Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

An Updated Review on SARS-CoV-2 Main Proteinase (MPro): Protein Structure and Small-Molecule Inhibitors

Author(s): Dima A. Sabbah*, Rima Hajjo, Sanaa K. Bardaweel and Haizhen A. Zhong

Volume 21, Issue 6, 2021

Published on: 07 December, 2020

Page: [442 - 460] Pages: 19

DOI: 10.2174/1568026620666201207095117

Price: $65

Abstract

Coronaviruses (CoVs) are enveloped positive-stranded RNA viruses with spike (S) protein projections that allow the virus to enter and infect host cells. The S protein is a key virulence factor determining viral pathogenesis, host tropism, and disease pathogenesis. There are currently diverse corona viruses that are known to cause disease in humans.

The occurrence of Middle East respiratory syndrome coronavirus (MERS-CoV) and Severe Acute Respiratory Syndrome coronavirus (SARS-CoV), as fatal human CoV diseases, has induced significant interest in the medical field. The novel coronavirus disease (COVID-19) is an infectious disease caused by a novel strain of coronavirus (SAR-CoV-2). The SARS-CoV2 outbreak has been evolved in Wuhan, China, in December 2019, and identified as a pandemic in March 2020, resulting in 53.24 M cases and 1.20M deaths worldwide.

SARS-CoV-2 main proteinase (MPro), a key protease of CoV-2, mediates viral replication and transcription. SARS-CoV-2 MPro has been emerged as an attractive target for SARS-CoV-2 drug design and development. Diverse scaffolds have been released targeting SARS-CoV-2 MPro. In this review, we culminate the latest published information about SARS-CoV-2 main proteinase (MPro) and reported inhibitors.

Keywords: Coronavirus, COVID-19, Inhibitors, Main Proteinase (MPro), Papain-like Proteinase (PLpro), SARS-CoV-2.

Graphical Abstract
[1]
Sawicki, S.G.; Sawicki, D.L.; Siddell, S.G. A contemporary view of coronavirus transcription. J. Virol., 2007, 81(1), 20-29.
[http://dx.doi.org/10.1128/JVI.01358-06] [PMID: 16928755]
[2]
Hulswit, R.; de Haan, C.; Bosch, B-J. Coronavirus spike protein and tropism changes.Advances in Virus Research; Elsevier: Amsterdam, 2016, Vol. 96, pp. 29-57.
[3]
Brown, T.; Brierley, I. The coronavirus nonstructural proteins.The Coronaviridae; Springer: Berlin, 1995, pp. 191-217.
[http://dx.doi.org/10.1007/978-1-4899-1531-3_10]
[4]
Lai, M.M. Coronaviridae: the viruses and their replication.Fields Virology; Lippincott-Raven: Philadelphia, 1996, p. 1075.
[5]
Satija, N.; Lal, S.K. The molecular biology of SARS coronavirus. Ann. N. Y. Acad. Sci., 2007, 1102(1), 26-38.
[http://dx.doi.org/10.1196/annals.1408.002] [PMID: 17470909]
[6]
Lai, M.M.; Cavanagh, D. The molecular biology of coronaviruses.Advances in Virus Research; Elsevier: Amsterdam, 1997, Vol. 48, pp. 1-100.
[7]
Masters, P.S. The molecular biology of coronaviruses. Adv. Virus Res., 2006, 66, 193-292.
[http://dx.doi.org/10.1016/S0065-3527(06)66005-3 PMID: 16877062]
[8]
Ghosh, A.K.; Xi, K.; Johnson, M.E.; Baker, S.C.; Mesecar, A.D. Progress in anti-SARS coronavirus chemistry, biology and chemotherapy. Annu. Rep. Med. Chem., 2007, 41, 183-196.
[http://dx.doi.org/10.1016/S0065-7743(06)41011-3 PMID: 19649165]
[9]
Sturman, L.S.; Holmes, K.V. The molecular biology of coronaviruses.Advances in Virus Research; Elsevier: Amsterdam, 1983, Vol. 28, pp. 35-112.
[10]
Wege, H.; Ter Meulen, V. The biology and pathogenesis of coronaviruses.Current Topics in Microbiology and Immunology; Springer: Berlin, 1982, pp. 165-200.
[http://dx.doi.org/10.1007/978-3-642-68528-6_5]
[11]
Graham, R.L.; Donaldson, E.F.; Baric, R.S. A decade after SARS: strategies for controlling emerging coronaviruses. Nat. Rev. Microbiol., 2013, 11(12), 836-848.
[http://dx.doi.org/10.1038/nrmicro3143] [PMID: 24217413]
[12]
Almazan, F.; Galan, C.; Enjuanes, L. The nucleoprotein is required for efficient coronavirus genome replication. J. Virol., 2004, 78(22), 12683-12688.
[13]
Graham, R.L.; Sims, A.C.; Brockway, S.M.; Baric, R.S.; Denison, M.R. The nsp2 replicase proteins of murine hepatitis virus and severe acute respiratory syndrome coronavirus are dispensable for viral replication. J. Virol., 2005, 79(21), 13399-13411.
[http://dx.doi.org/10.1128/JVI.79.21.13399-13411.2005] [PMID: 16227261]
[14]
Schelle, B.; Karl, N.; Ludewig, B.; Siddell, S.G.; Thiel, V. Selective replication of coronavirus genomes that express nucleocapsid protein. J. Virol., 2005, 79(11), 6620-6630.
[http://dx.doi.org/10.1128/JVI.79.11.6620-6630.2005 PMID: 15890900]
[15]
Siddell, S.; Wege, H.; Ter Meulen, V. The biology of coronaviruses. J. Gen. Virol., 1983, 64(Pt 4), 761-776.
[http://dx.doi.org/10.1099/0022-1317-64-4-761] [PMID: 6300299]
[16]
Zeng, Q.; Langereis, M.A.; van Vliet, A.L.; Huizinga, E.G.; de Groot, R.J. Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution. Proc. Natl. Acad. Sci. USA, 2008, 105(26), 9065-9069.
[http://dx.doi.org/10.1073/pnas.0800502105] [PMID: 18550812]
[17]
de Groot, R.J. Structure, function and evolution of the hemagglutinin-esterase proteins of corona- and toroviruses. Glycoconj. J., 2006, 23(1-2), 59-72.
[http://dx.doi.org/10.1007/s10719-006-5438-8] [PMID: 16575523]
[18]
Ziebuhr, J. The coronavirus replicase.Coronavirus Replication and Reverse Genetics; Springer: Berlin, 2005, pp. 57-94.
[http://dx.doi.org/10.1007/3-540-26765-4_3]
[19]
Ziebuhr, J.; Snijder, E.J.; Gorbalenya, A.E. Virus-encoded proteinases and proteolytic processing in the Nidovirales. J. Gen. Virol., 2000, 81(Pt 4), 853-879.
[http://dx.doi.org/10.1099/0022-1317-81-4-853] [PMID: 10725411]
[20]
Deng, X.; Baker, S.C. An “Old” protein with a new story: Coronavirus endoribonuclease is important for evading host antiviral defenses. Virology, 2018, 517, 157-163.
[http://dx.doi.org/10.1016/j.virol.2017.12.024] [PMID: 29307596]
[21]
Liu, X.; Fang, P.; Fang, L.; Hong, Y.; Zhu, X.; Wang, D.; Peng, G.; Xiao, S. Porcine deltacoronavirus nsp15 antagonizes interferon-β production independently of its endoribonuclease activity. Mol. Immunol., 2019, 114, 100-107.
