlini, S.; Aroldi, F.; Antonuzzo, L.; Berardi, R.; Catena, L.; De Divitiis, C.; Ermacora, P.; Perfetti, V.; Fontana, A.; Razzore, P.; Carnaghi, C.; Davì, M.V.; Cauchi, C.; Duro, M.; Ricci, S.; Fazio, N.; Cavalcoli, F.; Bongiovanni, A.; La Salvia, A.; Brighi, N.; Colao, A.; Puliafito, I.; Panzuto, F.; Ortolani, S.; Zaniboni, A.; Di Costanzo, F.; Torniai, M.; Bajetta, E.; Tafuto, S.; Garattini, S.K.; Femia, D.; Prinzi, N.; Concas, L.; Lo Russo, G.; Milione, M.; Giacomelli, L.; Buzzoni, R.; Delle Fave, G.; Mazzaferro, V.; de Braud, F. Metformin use is associated with longer progression-free survival of patients with diabetes and pancreatic neuroendocrine tumors receiving everolimus and/or somatostatin analogues. Gastroenterology, 2018, 155(2), 479-489.e7.
[http://dx.doi.org/10.1053/j.gastro.2018.04.010] [PMID: 29655834]

Rights & Permissions Print Export Cite as
© 2024 Bentham Science Publishers | Privacy Policy