[http://dx.doi.org/10.1016/j.molimm.2019.07.003] [PMID: 31351410]
[22]
Anand, K.; Ziebuhr, J.; Wadhwani, P.; Mesters, J.R.; Hilgenfeld, R. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science, 2003, 300(5626), 1763-1767.
[23]
Riley, S.; Fraser, C.; Donnelly, C.A.; Ghani, A.C.; Abu-Raddad, L.J.; Hedley, A.J.; Leung, G.M.; Ho, L-M.; Lam, T-H.; Thach, T.Q. Transmission dynamics of the etiological agent of SARS in Hong Kong: impact of public health interventions. Science, 2003, 300(5627), 1961-1966.
[24]
Rota, P.A.; Oberste, M.S.; Monroe, S.S.; Nix, W.A.; Campagnoli, R.; Icenogle, J.P.; Penaranda, S.; Bankamp, B.; Maher, K.; Chen, M-h. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science, 2003, 300(5624), 1394-1399.
[25]
Brockway, S.M.; Clay, C.T.; Lu, X.T.; Denison, M.R. Characterization of the expression, intracellular localization, and replication complex association of the putative mouse hepatitis virus RNA-dependent RNA polymerase. J. Virol., 2003, 77(19), 10515-10527.
[http://dx.doi.org/10.1128/JVI.77.19.10515-10527.2003] [PMID: 12970436]
[26]
Snijder, E.; van der Meer, Y.; Zevenhoven-Dobbe, J. Ultrastructure and origin of membrane vesicles associated with the severe acute. J. Virol., 2006, 80(12), 5927-5940.
[27]
Gosert, R.; Kanjanahaluethai, A.; Egger, D.; Bienz, K.; Baker, S.C. RNA replication of mouse hepatitis virus takes place at double-membrane vesicles. J. Virol., 2002, 76(8), 3697-3708.
[http://dx.doi.org/10.1128/JVI.76.8.3697-3708.2002 PMID: 11907209]
[28]
Prentice, E.; McAuliffe, J.; Lu, X.; Subbarao, K.; Denison, M.R. Identification and characterization of severe acute respiratory syndrome coronavirus replicase proteins. J. Virol., 2004, 78(18), 9977-9986.
[http://dx.doi.org/10.1128/JVI.78.18.9977-9986.2004 PMID: 15331731]
[29]
van der Meer, Y.; Snijder, E.J.; Dobbe, J.C.; Schleich, S.; Denison, M.R.; Spaan, W.J.; Locker, J.K. Localization of mouse hepatitis virus nonstructural proteins and RNA synthesis indicates a role for late endosomes in viral replication. J. Virol., 1999, 73(9), 7641-7657.
[http://dx.doi.org/10.1128/JVI.73.9.7641-7657.1999 PMID: 10438855]
[30]
Bost, A.G. Carnahan Rh Fau - Lu, X. T.; Lu Xt Fau - Denison, M. R. Four proteins processed from the replicase gene polyprotein of mouse hepatitis virus colocalize in the cell periphery and adjacent to sites of virion assembly. J. Virol., 2000, 74(7), 3379-3387.
[31]
Shi, S.; Lai, M. 2005.
[32]
Snijder, E.J.; Bredenbeek, P.J.; Dobbe, J.C.; Thiel, V.; Ziebuhr, J.; Poon, L.L.; Guan, Y.; Rozanov, M.; Spaan, W.J.; Gorbalenya, A.E. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J. Mol. Biol., 2003, 331(5), 991-1004.
[http://dx.doi.org/10.1016/S0022-2836(03)00865-9 PMID: 12927536]
[33]
Bernini, A.; Spiga, O.; Venditti, V.; Prischi, F.; Bracci, L.; Huang, J.; Tanner, J.A.; Niccolai, N. Tertiary structure prediction of SARS coronavirus helicase. Biochem. Biophys. Res. Commun., 2006, 343(4), 1101-1104.
[http://dx.doi.org/10.1016/j.bbrc.2006.03.069] [PMID: 16579970]
[34]
Barretto, N.; Jukneliene, D.; Ratia, K.; Chen, Z.; Mesecar, A.D.; Baker, S.C. The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. J. Virol., 2005, 79(24), 15189-15198.
[http://dx.doi.org/10.1128/JVI.79.24.15189-15198.2005 PMID: 16306590]
[35]
Lindner, H.A.; Fotouhi-Ardakani, N.; Lytvyn, V.; Lachance, P.; Sulea, T.; Ménard, R. The papain-like protease from the severe acute respiratory syndrome coronavirus is a deubiquitinating enzyme. J. Virol., 2005, 79(24), 15199-15208.
[http://dx.doi.org/10.1128/JVI.79.24.15199-15208.2005 PMID: 16306591]
[36]
Chan, J.; To, K.; Tse, H.; Jin, D.; Yuen, K. Interspecies transmission and emergence of novel viruses: lessons from bats and birds. J. Virol., 2013, 21(10), 544-555.
[37]
Woo, P.C.; Lau, S.K.; Lam, C.S.; Lau, C.C.; Tsang, A.K.; Lau, J.H.; Bai, R.; Teng, J.L.; Tsang, C.C.; Wang, M.; Zheng, B.J.; Chan, K.H.; Yuen, K.Y. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J. Virol., 2012, 86(7), 3995-4008.
[http://dx.doi.org/10.1128/JVI.06540-11] [PMID: 22278237]
[38]
Leung, W.K.; To, K.F.; Chan, P.K.; Chan, H.L.; Wu, A.K.; Lee, N.; Yuen, K.Y.; Sung, J.J. Enteric involvement of severe acute respiratory syndrome-associated coronavirus infection. Gastroenterology, 2003, 125(4), 1011-1017.
[http://dx.doi.org/10.1016/j.gastro.2003.08.001] [PMID: 14517783]
[39]
Li, W.; Wong, S.K.; Li, F.; Kuhn, J.H.; Huang, I.C.; Choe, H.; Farzan, M. Animal origins of the severe acute respiratory syndrome coronavirus: insight from ACE2-S-protein interactions. J. Virol., 2006, 80(9), 4211-4219.
[http://dx.doi.org/10.1128/JVI.80.9.4211-4219.2006 PMID: 16611880]
[40]
Song, H-D.; Tu, C-C.; Zhang, G-W.; Wang, S-Y.; Zheng, K.; Lei, L-C.; Chen, Q-X.; Gao, Y-W.; Zhou, H-Q.; Xiang, H.; Zheng, H-J.; Chern, S-W.W.; Cheng, F.; Pan, C-M.; Xuan, H.; Chen, S-J.; Luo, H-M.; Zhou, D-H.; Liu, Y-F.; He, J-F.; Qin, P-Z.; Li, L-H.; Ren, Y-Q.; Liang, W-J.; Yu, Y-D.; Anderson, L.; Wang, M.; Xu, R-H.; Wu, X-W.; Zheng, H-Y.; Chen, J-D.; Liang, G.; Gao, Y.; Liao, M.; Fang, L.; Jiang, L-Y.; Li, H.; Chen, F.; Di, B.; He, L-J.; Lin, J-Y.; Tong, S.; Kong, X.; Du, L.; Hao, P.; Tang, H.; Bernini, A.; Yu, X-J.; Spiga, O.; Guo, Z-M.; Pan, H-Y.; He, W-Z.; Manuguerra, J-C.; Fontanet, A.; Danchin, A.; Niccolai, N.; Li, Y-X.; Wu, C-I.; Zhao, G-P. Cross-host evolution of severe acute respiratory syndrome coronavirus in palm civet and human. Proc. Natl. Acad. Sci. USA, 2005, 102(7), 2430-2435.
[http://dx.doi.org/10.1073/pnas.0409608102] [PMID: 15695582]
[41]
Holmes, K.V. SARS coronavirus: a new challenge for prevention and therapy. J. Clin. Invest., 2003, 111(11), 1605-1609.
[http://dx.doi.org/10.1172/JCI18819] [PMID: 12782660]
[42]
Alagaili, A.; Briese, T.; Mishra, N.; Kapoor, V.; Sameroff, S.; Burbelo, P.; de Wit, E.; Munster, V.; Hensley, L.; Zalmout, I.; Kapoor, A.; Epstein, J.; Karesh, W.; Daszak, P.; Mohammed, O.; Lipkin, W. Middle East respiratory syndrome coronavirus infection in dromedary camels in Saudi. J. Virol., 2014, 25(5), e00884-e00814.
[43]
Drosten, C.; Kellam, P.; Memish, Z. Evidence for camel-to-human transmission of MERS coronavirus. J. Virol., 2014, 371(14), 1359-1360.
[44]
Briese, T.; Mishra, N.; Jain, K.; Zalmout, I.S.; Jabado, O.J.; Karesh, W.B.; Daszak, P.; Mohammed, O.B.; Alagaili, A.N.; Lipkin, W.I. Middle East respiratory syndrome coronavirus quasispecies that include homologues of human isolates revealed through whole-genome analysis and virus cultured from dromedary camels in Saudi Arabia. MBio, 2014, 5(3), e01146-e14.
[http://dx.doi.org/10.1128/mBio.01146-14] [PMID: 24781747]
[45]
Reusken, C.B.; Haagmans, B.L.; Müller, M.A.; Gutierrez, C.; Godeke, G.J.; Meyer, B.; Muth, D.; Raj, V.S.; Smits-De Vries, L.; Corman, V.M.; Drexler, J.F.; Smits, S.L.; El Tahir, Y.E.; De Sousa, R.; van Beek, J.; Nowotny, N.; van Maanen, K.; Hidalgo-Hermoso, E.; Bosch, B.J.; Rottier, P.; Osterhaus, A.; Gortázar-Schmidt, C.; Drosten, C.; Koopmans, M.P. Middle East respiratory syndrome coronavirus neutralising serum antibodies in dromedary camels: a comparative serological study. Lancet Infect. Dis., 2013, 13(10), 859-866.
[http://dx.doi.org/10.1016/S1473-3099(13)70164-6 PMID: 23933067]
[46]
Widagdo, W.; Raj, V.S.; Schipper, D.; Kolijn, K.; van Leenders, G.J.L.H.; Bosch, B.J.; Bensaid, A.; Segalés, J.; Baumgärtner, W.; Osterhaus, A.D.M.E.; Koopmans, M.P.; van den Brand, J.M.A.; Haagmans, B.L. Differential expression of the middle east respiratory syndrome coronavirus receptor in the upper respiratory tracts of humans and dromedary camels. J. Virol., 2016, 90(9), 4838-4842.
[http://dx.doi.org/10.1128/JVI.02994-15] [PMID: 26889022]
[47]
Middle East respiratory syndrome coronavirus (MERS-CoV); Disease Outbreek News: Saudi Arabia, 2021.
[48]
Lee, N.; Hui, D.; Wu, A.; Chan, P.; Cameron, P.; Joynt, G.M.; Ahuja, A.; Yung, M.Y.; Leung, C.; To, K. A major outbreak of severe acute respiratory syndrome in Hong Kong. J. Virol., 2003, 348(20), 1986-1994.
[49]
Vijgen, L.; Keyaerts, E.; Lemey, P.; Maes, P.; Van Reeth, K.; Nauwynck, H.; Pensaert, M.; Van Ranst, M. Evolutionary history of the closely related group 2 coronaviruses: porcine hemagglutinating encephalomyelitis virus, bovine coronavirus, and human coronavirus OC43. J. Virol., 2006, 80(14), 7270-7274.
[http://dx.doi.org/10.1128/JVI.02675-05] [PMID: 16809333]
[50]
Annan, A.; Baldwin, H.; Corman, V.; Klose, S.; Owusu, M.; Nkrumah, E.; Badu, E.; Anti, P.; Agbenyega, O.; Meyer, B.; Oppong, S.; Sarkodie, Y.; Kalko, E.; Lina, P.; Godlevska, E.; Reusken, C.; Seebens, A.; Gloza-Rausch, F.; Vallo, P.; Tschapka, M.; Drosten, C.; Drexler, J. Human betacoronavirus 2c EMC/2012-related viruses in bats, Ghana and Europe. J. Virol., 2013, 19(3), 456-459.
[51]
Bolles, M.; Donaldson, E.; Baric, R. SARS-CoV and emergent coronaviruses: viral determinants of interspecies. J. Virol., 2011, 1(6), 624-634.
[52]
Corman, V.M.; Baldwin, H.J.; Tateno, A.F.; Zerbinati, R.M.; Annan, A.; Owusu, M.; Nkrumah, E.E.; Maganga, G.D.; Oppong, S.; Adu-Sarkodie, Y.; Vallo, P.; da Silva Filho, L.V.; Leroy, E.M.; Thiel, V.; van der Hoek, L.; Poon, L.L.; Tschapka, M.; Drosten, C.; Drexler, J.F.; Drexler, J. Evidence for an ancestral association of human coronavirus 229e with bats. J. Virol., 2015, 89(23), 11858-11870.
[http://dx.doi.org/10.1128/JVI.01755-15] [PMID: 26378164]
[53]
Hu, B.; Ge, X.; Wang, L.F.; Shi, Z. Bat origin of human coronaviruses. Virol. J., 2015, 12(221), 221.
[http://dx.doi.org/10.1186/s12985-015-0422-1] [PMID: 26689940]
[54]
Huynh, J.; Li, S.; Yount, B.; Smith, A.; Sturges, L.; Olsen, J.C.; Nagel, J.; Johnson, J.B.; Agnihothram, S.; Gates, J.E.; Frieman, M.B.; Baric, R.S.; Donaldson, E.F. Evidence supporting a zoonotic origin of human coronavirus strain NL63. J. Virol., 2012, 86(23), 12816-12825.
[http://dx.doi.org/10.1128/JVI.00906-12] [PMID: 22993147]
[55]
Flint, S.J.; Racaniello, V.R.; Rall, G.F.; Skalka, A.M. Principles of Virology, 4th ed; John Wiley & Sons: Hoboken, 2015.
[http://dx.doi.org/10.1128/9781555819521]
[56]
Guo, J.; Huang, Z.; Lin, L.; Lv, J. Coronavirus disease 2019 (covid-19) and cardiovascular disease: a viewpoint on the potential influence of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers on onset and severity of severe acute respiratory syndrome coronavirus 2 infection. J. Am. Heart Assoc., 2020, 9(7)e016219
[http://dx.doi.org/10.1161/JAHA.120.016219] [PMID: 32233755]
[57]
Liu, D.X.; Fung, T.S.; Chong, K.K-L.; Shukla, A.; Hilgenfeld, R. Accessory proteins of SARS-CoV and other coronaviruses. Antiviral Res., 2014, 109, 97-109.
[http://dx.doi.org/10.1016/j.antiviral.2014.06.013] [PMID: 24995382]
[58]
Lai, M.M. Coronavirus: organization, replication and expression of genome. Annu. Rev. Microbiol., 1990, 44(1), 303-333.
[http://dx.doi.org/10.1146/annurev.mi.44.100190.001511] [PMID: 2252386]
[59]
Cavanagh, D. Coronavirus avian infectious bronchitis virus. Vet. Res., 2007, 38(2), 281-297.
[http://dx.doi.org/10.1051/vetres:2006055] [PMID: 17296157]
[60]
Enjuanes, L. Coronavirus replication and reverse genetics; Springer Science & Business Media: Berlin, 2004.
[61]
Weiss, S.R.; Navas-Martin, S. Coronavirus pathogenesis and the emerging pathogen severe acute respiratory syndrome coronavirus. Microbiol. Mol. Biol. Rev., 2005, 69(4), 635-664.
[http://dx.doi.org/10.1128/MMBR.69.4.635-664.2005 PMID: 16339739]
[62]
Bosch, B.J.; Rottier, P.J. Nidovirus entry into cells.Nidoviruses; American Society of Microbiology: Washington, D.C., 2008, pp. 157-178.
[63]
Bosch, B.J.; Smits, S.L.; Haagmans, B.L. Membrane ectopeptidases targeted by human coronaviruses. Curr. Opin. Virol., 2014, 6, 55-60.
[http://dx.doi.org/10.1016/j.coviro.2014.03.011] [PMID: 24762977]
[64]
Holmes, K. V. 2003.
[65]
Belouzard, S.; Millet, J.K.; Licitra, B.N.; Whittaker, G.R. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses, 2012, 4(6), 1011-1033.
[http://dx.doi.org/10.3390/v4061011] [PMID: 22816037]
[66]
Hofmann, H.; Pohlmann, S. Cellular entry of the SARS coronavirus., 2004.
[67]
Gallagher, T.M.; Buchmeier, M.J. Coronavirus spike proteins in viral entry and pathogenesis. Virology, 2001, 279(2), 371-374.
[http://dx.doi.org/10.1006/viro.2000.0757] [PMID: 11162792]
[68]
Frieman, M.; Heise, M.; Baric, R. SARS coronavirus and innate immunity. Virus Res., 2008, 133(1), 101-112.
[http://dx.doi.org/10.1016/j.virusres.2007.03.015] [PMID: 17451827]
[69]
Bergmann, C.C.; Lane, T.E.; Stohlman, S.A. Coronavirus infection of the central nervous system: host-virus stand-off. Nat. Rev. Microbiol., 2006, 4(2), 121-132.
[http://dx.doi.org/10.1038/nrmicro1343] [PMID: 16415928]
[70]
ter Meulen, J.; Bakker, A.B.; van den Brink, E.N.; Weverling, G.J.; Martina, B.E.; Haagmans, B.L.; Kuiken, T.; de Kruif, J.; Preiser, W.; Spaan, W.; Gelderblom, H.R.; Goudsmit, J.; Osterhaus, A.D. Human monoclonal antibody as prophylaxis for SARS coronavirus infection in ferrets. Lancet, 2004, 363(9427), 2139-2141.
[http://dx.doi.org/10.1016/S0140-6736(04)16506-9 PMID: 15220038]
[71]
Schoggins, J. W. Interferon-stimulated genes: roles in viral pathogenesis., 2014.
[72]
Kindler, E.; Thiel, V. To sense or not to sense viral RNA--essentials of coronavirus innate immune evasion. Curr. Opin. Microbiol., 2014, 20, 69-75.
[http://dx.doi.org/10.1016/j.mib.2014.05.005] [PMID: 24908561]
[73]
Shin, M.D.; Shukla, S.; Chung, Y.H.; Beiss, V.; Chan, S.K.; Ortega-Rivera, O.A.; Wirth, D.M.; Chen, A.; Sack, M.; Pokorski, J.K.; Steinmetz, N.F. COVID-19 vaccine development and a potential nanomaterial path forward. Nat. Nanotechnol., 2020, 15(8), 646-655.
[http://dx.doi.org/10.1038/s41565-020-0737-y] [PMID: 32669664]
[74]
Dhama, K.; Sharun, K.; Tiwari, R.; Dadar, M.; Malik, Y.S.; Singh, K.P.; Chaicumpa, W. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Hum. Vaccin. Immunother., 2020, 16(6), 1232-1238.
[75]
Prompetchara, E.; Ketloy, C.; Palaga, T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac. J. Allergy Immunol., 2020, 38(1), 1-9.
[PMID: 32105090]
[76]
Hotez, P.J.; Corry, D.B.; Bottazzi, M.E. COVID-19 vaccine design: the Janus face of immune enhancement. Nat. Rev. Immunol., 2020, 20(6), 347-348.
[http://dx.doi.org/10.1038/s41577-020-0323-4] [PMID: 32346094]
[77]
Koirala, A.; Joo, Y.J.; Khatami, A.; Chiu, C.; Britton, P.N. Vaccines for COVID-19: The current state of play. Paediatr. Respir. Rev., 2020, 35, 43-49.
[PMID: 32653463]
[78]
Lurie, N.; Saville, M.; Hatchett, R.; Halton, J. Developing Covid-19 vaccines at pandemic speed., 2020.
[79]
Thanh Le, T.; Andreadakis, Z.; Kumar, A.; Gómez Román, R.; Tollefsen, S.; Saville, M.; Mayhew, S. The COVID-19 vaccine development landscape. Nat. Rev. Drug Discov., 2020, 19(5), 305-306.
[http://dx.doi.org/10.1038/d41573-020-00073-5] [PMID: 32273591]
[80]
Yap, P.S.X.; Tan, T.S.; Chan, Y.F.; Tee, K.K.; Kamarulzaman, A.; Teh, C.S.J. An overview of the genetic variations of the SARS-CoV-2 genomes isolated in southeast asian countries. J. Microbiol. Biotechnol., 2020, 30(7), 962-966.
[http://dx.doi.org/10.4014/jmb.2006.06009] [PMID: 32627759]
[81]
Corey, L.; Mascola, J.R.; Fauci, A.S.; Collins, F.S. A strategic approach to COVID-19 vaccine R&D. Science, 2020, 368(6494), 948-950.
[http://dx.doi.org/10.1126/science.abc5312] [PMID: 32393526]
[82]
Yamey, G.; Schäferhoff, M.; Hatchett, R.; Pate, M.; Zhao, F.; McDade, K.K. Ensuring global access to COVID-19 vaccines. Lancet, 2020, 395(10234), 1405-1406.
[http://dx.doi.org/10.1016/S0140-6736(20)30763-7 PMID: 32243778]
[83]
Pillaiyar, T.; Manickam, M.; Namasivayam, V.; Hayashi, Y.; Jung, S-H. An overview of severe acute respiratory syndrome-coronavirus (SARS-CoV) 3CL protease inhibitors: peptidomimetics and small molecule chemotherapy. J. Med. Chem., 2016, 59(14), 6595-6628.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01461 PMID: 26878082]
[84]
Saavedra, J.M. COVID-19, Angiotensin Receptor Blockers, and the Brain. Cell. Mol. Neurobiol., 2020, 40(5), 667-674.
[http://dx.doi.org/10.1007/s10571-020-00861-y] [PMID: 32385549]
[85]
Orhan, I.E.; Senol Deniz, F.S. Natural products as potential leads against coronaviruses: could they be encouraging structural models against sars-cov-2? Nat. Prod. Bioprospect., 2020, 10(4), 171-186.
[http://dx.doi.org/10.1007/s13659-020-00250-4] [PMID: 32529545]
[86]
Xu, X.; Dang, Z.; Zhang, L.; Zhuang, L.; Jing, W.; Ji, L.; Qiu, G. Potential inhibitor for 2019-novel coronaviruses in drug development. Transl. Cancer Res., 2020, 6(1), 17.
[87]
He, J.; Hu, L.; Huang, X.; Wang, C.; Zhang, Z.; Wang, Y.; Zhang, D.; Ye, W. Potential of coronavirus 3C-like protease inhibitors for the development of new anti-SARS-CoV-2 drugs: Insights from structures of protease and inhibitors. Int. J. Antimicrob. Agents, 2020, 56(2)106055
[http://dx.doi.org/10.1016/j.ijantimicag.2020.106055 PMID: 32534187]
[88]
Liu, C.; Zhou, Q.; Li, Y.; Garner, L.V.; Watkins, S.P.; Carter, L.J.; Smoot, J.; Gregg, A.C.; Daniels, A.D.; Jervey, S.; Albaiu, D. Research and development on therapeutic agents and vaccines for covid-19 and related human coronavirus diseases. ACS Cent. Sci., 2020, 6(3), 315-331.
[http://dx.doi.org/10.1021/acscentsci.0c00272] [PMID: 32226821]
[89]
Xiu, S.; Dick, A.; Ju, H.; Mirzaie, S.; Abdi, F.; Cocklin, S.; Zhan, P.; Liu, X. Inhibitors of sars-cov-2 entry: current and future opportunities. J. Med. Chem., 2020, 63(21), 12256-12274.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00502 PMID: 32539378]
[90]
Islam, M.T.; Sarkar, C.; El-Kersh, D.M.; Jamaddar, S.; Uddin, S.J.; Shilpi, J.A.; Mubarak, M.S. Natural products and their derivatives against coronavirus: A review of the non-clinical and pre-clinical data. Phytother. Res., 2020, 34(10), 2471-2492.
[http://dx.doi.org/10.1002/ptr.6700] [PMID: 32248575]
[91]
Elfiky, A.A. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci., 2020, 248117477
[http://dx.doi.org/10.1016/j.lfs.2020.117477] [PMID: 32119961]
[92]
Little, P. Non-steroidal anti-inflammatory drugs and covid-19. BMJ, 2020, 368, m1185.
[http://dx.doi.org/10.1136/bmj.m1185] [PMID: 32220865]
[93]
Zhang, L.; Lin, D.; Sun, X.; Curth, U.; Drosten, C.; Sauerhering, L.; Becker, S.; Rox, K.; Hilgenfeld, R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors. Science, 2020, 368(6489), 409-412.
[http://dx.doi.org/10.1126/science.abb3405] [PMID: 32198291]
[94]
Tan, J.; Verschueren, K.H.; Anand, K.; Shen, J.; Yang, M.; Xu, Y.; Rao, Z.; Bigalke, J.; Heisen, B.; Mesters, J.R.; Chen, K.; Shen, X.; Jiang, H.; Hilgenfeld, R. pH-dependent conformational flexibility of the SARS-CoV main proteinase (M(pro)) dimer: molecular dynamics simulations and multiple X-ray structure analyses. J. Mol. Biol., 2005, 354(1), 25-40.
[http://dx.doi.org/10.1016/j.jmb.2005.09.012] [PMID: 16242152]
[95]
Shi, J.; Song, J. The catalysis of the SARS 3C-like protease is under extensive regulation by its extra domain. FEBS J., 2006, 273(5), 1035-1045.
[http://dx.doi.org/10.1111/j.1742-4658.2006.05130.x PMID: 16478476]
[96]
Anand, K.; Palm, G.J.; Mesters, J.R.; Siddell, S.G.; Ziebuhr, J.; Hilgenfeld, R. Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra α-helical domain. EMBO J., 2002, 21(13), 3213-3224.
[http://dx.doi.org/10.1093/emboj/cdf327] [PMID: 12093723]
[97]
Lim, L.; Shi, J.; Mu, Y.; Song, J. Dynamically-driven enhancement of the catalytic machinery of the SARS 3C-like protease by the S284-T285-I286/A mutations on the extra domain. PLoS One, 2014, 9(7)e101941
[http://dx.doi.org/10.1371/journal.pone.0101941] [PMID: 25036652]
[98]
The Molecular operating; Environment Chemical Computing Group, Inc.: Montreal, Quebec, Canada, 2016.
[99]
Lu, I-L.; Mahindroo, N.; Liang, P-H.; Peng, Y-H.; Kuo, C-J.; Tsai, K-C.; Hsieh, H-P.; Chao, Y-S.; Wu, S-Y. Structure-based drug design and structural biology study of novel nonpeptide inhibitors of severe acute respiratory syndrome coronavirus main protease. J. Med. Chem., 2006, 49(17), 5154-5161.
[http://dx.doi.org/10.1021/jm060207o] [PMID: 16913704]
[100]
Xue, X.; Yu, H.; Yang, H.; Xue, F.; Wu, Z.; Shen, W.; Li, J.; Zhou, Z.; Ding, Y.; Zhao, Q.; Zhang, X.C.; Liao, M.; Bartlam, M.; Rao, Z. Structures of two coronavirus main proteases: implications for substrate binding and antiviral drug design. J. Virol., 2008, 82(5), 2515-2527.
[http://dx.doi.org/10.1128/JVI.02114-07] [PMID: 18094151]
[101]
Chou, K-C.; Wei, D-Q.; Zhong, W-Z. Binding mechanism of coronavirus main proteinase with ligands and its implication to drug design against SARS. Biochem. Biophys. Res. Commun., 2003, 308(1), 148-151.
[http://dx.doi.org/10.1016/S0006-291X(03)01342-1 PMID: 12890493]
[102]
Zheng, L.; Zhang, L.; Huang, J.; Nandakumar, K.S.; Liu, S.; Cheng, K. Potential treatment methods targeting 2019-nCoV infection. Eur. J. Med. Chem., 2020, 205112687
[http://dx.doi.org/10.1016/j.ejmech.2020.112687] [PMID: 32771797]
[103]
Jin, Z.; Du, X.; Xu, Y.; Deng, Y.; Liu, M.; Zhao, Y.; Zhang, B.; Li, X.; Zhang, L.; Peng, C.; Duan, Y.; Yu, J.; Wang, L.; Yang, K.; Liu, F.; Jiang, R.; Yang, X.; You, T.; Liu, X.; Yang, X.; Bai, F.; Liu, H.; Liu, X.; Guddat, L.W.; Xu, W.; Xiao, G.; Qin, C.; Shi, Z.; Jiang, H.; Rao, Z.; Yang, H. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature, 2020, 582(7811), 289-293.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[104]
Yang, H.; Xie, W.; Xue, X.; Yang, K.; Ma, J.; Liang, W.; Zhao, Q.; Zhou, Z.; Pei, D.; Ziebuhr, J.; Hilgenfeld, R.; Yuen, K.Y.; Wong, L.; Gao, G.; Chen, S.; Chen, Z.; Ma, D.; Bartlam, M.; Rao, Z. Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol., 2005, 3(10)e428
[http://dx.doi.org/10.1371/journal.pbio.0030324] [PMID: 16128623]
[105]
Ren, Z.; Yan, L.; Zhang, N.; Guo, Y.; Yang, C.; Lou, Z.; Rao, Z. The newly emerged SARS-like coronavirus HCoV-EMC also has an “Achilles’ heel”: current effective inhibitor targeting a 3C-like protease. Protein Cell, 2013, 4(4), 248-250.
[http://dx.doi.org/10.1007/s13238-013-2841-3] [PMID: 23549610]
[106]
Wang, F.; Chen, C.; Tan, W.; Yang, K.; Yang, H. Structure of main protease from human coronavirus NL63: insights for wide spectrum anti-coronavirus drug design. Sci. Rep., 2016, 6, 22677.
[http://dx.doi.org/10.1038/srep22677] [PMID: 26948040]
[107]
Ghosh, A.K.; Xi, K.; Ratia, K.; Santarsiero, B.D.; Fu, W.; Harcourt, B.H.; Rota, P.A.; Baker, S.C.; Johnson, M.E.; Mesecar, A.D. Design and synthesis of peptidomimetic severe acute respiratory syndrome chymotrypsin-like protease inhibitors. J. Med. Chem., 2005, 48(22), 6767-6771.
[http://dx.doi.org/10.1021/jm050548m] [PMID: 16250632]
[108]
Sirois, S.; Zhang, R.; Gao, W.; Gao, H.; Li, Y.; Zheng, H.; Wei, D-Q. Discovery of potent anti-SARS-CoV Mpro inhibitors. Curr.Comput.-. Aided Drug Des., 2007, 3(3), 191-200.
[http://dx.doi.org/10.2174/157340907781695440]
[109]
Seipelt, J.; Guarné, A.; Bergmann, E.; James, M.; Sommergruber, W.; Fita, I.; Skern, T. The structures of picornaviral proteinases. Virus Res., 1999, 62(2), 159-168.
[http://dx.doi.org/10.1016/S0168-1702(99)00043-X PMID: 10507325]
[110]
Lee, T-W.; Cherney, M.M.; Huitema, C.; Liu, J.; James, K.E.; Powers, J.C.; Eltis, L.D.; James, M.N. Crystal structures of the main peptidase from the SARS coronavirus inhibited by a substrate-like aza-peptide epoxide. J. Mol. Biol., 2005, 353(5), 1137-1151.
[http://dx.doi.org/10.1016/j.jmb.2005.09.004] [PMID: 16219322]
[111]
Wu, C-Y.; Jan, J-T.; Ma, S-H.; Kuo, C-J.; Juan, H-F.; Cheng, Y-S.E.; Hsu, H-H.; Huang, H-C.; Wu, D.; Brik, A.; Liang, F.S.; Liu, R.S.; Fang, J.M.; Chen, S.T.; Liang, P.H.; Wong, C.H. Small molecules targeting severe acute respiratory syndrome human coronavirus. Proc. Natl. Acad. Sci. USA, 2004, 101(27), 10012-10017.
[http://dx.doi.org/10.1073/pnas.0403596101] [PMID: 15226499]
[112]
Shie, J-J.; Fang, J-M.; Kuo, T-H.; Kuo, C-J.; Liang, P-H.; Huang, H-J.; Wu, Y-T.; Jan, J-T.; Cheng, Y-S.E.; Wong, C-H. Inhibition of the severe acute respiratory syndrome 3CL protease by peptidomimetic α,β-unsaturated esters. Bioorg. Med. Chem., 2005, 13(17), 5240-5252.
[http://dx.doi.org/10.1016/j.bmc.2005.05.065] [PMID: 15994085]
[113]
Dai, W.; Zhang, B.; Jiang, X-M.; Su, H.; Li, J.; Zhao, Y.; Xie, X.; Jin, Z.; Peng, J.; Liu, F.; Li, C.; Li, Y.; Bai, F.; Wang, H.; Cheng, X.; Cen, X.; Hu, S.; Yang, X.; Wang, J.; Liu, X.; Xiao, G.; Jiang, H.; Rao, Z.; Zhang, L.K.; Xu, Y.; Yang, H.; Liu, H. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science, 2020, 368(6497), 1331-1335.
[http://dx.doi.org/10.1126/science.abb4489] [PMID: 32321856]
[114]
McKeage, M.J. Comparative adverse effect profiles of platinum drugs. Drug Saf., 1995, 13(4), 228-244.
[http://dx.doi.org/10.2165/00002018-199513040-00003 PMID: 8573296]
[115]
Woessner, K.M. Crossreacting drugs and chemicals. Clin. Rev. Allergy Immunol., 2003, 24(2), 149-158.
[http://dx.doi.org/10.1385/CRIAI:24:2:149] [PMID: 12668895]
[116]
Jain, R.P.; Pettersson, H.I.; Zhang, J.; Aull, K.D.; Fortin, P.D.; Huitema, C.; Eltis, L.D.; Parrish, J.C.; James, M.N.; Wishart, D.S.; Vederas, J.C. Synthesis and evaluation of keto-glutamine analogues as potent inhibitors of severe acute respiratory syndrome 3CLpro. J. Med. Chem., 2004, 47(25), 6113-6116.
[http://dx.doi.org/10.1021/jm0494873] [PMID: 15566280]
[117]
Jain, R.P.; Vederas, J.C. Structural variations in keto-glutamines for improved inhibition against hepatitis A virus 3C proteinase. Bioorg. Med. Chem. Lett., 2004, 14(14), 3655-3658.
[http://dx.doi.org/10.1016/j.bmcl.2004.05.021] [PMID: 15203137]
[118]
Shie, J-J.; Fang, J-M.; Kuo, C-J.; Kuo, T-H.; Liang, P-H.; Huang, H-J.; Yang, W-B.; Lin, C-H.; Chen, J-L.; Wu, Y-T.; Wong, C.H. Discovery of potent anilide inhibitors against the severe acute respiratory syndrome 3CL protease. J. Med. Chem., 2005, 48(13), 4469-4473.
[http://dx.doi.org/10.1021/jm050184y] [PMID: 15974598]
[119]
Chen, L-R.; Wang, Y-C.; Lin, Y.W.; Chou, S-Y.; Chen, S-F.; Liu, L.T.; Wu, Y-T.; Kuo, C-J.; Chen, T.S-S.; Juang, S-H. Synthesis and evaluation of isatin derivatives as effective SARS coronavirus 3CL protease inhibitors. Bioorg. Med. Chem. Lett., 2005, 15(12), 3058-3062.
[http://dx.doi.org/10.1016/j.bmcl.2005.04.027] [PMID: 15896959]
[120]
Webber, S.E.; Tikhe, J.; Worland, S.T.; Fuhrman, S.A.; Hendrickson, T.F.; Matthews, D.A.; Love, R.A.; Patick, A.K.; Meador, J.W.; Ferre, R.A.; Brown, E.L.; DeLisle, D.M.; Ford, C.E.; Binford, S.L. Design, synthesis, and evaluation of nonpeptidic inhibitors of human rhinovirus 3C protease. J. Med. Chem., 1996, 39(26), 5072-5082.
[http://dx.doi.org/10.1021/jm960603e] [PMID: 8978838]
[121]
Kuo, C-J.; Chi, Y-H.; Hsu, J.T-A.; Liang, P-H. Characterization of SARS main protease and inhibitor assay using a fluorogenic substrate. Biochem. Biophys. Res. Commun., 2004, 318(4), 862-867.
[http://dx.doi.org/10.1016/j.bbrc.2004.04.098] [PMID: 15147951]
[122]
Bacha, U.; Barrila, J.; Velazquez-Campoy, A.; Leavitt, S.A.; Freire, E. Identification of novel inhibitors of the SARS coronavirus main protease 3CLpro. Biochemistry, 2004, 43(17), 4906-4912.
[http://dx.doi.org/10.1021/bi0361766] [PMID: 15109248]
[123]
Liang, P-H. Characterization and inhibition of SARS-coronavirus main protease. Curr. Top. Med. Chem., 2006, 6(4), 361-376.
[http://dx.doi.org/10.2174/156802606776287090] [PMID: 16611148]
[124]
Zhang, H-Z.; Zhang, H.; Kemnitzer, W.; Tseng, B.; Cinatl, J., Jr; Michaelis, M.; Doerr, H.W.; Cai, S.X. Design and synthesis of dipeptidyl glutaminyl fluoromethyl ketones as potent severe acute respiratory syndrome coronovirus (SARS-CoV) inhibitors. J. Med. Chem., 2006, 49(3), 1198-1201.
[http://dx.doi.org/10.1021/jm0507678] [PMID: 16451084]
[125]
Spagnuolo, V.; Castagna, A.; Lazzarin, A. Darunavir for the treatment of HIV infection. Expert Opin. Pharmacother., 2018, 19(10), 1149-1163.
[http://dx.doi.org/10.1080/14656566.2018.1484901 PMID: 29913082]
[126]
Vastag, B. Old drugs for a new bug: influenza, HIV drugs enlisted to fight SARS. JAMA, 2003, 290(13), 1695-1696.
[http://dx.doi.org/10.1001/jama.290.13.1695] [PMID: 14519691]
[127]
Zhang, X.W.; Yap, Y.L. Old drugs as lead compounds for a new disease? Binding analysis of SARS coronavirus main proteinase with HIV, psychotic and parasite drugs. Bioorg. Med. Chem., 2004, 12(10), 2517-2521.
[http://dx.doi.org/10.1016/j.bmc.2004.03.035] [PMID: 15110833]
[128]
Rajnarayanan, R.V.; Dakshanamurthy, S.; Pattabiraman, N. “Teaching old drugs to kill new bugs”: structure-based discovery of anti-SARS drugs. Biochem. Biophys. Res. Commun., 2004, 321(2), 370-378.
[http://dx.doi.org/10.1016/j.bbrc.2004.06.155] [PMID: 15358186]
[129]
Marra, M.A.; Jones, S.J.; Astell, C.R.; Holt, R.A.; Brooks-Wilson, A.; Butterfield, Y.S.; Khattra, J.; Asano, J.K.; Barber, S.A.; Chan, S.Y.; Cloutier, A.; Coughlin, S.M.; Freeman, D.; Girn, N.; Griffith, O.L.; Leach, S.R.; Mayo, M.; McDonald, H.; Montgomery, S.B.; Pandoh, P.K.; Petrescu, A.S.; Robertson, A.G.; Schein, J.E.; Siddiqui, A.; Smailus, D.E.; Stott, J.M.; Yang, G.S.; Plummer, F.; Andonov, A.; Artsob, H.; Bastien, N.; Bernard, K.; Booth, T.F.; Bowness, D.; Czub, M.; Drebot, M.; Fernando, L.; Flick, R.; Garbutt, M.; Gray, M.; Grolla, A.; Jones, S.; Feldmann, H.; Meyers, A.; Kabani, A.; Li, Y.; Normand, S.; Stroher, U.; Tipples, G.A.; Tyler, S.; Vogrig, R.; Ward, D.; Watson, B.; Brunham, R.C.; Krajden, M.; Petric, M.; Skowronski, D.M.; Upton, C.; Roper, R.L. The Genome sequence of the SARS-associated coronavirus. Science, 2003, 300(5624), 1399-1404.
[http://dx.doi.org/10.1126/science.1085953] [PMID: 12730501]
[130]
Hsu, J.T-A.; Kuo, C-J.; Hsieh, H-P.; Wang, Y-C.; Huang, K-K.; Lin, C.P-C.; Huang, P-F.; Chen, X.; Liang, P-H. Evaluation of metal-conjugated compounds as inhibitors of 3CL protease of SARS-CoV. FEBS Lett., 2004, 574(1-3), 116-120.
[http://dx.doi.org/10.1016/j.febslet.2004.08.015] [PMID: 15358550]
[131]
Brewer, G.J.; Johnson, V.D.; Dick, R.D.; Hedera, P.; Fink, J.K.; Kluin, K.J. Treatment of Wilson’s disease with zinc. XVII: treatment during pregnancy. Hepatology, 2000, 31(2), 364-370.
[http://dx.doi.org/10.1002/hep.510310216] [PMID: 10655259]
[132]
Kao, R.Y.; Tsui, W.H.; Lee, T.S.; Tanner, J.A.; Watt, R.M.; Huang, J-D.; Hu, L.; Chen, G.; Chen, Z.; Zhang, L.; He, T.; Chan, K.H.; Tse, H.; To, A.P.; Ng, L.W.; Wong, B.C.; Tsoi, H.W.; Yang, D.; Ho, D.D.; Yuen, K.Y. Identification of novel small-molecule inhibitors of severe acute respiratory syndrome-associated coronavirus by chemical genetics. Chem. Biol., 2004, 11(9), 1293-1299.
[http://dx.doi.org/10.1016/j.chembiol.2004.07.013 PMID: 15380189]
[133]
Blanchard, J.E.; Elowe, N.H.; Huitema, C.; Fortin, P.D.; Cechetto, J.D.; Eltis, L.D.; Brown, E.D. High-throughput screening identifies inhibitors of the SARS coronavirus main proteinase. Chem. Biol., 2004, 11(10), 1445-1453.
[http://dx.doi.org/10.1016/j.chembiol.2004.08.011 PMID: 15489171]
[134]
Chen, L.; Gui, C.; Luo, X.; Yang, Q.; Günther, S.; Scandella, E.; Drosten, C.; Bai, D.; He, X.; Ludewig, B.; Chen, J.; Luo, H.; Yang, Y.; Yang, Y.; Zou, J.; Thiel, V.; Chen, K.; Shen, J.; Shen, X.; Jiang, H. Cinanserin is an inhibitor of the 3C-like proteinase of severe acute respiratory syndrome coronavirus and strongly reduces virus replication in vitro. J. Virol., 2005, 79(11), 7095-7103.
[http://dx.doi.org/10.1128/JVI.79.11.7095-7103.2005] [PMID: 15890949]
[135]
Rubin, B.; Piala, J.J.; Burke, J.C.; Craver, B.N. A new, potent and specific serotonin inhibitor,(SQ 10,643) 2′-(3-dimethylamino-propylthio) cinnamanilide hydrochloride: antiserotonin activity on uterus and on gastrointestinal, vascular, and respiratory systems of animals. Arch. Int. Pharmacodyn. Ther., 1964, 152, 132-143.
[PMID: 14248340]
[136]
Liu, Z.; Huang, C.; Fan, K.; Wei, P.; Chen, H.; Liu, S.; Pei, J.; Shi, L.; Li, B.; Yang, K.; Liu, Y.; Lai, L. Virtual screening of novel noncovalent inhibitors for SARS-CoV 3C-like proteinase. J. Chem. Inf. Model., 2005, 45(1), 10-17.
[http://dx.doi.org/10.1021/ci049809b] [PMID: 15667124]
[137]
Jenwitheesuk, E.; Samudrala, R. Identifying inhibitors of the SARS coronavirus proteinase. Bioorg. Med. Chem. Lett., 2003, 13(22), 3989-3992.
[http://dx.doi.org/10.1016/j.bmcl.2003.08.066] [PMID: 14592491]
[138]
Bone, R.; Vacca, J.P.; Anderson, P.S.; Holloway, M.K. X-ray crystal structure of the HIV protease complex with L-700,417, an inhibitor with pseudo C2 symmetry. J. Am. Chem. Soc., 1991, 113(24), 9382-9384.
[http://dx.doi.org/10.1021/ja00024a061]
[139]
Shimamoto, Y.; Hattori, Y.; Kobayashi, K.; Teruya, K.; Sanjoh, A.; Nakagawa, A.; Yamashita, E.; Akaji, K. Fused-ring structure of decahydroisoquinolin as a novel scaffold for SARS 3CL protease inhibitors. Bioorg. Med. Chem., 2015, 23(4), 876-890.
[http://dx.doi.org/10.1016/j.bmc.2014.12.028] [PMID: 25614110]
[140]
Ma, C.; Sacco, M.D.; Hurst, B.; Townsend, J.A.; Hu, Y.; Szeto, T.; Zhang, X.; Tarbet, B.; Marty, M.T.; Chen, Y.; Wang, J. Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Res., 2020, 30(8), 678-692.
[http://dx.doi.org/10.1038/s41422-020-0356-z] [PMID: 32541865]
[141]
Wang, J. Fast identification of possible drug treatment of coronavirus disease-19 (COVID-19) through computational drug repurposing study. J. Chem. Inf. Model., 2020, 60(6), 3277-3286.
[http://dx.doi.org/10.1021/acs.jcim.0c00179] [PMID: 32315171]
[142]
Shamsi, A.; Mohammad, T.; Anwar, S.; AlAjmi, M.F.; Hussain, A.; Rehman, M.T.; Islam, A.; Hassan, M.I. Glecaprevir and Maraviroc are high-affinity inhibitors of SARS-CoV-2 main protease: possible implication in COVID-19 therapy. Biosci. Rep., 2020, 40(6)
[http://dx.doi.org/10.1042/BSR20201256] [PMID: 32441299]
[143]
Zhang, B.; Zhao, Y.; Jin, Z.; Liu, X.; Yang, H.; Rao, Z. The crystal structure of COVID-19 main protease in apo form, 2020.https://www.rcsb.org/structure/6M03
[144]
Hofmarcher, M.; Mayr, A.; Rumetshofer, E.; Ruch, P.; Renz, P.; Schimunek, J.; Seidl, P.; Vall, A.; Widrich, M.; Hochreiter, S. Large-scale ligand-based virtual screening for SARS-CoV-2 inhibitors using deep neural networks; , 2020. In Press
[145]
Ibrahim, M.A.A.; Abdeljawaad, K.A.A.; Abdelrahman, A.H.M.; Hegazy, M.F. Natural-like products as potential SARS-CoV-2 Mpro inhibitors: in-silico drug discovery. J. Biomol. Struct. Dyn., 2020, 1-13. [Online ahead of Print
[146]
Kim, J.W.; Ha, T-K-Q.; Cho, H.; Kim, E.; Shim, S.H.; Yang, J-L.; Oh, W.K. Antiviral escin derivatives from the seeds of Aesculus turbinata Blume (Japanese horse chestnut). Bioorg. Med. Chem. Lett., 2017, 27(13), 3019-3025.
[http://dx.doi.org/10.1016/j.bmcl.2017.05.022] [PMID: 28527823]
[147]
Lin, C.W.; Tsai, F.J.; Tsai, C.H.; Lai, C.C.; Wan, L.; Ho, T.Y.; Hsieh, C.C.; Chao, P.D. Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res., 2005, 68(1), 36-42.
[http://dx.doi.org/10.1016/j.antiviral.2005.07.002] [PMID: 16115693]
[148]
Ryu, Y.B.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, J-Y.; Kim, D.; Nguyen, T.T.; Park, S-J.; Chang, J.S.; Park, K.H.; Rho, M.C.; Lee, W.S. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorg. Med. Chem., 2010, 18(22), 7940-7947.
[http://dx.doi.org/10.1016/j.bmc.2010.09.035] [PMID: 20934345]
[149]
Gentile, D.; Patamia, V.; Scala, A.; Sciortino, M.T.; Piperno, A.; Rescifina, A. Putative inhibitors of SARS-CoV-2 main protease from a library of marine natural products: A virtual screening and molecular modeling study. Mar. Drugs, 2020, 18(4), 225.
[http://dx.doi.org/10.3390/md18040225] [PMID: 32340389]
[150]
Park, J.Y.; Kim, J.H.; Kim, Y.M.; Jeong, H.J.; Kim, D.W.; Park, K.H.; Kwon, H.J.; Park, S.J.; Lee, W.S.; Ryu, Y.B. Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases. Bioorg. Med. Chem., 2012, 20(19), 5928-5935.
[http://dx.doi.org/10.1016/j.bmc.2012.07.038] [PMID: 22884354]
[151]
Park, J-Y.; Jeong, H.J.; Kim, Y.M.; Park, S-J.; Rho, M-C.; Park, K.H.; Ryu, Y.B.; Lee, W.S. Characteristic of alkylated chalcones from Angelica keiskei on influenza virus neuraminidase inhibition. Bioorg. Med. Chem. Lett., 2011, 21(18), 5602-5604.
[http://dx.doi.org/10.1016/j.bmcl.2011.06.130] [PMID: 21824777]
[152]
Park, J-Y.; Jeong, H.J.; Kim, J.H.; Kim, Y.M.; Park, S-J.; Kim, D.; Park, K.H.; Lee, W.S.; Ryu, Y.B. Diarylheptanoids from Alnus japonica inhibit papain-like protease of severe acute respiratory syndrome coronavirus. Biol. Pharm. Bull., 2012, 35(11), 2036-2044.
[153]
Kim, D.W.; Seo, K.H.; Curtis-Long, M.J.; Oh, K.Y.; Oh, J-W.; Cho, J.K.; Lee, K.H.; Park, K.H. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia. J. Enzyme Inhib. Med. Chem., 2014, 29(1), 59-63.
[http://dx.doi.org/10.3109/14756366.2012.753591 PMID: 23323951]
[154]
Cho, J.K.; Curtis-Long, M.J.; Lee, K.H.; Kim, D.W.; Ryu, H.W.; Yuk, H.J.; Park, K.H. Geranylated flavonoids displaying SARS-CoV papain-like protease inhibition from the fruits of Paulownia tomentosa. Bioorg. Med. Chem., 2013, 21(11), 3051-3057.
[http://dx.doi.org/10.1016/j.bmc.2013.03.027] [PMID: 23623680]
[155]
Park, J.Y.; Yuk, H.J.; Ryu, H.W.; Lim, S.H.; Kim, K.S.; Park, K.H.; Ryu, Y.B.; Lee, W.S. Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 504-515.
[http://dx.doi.org/10.1080/14756366.2016.1265519 PMID: 28112000]
[156]
Sayed, A.M.; Khattab, A.R. AboulMagd, A. M.; Hassan, H. M.; Rateb, M. E.; Zaid, H.; Abdelmohsen, U. R. Nature as a treasure trove of potential anti-SARS-CoV drug leads: a structural/mechanistic rationale. RSC Advances, 2020, 10(34), 19790-19802.
[http://dx.doi.org/10.1039/D0RA04199H]
[157]
Song, Y.H.; Kim, D.W.; Curtis-Long, M.J.; Yuk, H.J.; Wang, Y.; Zhuang, N.; Lee, K.H.; Jeon, K.S.; Park, K.H. Papain-like protease (PLpro) inhibitory effects of cinnamic amides from Tribulus terrestris fruits. Biol. Pharm. Bull., 2014, 37(6), 1021-1028.
[http://dx.doi.org/10.1248/bpb.b14-00026] [PMID: 24882413]
[158]
Korber, B.; Fischer, W.M.; Gnanakaran, S.; Yoon, H.; Theiler, J.; Abfalterer, W.; Hengartner, N.; Giorgi, E.E.; Bhattacharya, T.; Foley, B. Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell, 2020, 182(4), 812-827.
[http://dx.doi.org/10.1016/j.cell.2020.06.043]
[159]
Grubaugh, N.D.; Hanage, W.P.; Rasmussen, A.L. Making sense of mutation: what D614G means for the COVID-19 pandemic remains unclear. Cell, 2020, 182(4), 794-795.
[http://dx.doi.org/10.1016/j.cell.2020.06.040] [PMID: 32697970]
[160]
Zhang, L.; Jackson, C.B.; Mou, H.; Ojha, A.; Rangarajan, E.S.; Izard, T.; Farzan, M.; Choe, H. 2020.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy