Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Heart Failure in Diabetes Mellitus: An Updated Review

Author(s): Catrin Sohrabi, Bunny Saberwal, Wei-Yao Lim, Dimitris Tousoulis, Syed Ahsan and Nikolaos Papageorgiou*

Volume 26, Issue 46, 2020

Page: [5933 - 5952] Pages: 20

DOI: 10.2174/1381612826666201118091659

Price: $65

Abstract

Diabetes mellitus (DM) and heart failure (HF) are comorbid conditions associated with significant morbidity and mortality worldwide. Despite the availability of novel and effective therapeutic options and intensive glycaemic control strategies, mortality and hospitalisation rates continue to remain high and the incidence of HF persists. In this review, we described the impact of currently available glucose-lowering therapies in DM with a focus on HF clinical outcomes. Non-conventional modes of management and alternative pathophysiological mechanisms with the potential for therapeutic targeting are also discussed.

Keywords: Heart failure, diabetes, T2DM, diabetic cardiomyopathy, HF, DM.

[1]
Bommer C, Sagalova V, Heesemann E, et al. Global Economic Burden of Diabetes in Adults: Projections From 2015 to 2030. Diabetes Care 2018; 41(5): 963-70.
[http://dx.doi.org/10.2337/dc17-1962] [PMID: 29475843]
[2]
Kannel WB, Hjortland M, Castelli WP. Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol 1974; 34(1): 29-34.
[http://dx.doi.org/10.1016/0002-9149(74)90089-7] [PMID: 4835750]
[3]
Kannel WB, McGee DL. Diabetes and cardiovascular disease. The Framingham study. JAMA 1979; 241(19): 2035-8.
[http://dx.doi.org/10.1001/jama.1979.03290450033020] [PMID: 430798]
[4]
Nichols GA, Gullion CM, Koro CE, Ephross SA, Brown JB. The incidence of congestive heart failure in type 2 diabetes: an update. Diabetes Care 2004; 27(8): 1879-84.
[http://dx.doi.org/10.2337/diacare.27.8.1879] [PMID: 15277411]
[5]
Kristensen SL, Preiss D, Jhund PS, et al. Risk Related to Pre-Diabetes Mellitus and Diabetes Mellitus in Heart Failure With Reduced Ejection Fraction: Insights From Prospective Comparison of ARNI With ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure Trial. Circ Heart Fail 2016; 9(1): 1-12.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.115.002560] [PMID: 26754626]
[6]
Ofstad AP, Atar D, Gullestad L, Langslet G, Johansen OE. The heart failure burden of type 2 diabetes mellitus-a review of pathophysiology and interventions. Heart Fail Rev 2018; 23(3): 303-23.
[http://dx.doi.org/10.1007/s10741-018-9685-0] [PMID: 29516230]
[7]
Parving H-H, Brenner BM, McMurray JJV, et al. Cardiorenal end points in a trial of aliskiren for type 2 diabetes. N Engl J Med 2012; 367(23): 2204-13.
[http://dx.doi.org/10.1056/NEJMoa1208799] [PMID: 23121378]
[8]
Deedwania PC, Giles TD, Klibaner M, et al. Efficacy, safety and tolerability of metoprolol CR/XL in patients with diabetes and chronic heart failure: experiences from MERIT-HF. Am Heart J 2005; 149(1): 159-67.
[http://dx.doi.org/10.1016/j.ahj.2004.05.056] [PMID: 15660048]
[9]
Cleland JGF, Tendera M, Adamus J, Freemantle N, Polonski L, Taylor J. The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur Heart J 2006; 27(19): 2338-45.
[http://dx.doi.org/10.1093/eurheartj/ehl250] [PMID: 16963472]
[10]
de Boer RA, Doehner W, van der Horst ICC, et al. Influence of diabetes mellitus and hyperglycemia on prognosis in patients > or =70 years old with heart failure and effects of nebivolol (data from the Study of Effects of Nebivolol Intervention on Outcomes and Rehospitalization in Seniors with heart failure [SENIORS]). Am J Cardiol 2010; 106(1): 78-86.e1.
[http://dx.doi.org/10.1016/j.amjcard.2010.02.018] [PMID: 20609652]
[11]
Pitt B, Pfeffer MA, Assmann SF, et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med 2014; 370(15): 1383-92.
[http://dx.doi.org/10.1056/NEJMoa1313731] [PMID: 24716680]
[12]
Banks AZ, Mentz RJ, Stebbins A, et al. Response to Exercise Training and Outcomes in Patients With Heart Failure and Diabetes Mellitus: Insights From the HF-ACTION Trial. J Card Fail 2016; 22(7): 485-91.
[http://dx.doi.org/10.1016/j.cardfail.2015.12.007] [PMID: 26687984]
[13]
Teerlink JR, Voors AA, Ponikowski P, et al. Serelaxin in addition to standard therapy in acute heart failure: rationale and design of the RELAX-AHF-2 study. Eur J Heart Fail 2017; 19(6): 800-9.
[http://dx.doi.org/10.1002/ejhf.830] [PMID: 28452195]
[14]
Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 1972; 30(6): 595-602.
[http://dx.doi.org/10.1016/0002-9149(72)90595-4] [PMID: 4263660]
[15]
Jia G, DeMarco VG, Sowers JR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol 2016; 12(3): 144-53.
[http://dx.doi.org/10.1038/nrendo.2015.216] [PMID: 26678809]
[16]
Yoon S, Eom GH. Heart failure with preserved ejection fraction: present status and future directions. Exp Mol Med 2019; 51(12): 1-9.
[http://dx.doi.org/10.1038/s12276-019-0323-2] [PMID: 31857581]
[17]
Abbott RD, Donahue RP, Kannel WB, Wilson PW. The impact of diabetes on survival following myocardial infarction in men vs women. The Framingham Study. JAMA 1988; 260(23): 3456-60.
[http://dx.doi.org/10.1001/jama.1988.03410230074031] [PMID: 2974889]
[18]
Bella JN, Devereux RB, Roman MJ, et al. Separate and joint effects of systemic hypertension and diabetes mellitus on left ventricular structure and function in American Indians (the Strong Heart Study). Am J Cardiol 2001; 87(11): 1260-5.
[http://dx.doi.org/10.1016/S0002-9149(01)01516-8] [PMID: 11377351]
[19]
Palmieri V, Bella JN, Arnett DK, et al. Effect of type 2 diabetes mellitus on left ventricular geometry and systolic function in hypertensive subjects: Hypertension Genetic Epidemiology Network (HyperGEN) study. Circulation 2001; 103(1): 102-7.
[http://dx.doi.org/10.1161/01.CIR.103.1.102] [PMID: 11136693]
[20]
Borlaug BA, Paulus WJ. Heart failure with preserved ejection fraction: pathophysiology, diagnosis, and treatment. Eur Heart J 2011; 32(6): 670-9.
[http://dx.doi.org/10.1093/eurheartj/ehq426] [PMID: 21138935]
[21]
Munagala VK, Hart CYT, Burnett JC Jr, Meyer DM, Redfield MM. Ventricular structure and function in aged dogs with renal hypertension: a model of experimental diastolic heart failure. Circulation 2005; 111(9): 1128-35.
[http://dx.doi.org/10.1161/01.CIR.0000157183.21404.63] [PMID: 15723971]
[22]
Simmonds SJ, Cuijpers I, Heymans S. Cellular and Molecular Di ff erences between HFpEF and HFrEF : A Step Ahead in an Improved. Cells 2020; 9: 242.
[http://dx.doi.org/10.3390/cells9010242]
[23]
Balmain S, Padmanabhan N, Ferrell WR, Morton JJ, McMurray JJ. Differences in arterial compliance, microvascular function and venous capacitance between patients with heart failure and either preserved or reduced left ventricular systolic function. Eur J Heart Fail 2007; 9(9): 865-71.
[http://dx.doi.org/10.1016/j.ejheart.2007.06.003] [PMID: 17644472]
[24]
Shapiro BP, Lam CSP, Patel JB, et al. Acute and chronic ventricular-arterial coupling in systole and diastole: insights from an elderly hypertensive model. Hypertension 2007; 50(3): 503-11.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.107.090092] [PMID: 17620524]
[25]
Shapiro BP, Owan TE, Mohammed SF, et al. Advanced glycation end products accumulate in vascular smooth muscle and modify vascular but not ventricular properties in elderly hypertensive canines. Circulation 2008; 118(10): 1002-10.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.777326] [PMID: 18711013]
[26]
Zakeri R, Chamberlain AM, Roger VL, Redfield MM. Temporal relationship and prognostic significance of atrial fibrillation in heart failure patients with preserved ejection fraction: a community-based study. Circulation 2013; 128(10): 1085-93.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.001475] [PMID: 23908348]
[27]
Bertoni AG, Hundley WG, Massing MW, Bonds DE, Burke GL, Goff DC Jr. Heart failure prevalence, incidence, and mortality in the elderly with diabetes. Diabetes Care 2004; 27(3): 699-703.
[http://dx.doi.org/10.2337/diacare.27.3.699] [PMID: 14988288]
[28]
MacDonald MR, Petrie MC, Varyani F, et al. Impact of diabetes on outcomes in patients with low and preserved ejection fraction heart failure: an analysis of the Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity (CHARM) programme. Eur Heart J 2008; 29(11): 1377-85.
[http://dx.doi.org/10.1093/eurheartj/ehn153] [PMID: 18413309]
[29]
Targher G, Dauriz M, Laroche C, et al. In-hospital and 1-year mortality associated with diabetes in patients with acute heart failure: results from the ESC-HFA Heart Failure Long-Term Registry. Eur J Heart Fail 2017; 19(1): 54-65.
[http://dx.doi.org/10.1002/ejhf.679] [PMID: 27790816]
[30]
Sarma S, Mentz RJ, Kwasny MJ, et al. Association between diabetes mellitus and post-discharge outcomes in patients hospitalized with heart failure: findings from the EVEREST trial. Eur J Heart Fail 2013; 15(2): 194-202.
[http://dx.doi.org/10.1093/eurjhf/hfs153] [PMID: 23059198]
[31]
Iribarren C, Karter AJ, Go AS, et al. Glycemic control and heart failure among adult patients with diabetes. Circulation 2001; 103(22): 2668-73.
[http://dx.doi.org/10.1161/01.CIR.103.22.2668] [PMID: 11390335]
[32]
Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352(9131): 837-53.
[http://dx.doi.org/10.1016/S0140-6736(98)07019-6] [PMID: 9742976]
[33]
Turnbull FM, Abraira C, Anderson RJ, et al. Intensive glucose control and macrovascular outcomes in type 2 diabetes. Diabetologia 2009; 52(11): 2288-98.
[http://dx.doi.org/10.1007/s00125-009-1470-0] [PMID: 19655124]
[34]
Boussageon R, Bejan-Angoulvant T, Saadatian-Elahi M, et al. Effect of intensive glucose lowering treatment on all cause mortality, cardiovascular death, and microvascular events in type 2 diabetes: meta-analysis of randomised controlled trials. BMJ 2011; 343: d4169-9.
[http://dx.doi.org/10.1136/bmj.d4169] [PMID: 21791495]
[35]
Castagno D, Baird-Gunning J, Jhund PS, et al. Intensive glycemic control has no impact on the risk of heart failure in type 2 diabetic patients: evidence from a 37,229 patient meta-analysis. Am Heart J 2011; 162(5): 938-948.e2.
[http://dx.doi.org/10.1016/j.ahj.2011.07.030] [PMID: 22093212]
[36]
Eurich DT, Weir DL, Majumdar SR, et al. Comparative safety and effectiveness of metformin in patients with diabetes mellitus and heart failure: systematic review of observational studies involving 34,000 patients. Circ Heart Fail 2013; 6(3): 395-402.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.112.000162] [PMID: 23508758]
[37]
Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2016; 375(4): 311-22.
[http://dx.doi.org/10.1056/NEJMoa1603827] [PMID: 27295427]
[38]
Marso SP, Bain SC, Consoli A, et al. Semaglutide and Cardiovascular Outcomes in Patients with Type 2 Diabetes. N Engl J Med 2016; 375(19): 1834-44.
[http://dx.doi.org/10.1056/NEJMoa1607141] [PMID: 27633186]
[39]
Smooke S, Horwich TB, Fonarow GC. Insulin-treated diabetes is associated with a marked increase in mortality in patients with advanced heart failure. Am Heart J 2005; 149(1): 168-74.
[http://dx.doi.org/10.1016/j.ahj.2004.07.005] [PMID: 15660049]
[40]
Scirica BM, Braunwald E, Raz I, et al. Heart failure, saxagliptin, and diabetes mellitus: observations from the SAVOR-TIMI 53 randomized trial. Circulation 2014; 130(18): 1579-88.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.010389] [PMID: 25189213]
[41]
Bain S, Druyts E, Balijepalli C, et al. Cardiovascular events and all-cause mortality associated with sulphonylureas compared with other antihyperglycaemic drugs: A Bayesian meta-analysis of survival data. Diabetes Obes Metab 2017; 19(3): 329-35.
[http://dx.doi.org/10.1111/dom.12821] [PMID: 27862902]
[42]
Home PD, Pocock SJ, Beck-Nielsen H, et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet 2009; 373(9681): 2125-35.
[http://dx.doi.org/10.1016/S0140-6736(09)60953-3] [PMID: 19501900]
[43]
Shekelle PG, Rich MW, Morton SC, et al. Efficacy of angiotensin-converting enzyme inhibitors and beta-blockers in the management of left ventricular systolic dysfunction according to race, gender, and diabetic status: a meta-analysis of major clinical trials. J Am Coll Cardiol 2003; 41(9): 1529-38.
[http://dx.doi.org/10.1016/S0735-1097(03)00262-6] [PMID: 12742294]
[44]
Carr AA, Kowey PR, Devereux RB, et al. Hospitalizations for new heart failure among subjects with diabetes mellitus in the RENAAL and LIFE studies. Am J Cardiol 2005; 96(11): 1530-6.
[http://dx.doi.org/10.1016/j.amjcard.2005.07.061] [PMID: 16310435]
[45]
Haas SJ, Vos T, Gilbert RE, Krum H. Are β-blockers as efficacious in patients with diabetes mellitus as in patients without diabetes mellitus who have chronic heart failure? A meta-analysis of large-scale clinical trials. Am Heart J 2003; 146(5): 848-53.
[http://dx.doi.org/10.1016/S0002-8703(03)00403-4] [PMID: 14597934]
[46]
Lincoff AM, Tardif J-C, Schwartz GG, et al. Effect of aleglitazar on cardiovascular outcomes after acute coronary syndrome in patients with type 2 diabetes mellitus: the AleCardio randomized clinical trial. JAMA 2014; 311(15): 1515-25.
[http://dx.doi.org/10.1001/jama.2014.3321] [PMID: 24682069]
[47]
Ginsberg HN, Elam MB, Lovato LC, et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med 2010; 362(17): 1563-74.
[http://dx.doi.org/10.1056/NEJMoa1001282] [PMID: 20228404]
[48]
Erdmann E, Califf R, Gerstein HC, et al. Effects of the dual peroxisome proliferator-activated receptor activator aleglitazar in patients with Type 2 Diabetes mellitus or prediabetes. Am Heart J 2015; 170(1): 117-22.
[http://dx.doi.org/10.1016/j.ahj.2015.03.021] [PMID: 26093872]
[49]
Yusuf S, Pfeffer MA, Swedberg K, et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet 2003; 362(9386): 777-81.
[http://dx.doi.org/10.1016/S0140-6736(03)14285-7] [PMID: 13678871]
[50]
Forman D, Gaziano JM. Irbesartan in patients with heart failure and preserved ejection fraction. Curr Cardiovasc Risk Rep 2009; 3: 311-2.
[http://dx.doi.org/10.1007/s12170-009-0056-1]
[51]
Rådholm K, Figtree G, Perkovic V, et al. Canagliflozin and Heart Failure in Type 2 Diabetes Mellitus: Results From the CANVAS Program. Circulation 2018; 138(5): 458-68.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.034222] [PMID: 29526832]
[52]
Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2019; 380(4): 347-57.
[http://dx.doi.org/10.1056/NEJMoa1812389] [PMID: 30415602]
[53]
McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med 2019; 381(21): 1995-2008.
[http://dx.doi.org/10.1056/NEJMoa1911303] [PMID: 31535829]
[54]
Sena CM, Pereira AM, Seiça R. Endothelial dysfunction - a major mediator of diabetic vascular disease. Biochim Biophys Acta 2013; 1832(12): 2216-31.
[http://dx.doi.org/10.1016/j.bbadis.2013.08.006] [PMID: 23994612]
[55]
Bonner C, Kerr-Conte J, Gmyr V, et al. Inhibition of the glucose transporter SGLT2 with dapagliflozin in pancreatic alpha cells triggers glucagon secretion. Nat Med 2015; 21(5): 512-7.
[http://dx.doi.org/10.1038/nm.3828] [PMID: 25894829]
[56]
Ceriello A, Genovese S, Mannucci E, Gronda E. Glucagon and heart in type 2 diabetes: new perspectives. Cardiovasc Diabetol 2016; 15(1): 123.
[http://dx.doi.org/10.1186/s12933-016-0440-3] [PMID: 27568179]
[57]
Verma S, Garg A, Yan AT, et al. Effect of empagliflozin on left ventricular mass and diastolic function in individuals with diabetes: An important clue to the EMPA-REG OUTCOME trial? Diabetes Care 2016; 39(12): e212-3.
[http://dx.doi.org/10.2337/dc16-1312] [PMID: 27679584]
[58]
Packer M, Anker SD, Butler J, Filippatos G, Zannad F. Effects of sodium-glucose cotransporter 2 inhibitors for the treatment of patients with heart failure - Proposal of a novel mechanism of action. JAMA Cardiol 2017; 2(9): 1025-9.
[http://dx.doi.org/10.1001/jamacardio.2017.2275] [PMID: 28768320]
[59]
Striepe K, Jumar A, Ott C, et al. Effects of the selective sodium-glucose cotransporter 2 inhibitor empagliflozin on vascular function and central hemodynamics in patients with type 2 diabetes mellitus. Circulation 2017; 136(12): 1167-9.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.029529] [PMID: 28923906]
[60]
Verma S, McMurray JJV, Cherney DZI. The metabolodiuretic promise of sodium-dependent glucose cotransporter 2 inhibition: The search for the sweet spot in heart failure. JAMA Cardiol 2017; 2(9): 939-40.
[http://dx.doi.org/10.1001/jamacardio.2017.1891] [PMID: 28636701]
[61]
Packer M, Anker SD, Butler J, et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N Engl J Med 2020; 383(15): 1413-24.
[62]
Cohn JN, Tognoni G. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med 2001; 345(23): 1667-75.
[http://dx.doi.org/10.1056/NEJMoa010713] [PMID: 11759645]
[63]
Pfeffer MA, McMurray JJV, Velazquez EJ, et al. Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N Engl J Med 2003; 349(20): 1893-906.
[http://dx.doi.org/10.1056/NEJMoa032292] [PMID: 14610160]
[64]
Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B. Metformin: from mechanisms of action to therapies. Cell Metab 2014; 20(6): 953-66.
[http://dx.doi.org/10.1016/j.cmet.2014.09.018] [PMID: 25456737]
[65]
Crowley MJ, Diamantidis CJ, McDuffie JR, et al. Clinical Outcomes of Metformin Use in Populations With Chronic Kidney Disease, Congestive Heart Failure, or Chronic Liver Disease: A Systematic Review. Ann Intern Med 2017; 166(3): 191-200.
[http://dx.doi.org/10.7326/M16-1901] [PMID: 28055049]
[66]
Eurich DT, Tsuyuki RT, Majumdar SR, et al. Metformin treatment in diabetes and heart failure: when academic equipoise meets clinical reality. Trials 2009; 10: 12.
[http://dx.doi.org/10.1186/1745-6215-10-12] [PMID: 19203392]
[67]
Salpeter SR, Greyber E, Pasternak GA, Salpeter EE. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus: systematic review and meta-analysis. Arch Intern Med 2003; 163(21): 2594-602.
[http://dx.doi.org/10.1001/archinte.163.21.2594] [PMID: 14638559]
[68]
Salpeter SR, Greyber E, Pasternak GA, et al. Risk of fatal and nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev 2010; 2010(4)CD002967
[http://dx.doi.org/10.1002/14651858.CD002967.pub3]
[69]
Tseng CH. Metformin Use Is Associated With a Lower Risk of Hospitalization for Heart Failure in Patients With Type 2 Diabetes Mellitus: a Retrospective Cohort Analysis. J Am Heart Assoc 2019; 8(21)e011640
[http://dx.doi.org/10.1161/JAHA.118.011640] [PMID: 31630591]
[70]
Gundewar S, Calvert JW, Jha S, et al. Activation of AMP-activated protein kinase by metformin improves left ventricular function and survival in heart failure. Circ Res 2009; 104(3): 403-11.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.190918] [PMID: 19096023]
[71]
Bromage DI, Godec TR, Pujades-Rodriguez M, et al. Metformin use and cardiovascular outcomes after acute myocardial infarction in patients with type 2 diabetes: a cohort study. Cardiovasc Diabetol 2019; 18(1): 168.
[http://dx.doi.org/10.1186/s12933-019-0972-4] [PMID: 31815634]
[72]
Seferović PM, Petrie MC, Filippatos GS, et al. Type 2 diabetes mellitus and heart failure: a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2018; 20(5): 853-72.
[http://dx.doi.org/10.1002/ejhf.1170] [PMID: 29520964]
[73]
Gamble J-M, Simpson SH, Eurich DT, Majumdar SR, Johnson JA. Insulin use and increased risk of mortality in type 2 diabetes: a cohort study. Diabetes Obes Metab 2010; 12(1): 47-53.
[http://dx.doi.org/10.1111/j.1463-1326.2009.01125.x] [PMID: 19788429]
[74]
Murcia AM, Hennekens CH, Lamas GA, et al. Impact of diabetes on mortality in patients with myocardial infarction and left ventricular dysfunction. Arch Intern Med 2004; 164(20): 2273-9.
[http://dx.doi.org/10.1001/archinte.164.20.2273] [PMID: 15534166]
[75]
Pocock SJ, Wang D, Pfeffer MA, et al. Predictors of mortality and morbidity in patients with chronic heart failure. Eur Heart J 2006; 27(1): 65-75.
[http://dx.doi.org/10.1093/eurheartj/ehi555] [PMID: 16219658]
[76]
Cooper LB, Mi X, Mentz RJ, et al. Management of newly treated diabetes in Medicare beneficiaries with and without heart failure. Clin Cardiol 2017; 40(1): 38-45.
[http://dx.doi.org/10.1002/clc.22603] [PMID: 27783884]
[77]
Kristensen SL, Mogensen UM, Jhund PS, et al. Clinical and Echocardiographic Characteristics and Cardiovascular Outcomes According to Diabetes Status in Patients With Heart Failure and Preserved Ejection Fraction: A Report From the I-Preserve Trial (Irbesartan in Heart Failure With Preserved Ejection Fraction). Circulation 2017; 135(8): 724-35.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.024593] [PMID: 28052977]
[78]
Lawson CA, Jones PW, Teece L, et al. Association Between Type 2 Diabetes and All-Cause Hospitalization and Mortality in the UK General Heart Failure Population: Stratification by Diabetic Glycemic Control and Medication Intensification. JACC Heart Fail 2018; 6(1): 18-26.
[http://dx.doi.org/10.1016/j.jchf.2017.08.020] [PMID: 29032131]
[79]
Masoudi FA, Inzucchi SE, Wang Y, Havranek EP, Foody JM, Krumholz HM. Thiazolidinediones, metformin, and outcomes in older patients with diabetes and heart failure: an observational study. Circulation 2005; 111(5): 583-90.
[http://dx.doi.org/10.1161/01.CIR.0000154542.13412.B1] [PMID: 15699279]
[80]
McFarlane SI. Insulin therapy and type 2 diabetes: management of weight gain. J Clin Hypertens (Greenwich) 2009; 11(10): 601-7.
[http://dx.doi.org/10.1111/j.1751-7176.2009.00063.x] [PMID: 19817944]
[81]
DeFronzo RA. The effect of insulin on renal sodium metabolism. A review with clinical implications. Diabetologia 1981; 21(3): 165-71.
[http://dx.doi.org/10.1007/BF00252649] [PMID: 7028550]
[82]
Song J, Hu X, Riazi S, Tiwari S, Wade JB, Ecelbarger CA. Regulation of blood pressure, the epithelial sodium channel (ENaC), and other key renal sodium transporters by chronic insulin infusion in rats. Am J Physiol Renal Physiol 2006; 290(5): F1055-64.
[http://dx.doi.org/10.1152/ajprenal.00108.2005] [PMID: 16303859]
[83]
Gans RO, Bilo HJ, Donker AJ. The renal response to exogenous insulin in non-insulin-dependent diabetes mellitus in relation to blood pressure and cardiovascular hormonal status. Nephrol Dial Transplant 1996; 11(5): 794-802.
[http://dx.doi.org/10.1093/oxfordjournals.ndt.a027401] [PMID: 8671897]
[84]
Gerstein HC, Bosch J, Dagenais GR, et al. Cardiovascular and Other Outcomes Postintervention With Insulin Glargine and Omega-3 Fatty Acids (ORIGINALE). Diabetes Care 2016; 39(5): 709-16.
[http://dx.doi.org/10.2337/dc15-1676] [PMID: 26681720]
[85]
Gerstein HC, Bosch J, Dagenais GR, et al. Basal insulin and cardiovascular and other outcomes in dysglycemia. N Engl J Med 2012; 367(4): 319-28.
[http://dx.doi.org/10.1056/NEJMoa1203858] [PMID: 22686416]
[86]
Gerstein HC, Jung H, Rydén L, Diaz R, Gilbert RE, Yusuf S. Effect of Basal Insulin Glargine on First and Recurrent Episodes of Heart Failure Hospitalization: The ORIGIN Trial (Outcome Reduction With Initial Glargine Intervention). Circulation 2018; 137(1): 88-90.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.030924] [PMID: 29279340]
[87]
Marso SP, McGuire DK, Zinman B, et al. Efficacy and Safety of Degludec versus Glargine in Type 2 Diabetes. N Engl J Med 2017; 377(8): 723-32.
[http://dx.doi.org/10.1056/NEJMoa1615692] [PMID: 28605603]
[88]
Pratley RE, Husain M, Lingvay I, et al. Heart failure with insulin degludec versus glargine U100 in patients with type 2 diabetes at high risk of cardiovascular disease: DEVOTE 14. Cardiovasc Diabetol 2019; 18(1): 156.
[http://dx.doi.org/10.1186/s12933-019-0960-8] [PMID: 31729990]
[89]
Frye RL, August P, Brooks MM, et al. A randomized trial of therapies for type 2 diabetes and coronary artery disease. N Engl J Med 2009; 360(24): 2503-15.
[http://dx.doi.org/10.1056/NEJMoa0805796] [PMID: 19502645]
[90]
Janbon M, Chaptal J, Vedel A, et al. Accidents hypoglycémiques graves par un sulfamidothiodiazol (le VK 57 ou 2254 RP). Montp Med 1942; 21-22: 441-4.
[91]
Inagaki N, Gonoi T, Clement JP, et al. A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K+ channels. Neuron 1996; 16(5): 1011-7.
[http://dx.doi.org/10.1016/S0896-6273(00)80124-5] [PMID: 8630239]
[92]
Chutkow WA, Simon MC, Le Beau MM, Burant CF. Cloning, tissue expression, and chromosomal localization of SUR2, the putative drug-binding subunit of cardiac, skeletal muscle, and vascular KATP channels. Diabetes 1996; 45(10): 1439-45.
[http://dx.doi.org/10.2337/diab.45.10.1439] [PMID: 8826984]
[93]
Aubert G, Barefield DY, Demonbreun AR, et al. Deletion of Sulfonylurea Receptor 2 in the Adult Myocardium Enhances Cardiac Glucose Uptake and Is Cardioprotective. JACC Basic Transl Sci 2019; 4(2): 251-68.
[http://dx.doi.org/10.1016/j.jacbts.2018.11.012] [PMID: 31061927]
[94]
Phung OJ, Scholle JM, Talwar M, Coleman CI. Effect of noninsulin antidiabetic drugs added to metformin therapy on glycemic control, weight gain, and hypoglycemia in type 2 diabetes. JAMA 2010; 303(14): 1410-8.
[http://dx.doi.org/10.1001/jama.2010.405] [PMID: 20388897]
[95]
Hemmingsen B, Schroll JB, Wetterslev J, et al. Sulfonylurea versus metformin monotherapy in patients with type 2 diabetes: a Cochrane systematic review and meta-analysis of randomized clinical trials and trial sequential analysis. CMAJ Open 2014; 2(3): E162-75.
[http://dx.doi.org/10.9778/cmajo.20130073] [PMID: 25295236]
[96]
Davies MJ, D’Alessio DA, Fradkin J, et al. Management of Hyperglycemia in Type 2 Diabetes, 2018. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2018; 41(12): 2669-701.
[http://dx.doi.org/10.2337/dci18-0033] [PMID: 30291106]
[97]
World Health Organization. Guidelines on second- and third-line medicines and type of insulin for the control of blood glucose levels in non-pregnant adults with diabetes mellitus. Available at: https://www.who.int/diabetes/publications/guidelines-diabetes-medicines/en/
[98]
Meinert CL, Knatterud GL, Prout TE, Klimt CR. A study of the effects of hypoglycemic agents on vascular complications in patients with adult-onset diabetes. II. Mortality results. Diabetes 1970; 19(Suppl.): 789-830.
[PMID: 4926376]
[99]
Patel A, MacMahon S, Chalmers J, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008; 358(24): 2560-72.
[http://dx.doi.org/10.1056/NEJMoa0802987] [PMID: 18539916]
[100]
Vaccaro O, Masulli M, Nicolucci A, et al. Effects on the incidence of cardiovascular events of the addition of pioglitazone versus sulfonylureas in patients with type 2 diabetes inadequately controlled with metformin (TOSCA.IT): a randomised, multicentre trial. Lancet Diabetes Endocrinol 2017; 5(11): 887-97.
[http://dx.doi.org/10.1016/S2213-8587(17)30317-0] [PMID: 28917544]
[101]
Rosenstock J, Perkovic V, Johansen OE, et al. Effect of Linagliptin vs Placebo on Major Cardiovascular Events in Adults With Type 2 Diabetes and High Cardiovascular and Renal Risk: The CARMELINA Randomized Clinical Trial. JAMA 2019; 321(1): 69-79.
[http://dx.doi.org/10.1001/jama.2018.18269] [PMID: 30418475]
[102]
Wexler DJ, Krause-Steinrauf H, Crandall JP, et al. Baseline Characteristics of Randomized Participants in the Glycemia Reduction Approaches in Diabetes: A Comparative Effectiveness Study (GRADE). Diabetes Care 2019; 42(11): 2098-107.
[http://dx.doi.org/10.2337/dc19-0901] [PMID: 31391203]
[103]
McAlister FA, Eurich DT, Majumdar SR, Johnson JA. The risk of heart failure in patients with type 2 diabetes treated with oral agent monotherapy. Eur J Heart Fail 2008; 10(7): 703-8.
[http://dx.doi.org/10.1016/j.ejheart.2008.05.013] [PMID: 18571471]
[104]
Tzoulaki I, Molokhia M, Curcin V, et al. Risk of cardiovascular disease and all cause mortality among patients with type 2 diabetes prescribed oral antidiabetes drugs: retrospective cohort study using UK general practice research database. BMJ 2009; 339: b4731-1.
[http://dx.doi.org/10.1136/bmj.b4731] [PMID: 19959591]
[105]
Hippisley-Cox J, Coupland C. Diabetes treatments and risk of heart failure, cardiovascular disease, and all cause mortality: cohort study in primary care. BMJ 2016; 354: i3477.
[http://dx.doi.org/10.1136/bmj.i3477] [PMID: 27413012]
[106]
Roumie CL, Min JY, D’Agostino McGowan L, et al. Comparative Safety of Sulfonylurea and Metformin Monotherapy on the Risk of Heart Failure: A Cohort Study. J Am Heart Assoc 2017; 6(4)e005379
[http://dx.doi.org/10.1161/JAHA.116.005379] [PMID: 28424149]
[107]
Fadini GP, Avogaro A, Degli Esposti L, et al. Risk of hospitalization for heart failure in patients with type 2 diabetes newly treated with DPP-4 inhibitors or other oral glucose-lowering medications: a retrospective registry study on 127,555 patients from the Nationwide OsMed Health-DB Database. Eur Heart J 2015; 36(36): 2454-62.
[http://dx.doi.org/10.1093/eurheartj/ehv301] [PMID: 26112890]
[108]
Kim Y-G, Yoon D, Park S, et al. Dipeptidyl Peptidase-4 Inhibitors and Risk of Heart Failure in Patients With Type 2 Diabetes Mellitus. Circ Heart Fail 2017; 10(9)
[109]
Chin H-J, Nam JH, Lee E-K, Shin JY. Comparative safety for cardiovascular outcomes of DPP-4 inhibitors versus glimepiride in patients with type 2 diabetes: A retrospective cohort study. Medicine (Baltimore) 2017; 96(25)e7213
[http://dx.doi.org/10.1097/MD.0000000000007213] [PMID: 28640111]
[110]
Scheen AJ. Combined thiazolidinedione-insulin therapy: should we be concerned about safety? Drug Saf 2004; 27(12): 841-56.
[http://dx.doi.org/10.2165/00002018-200427120-00002] [PMID: 15366973]
[111]
Tyagi S, Gupta P, Saini AS, Kaushal C, Sharma S. The peroxisome proliferator-activated receptor: A family of nuclear receptors role in various diseases. J Adv Pharm Technol Res 2011; 2(4): 236-40.
[http://dx.doi.org/10.4103/2231-4040.90879] [PMID: 22247890]
[112]
Arnold SV, Inzucchi SE, Echouffo-Tcheugui JB, et al. Understanding Contemporary Use of Thiazolidinediones. Circ Heart Fail 2019; 12(6)e005855
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.118.005855] [PMID: 31129998]
[113]
Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 2007; 356(24): 2457-71.
[http://dx.doi.org/10.1056/NEJMoa072761] [PMID: 17517853]
[114]
Lago RM, Singh PP, Nesto RW. Congestive heart failure and cardiovascular death in patients with prediabetes and type 2 diabetes given thiazolidinediones: a meta-analysis of randomised clinical trials. Lancet 2007; 370(9593): 1129-36.
[http://dx.doi.org/10.1016/S0140-6736(07)61514-1] [PMID: 17905165]
[115]
Berlie HD, Kalus JS, Jaber LA. Thiazolidinediones and the risk of edema: a meta-analysis. Diabetes Res Clin Pract 2007; 76(2): 279-89.
[http://dx.doi.org/10.1016/j.diabres.2006.09.010] [PMID: 17055103]
[116]
Guan Y, Hao C, Cha DR, et al. Thiazolidinediones expand body fluid volume through PPARgamma stimulation of ENaC-mediated renal salt absorption. Nat Med 2005; 11(8): 861-6.
[http://dx.doi.org/10.1038/nm1278] [PMID: 16007095]
[117]
Zhang H, Zhang A, Kohan DE, Nelson RD, Gonzalez FJ, Yang T. Collecting duct-specific deletion of peroxisome proliferator-activated receptor gamma blocks thiazolidinedione-induced fluid retention. Proc Natl Acad Sci USA 2005; 102(26): 9406-11.
[http://dx.doi.org/10.1073/pnas.0501744102] [PMID: 15956187]
[118]
Nofziger C, Chen L, Shane MA, Smith CD, Brown KK, Blazer-Yost BL. PPARgamma agonists do not directly enhance basal or insulin-stimulated Na(+) transport via the epithelial Na(+) channel. Pflugers Arch 2005; 451(3): 445-53.
[http://dx.doi.org/10.1007/s00424-005-1477-4] [PMID: 16170524]
[119]
Vallon V, Hummler E, Rieg T, et al. Thiazolidinedione-induced fluid retention is independent of collecting duct alphaENaC activity. J Am Soc Nephrol 2009; 20(4): 721-9.
[http://dx.doi.org/10.1681/ASN.2008040415] [PMID: 19158355]
[120]
Yang T, Soodvilai S. Renal and vascular mechanisms of thiazolidinedione-induced fluid retention. PPAR Res 2008; 2008943614
[http://dx.doi.org/10.1155/2008/943614] [PMID: 18784848]
[121]
Dormandy JA, Charbonnel B, Eckland DJ, et al. Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 2005; 366(9493): 1279-89.
[http://dx.doi.org/10.1016/S0140-6736(05)67528-9] [PMID: 16214598]
[122]
Dormandy J, Bhattacharya M, van Troostenburg de Bruyn A-R. Safety and tolerability of pioglitazone in high-risk patients with type 2 diabetes: an overview of data from PROactive. Drug Saf 2009; 32(3): 187-202.
[http://dx.doi.org/10.2165/00002018-200932030-00002] [PMID: 19338377]
[123]
Dargie HJ, Hildebrandt PR, Riegger GAJ, et al. A randomized, placebo-controlled trial assessing the effects of rosiglitazone on echocardiographic function and cardiac status in type 2 diabetic patients with New York Heart Association Functional Class I or II Heart Failure. J Am Coll Cardiol 2007; 49(16): 1696-704.
[http://dx.doi.org/10.1016/j.jacc.2006.10.077] [PMID: 17448371]
[124]
Dagenais GR, Gerstein HC, Holman R, et al. Effects of ramipril and rosiglitazone on cardiovascular and renal outcomes in people with impaired glucose tolerance or impaired fasting glucose: results of the Diabetes REduction Assessment with ramipril and rosiglitazone Medication (DREAM) trial. Diabetes Care 2008; 31(5): 1007-14.
[http://dx.doi.org/10.2337/dc07-1868] [PMID: 18268075]
[125]
Y-J.H. Thiazolidinediones . N Engl J Med 2004; 351: 1106-18.
[http://dx.doi.org/10.1056/NEJMra041001] [PMID: 15356308]
[126]
Hernandez AV, Usmani A, Rajamanickam A, Moheet A. Thiazolidinediones and risk of heart failure in patients with or at high risk of type 2 diabetes mellitus: a meta-analysis and meta-regression analysis of placebo-controlled randomized clinical trials. Am J Cardiovasc Drugs 2011; 11(2): 115-28.
[http://dx.doi.org/10.2165/11587580-000000000-00000] [PMID: 21294599]
[127]
Lincoff AM, Wolski K, Nicholls SJ, Nissen SE. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA 2007; 298(10): 1180-8.
[http://dx.doi.org/10.1001/jama.298.10.1180] [PMID: 17848652]
[128]
de Jong M, van der Worp HB, van der Graaf Y, Visseren FLJ, Westerink J. Pioglitazone and the secondary prevention of cardiovascular disease. A meta-analysis of randomized-controlled trials. Cardiovasc Diabetol 2017; 16(1): 134.
[http://dx.doi.org/10.1186/s12933-017-0617-4] [PMID: 29037211]
[129]
Liao H-W, Saver JL, Wu Y-L, Chen TH, Lee M, Ovbiagele B. Pioglitazone and cardiovascular outcomes in patients with insulin resistance, pre-diabetes and type 2 diabetes: a systematic review and meta-analysis. BMJ Open 2017; 7(1)e013927
[http://dx.doi.org/10.1136/bmjopen-2016-013927] [PMID: 28057658]
[130]
Cheng D, Gao H, Li W. Long-term risk of rosiglitazone on cardiovascular events - a systematic review and meta-analysis. Endokrynol Pol 2018; 69(4): 381-94.
[PMID: 29952413]
[131]
Giles TD, Miller AB, Elkayam U, Bhattacharya M, Perez A. Pioglitazone and heart failure: results from a controlled study in patients with type 2 diabetes mellitus and systolic dysfunction. J Card Fail 2008; 14(6): 445-52.
[http://dx.doi.org/10.1016/j.cardfail.2008.02.007] [PMID: 18672190]
[132]
Thrainsdottir I, Malmberg K, Olsson A, Gutniak M, Rydén L. Initial experience with GLP-1 treatment on metabolic control and myocardial function in patients with type 2 diabetes mellitus and heart failure. Diab Vasc Dis Res 2004; 1(1): 40-3.
[http://dx.doi.org/10.3132/dvdr.2004.005] [PMID: 16305055]
[133]
Cimmaruta D, Maiorino MI, Scavone C, et al. Efficacy and safety of insulin-GLP-1 receptor agonists combination in type 2 diabetes mellitus: a systematic review Expert Opin Drug Saf 2016; 15(sup2): 77-83.
[http://dx.doi.org/10.1080/14740338.2016.1221402] [PMID: 27875915]
[134]
Bunck MC, Cornér A, Eliasson B, et al. Effects of exenatide on measures of β-cell function after 3 years in metformin-treated patients with type 2 diabetes. Diabetes Care 2011; 34(9): 2041-7.
[http://dx.doi.org/10.2337/dc11-0291] [PMID: 21868779]
[135]
von Scholten BJ, Lajer M, Goetze JP, Persson F, Rossing P. Time course and mechanisms of the anti-hypertensive and renal effects of liraglutide treatment. Diabet Med 2015; 32(3): 343-52.
[http://dx.doi.org/10.1111/dme.12594] [PMID: 25251901]
[136]
Pfeffer MA, Claggett B, Diaz R, et al. Lixisenatide in Patients with Type 2 Diabetes and Acute Coronary Syndrome. N Engl J Med 2015; 373(23): 2247-57.
[http://dx.doi.org/10.1056/NEJMoa1509225] [PMID: 26630143]
[137]
Holman RR, Bethel MA, Mentz RJ, et al. Effects of Once-Weekly Exenatide on Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med 2017; 377(13): 1228-39.
[http://dx.doi.org/10.1056/NEJMoa1612917] [PMID: 28910237]
[138]
Margulies KB, Hernandez AF, Redfield MM, et al. Effects of Liraglutide on Clinical Stability Among Patients With Advanced Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial. JAMA 2016; 316(5): 500-8.
[http://dx.doi.org/10.1001/jama.2016.10260] [PMID: 27483064]
[139]
Jorsal A, Kistorp C, Holmager P, et al. Effect of liraglutide, a glucagon-like peptide-1 analogue, on left ventricular function in stable chronic heart failure patients with and without diabetes (LIVE)-a multicentre, double-blind, randomised, placebo-controlled trial. Eur J Heart Fail 2017; 19(1): 69-77.
[http://dx.doi.org/10.1002/ejhf.657] [PMID: 27790809]
[140]
Böhm M, Swedberg K, Komajda M, et al. Heart rate as a risk factor in chronic heart failure (SHIFT): the association between heart rate and outcomes in a randomised placebo-controlled trial. Lancet 2010; 376(9744): 886-94.
[http://dx.doi.org/10.1016/S0140-6736(10)61259-7] [PMID: 20801495]
[141]
Lepore JJ, Olson E, Demopoulos L, et al. Effects of the Novel Long-Acting GLP-1 Agonist, Albiglutide, on Cardiac Function, Cardiac Metabolism, and Exercise Capacity in Patients With Chronic Heart Failure and Reduced Ejection Fraction. JACC Heart Fail 2016; 4(7): 559-66.
[http://dx.doi.org/10.1016/j.jchf.2016.01.008] [PMID: 27039125]
[142]
Hernandez AF, Green JB, Janmohamed S, et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): a double-blind, randomised placebo-controlled trial. Lancet 2018; 392(10157): 1519-29.
[http://dx.doi.org/10.1016/S0140-6736(18)32261-X] [PMID: 30291013]
[143]
Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet 2019; 394(10193): 121-30.
[http://dx.doi.org/10.1016/S0140-6736(19)31149-3] [PMID: 31189511]
[144]
Thornberry NA, Gallwitz B. Mechanism of action of inhibitors of dipeptidyl-peptidase-4 (DPP-4). Best Pract Res Clin Endocrinol Metab 2009; 23(4): 479-86.
[http://dx.doi.org/10.1016/j.beem.2009.03.004] [PMID: 19748065]
[145]
Zhong J, Maiseyeu A, Davis SN, Rajagopalan S. DPP4 in cardiometabolic disease: recent insights from the laboratory and clinical trials of DPP4 inhibition. Circ Res 2015; 116(8): 1491-504.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.305665] [PMID: 25858071]
[146]
Bethel MA, Engel SS, Green JB, et al. Assessing the Safety of Sitagliptin in Older Participants in the Trial Evaluating Cardiovascular Outcomes with Sitagliptin (TECOS). Diabetes Care 2017; 40(4): 494-501.
[http://dx.doi.org/10.2337/dc16-1135] [PMID: 28057693]
[147]
Singh AK, Singh R. Heart failure hospitalization with DPP-4 inhibitors: A systematic review and meta-analysis of randomized controlled trials. Indian J Endocrinol Metab 2019; 23(1): 128-33.
[http://dx.doi.org/10.4103/ijem.IJEM_613_18] [PMID: 31016167]
[148]
Alfayez OM, Almutairi AR, Aldosari A, Al Yami MS. Update on Cardiovascular Safety of Incretin-Based Therapy in Adults With Type 2 Diabetes Mellitus: A Meta-Analysis of Cardiovascular Outcome Trials. Can J Diabetes 2019; 43(7): 538-545.e2.
[http://dx.doi.org/10.1016/j.jcjd.2019.04.003] [PMID: 31175007]
[149]
Fei Y, Tsoi M-F, Cheung BMY. Cardiovascular outcomes in trials of new antidiabetic drug classes: a network meta-analysis. Cardiovasc Diabetol 2019; 18(1): 112.
[http://dx.doi.org/10.1186/s12933-019-0916-z] [PMID: 31462224]
[150]
Liu D, Jin B, Chen W, Yun P. Dipeptidyl peptidase 4 (DPP-4) inhibitors and cardiovascular outcomes in patients with type 2 diabetes mellitus (T2DM): a systematic review and meta-analysis. BMC Pharmacol Toxicol 2019; 20(1): 15.
[http://dx.doi.org/10.1186/s40360-019-0293-y] [PMID: 30832701]
[151]
Rosenstock J, Kahn SE, Johansen OE, et al. Effect of Linagliptin vs Glimepiride on Major Adverse Cardiovascular Outcomes in Patients With Type 2 Diabetes: The CAROLINA Randomized Clinical Trial. JAMA 2019; 322: 1155.
[http://dx.doi.org/10.1001/jama.2019.13772] [PMID: 31536101]
[152]
McGuire DK, Alexander JH, Johansen OE, et al. Linagliptin Effects on Heart Failure and Related Outcomes in Individuals With Type 2 Diabetes Mellitus at High Cardiovascular and Renal Risk in CARMELINA. Circulation 2019; 139(3): 351-61.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.038352] [PMID: 30586723]
[153]
McMurray JJV, Ponikowski P, Bolli GB, et al. Effects of Vildagliptin on Ventricular Function in Patients With Type 2 Diabetes Mellitus and Heart Failure: A Randomized Placebo-Controlled Trial. JACC Heart Fail 2018; 6(1): 8-17.
[http://dx.doi.org/10.1016/j.jchf.2017.08.004] [PMID: 29032139]
[154]
Scirica BM. The Safety of Dipeptidyl Peptidase 4 Inhibitors and the Risk for Heart Failure. JAMA Cardiol 2016; 1(2): 123-5.
[http://dx.doi.org/10.1001/jamacardio.2016.0184] [PMID: 27437882]
[155]
Sano M. Mechanism by which dipeptidyl peptidase-4 inhibitors increase the risk of heart failure and possible differences in heart failure risk. J Cardiol 2019; 73(1): 28-32.
[http://dx.doi.org/10.1016/j.jjcc.2018.07.004] [PMID: 30318179]
[156]
Inzucchi SE, Zinman B, Wanner C, et al. SGLT-2 inhibitors and cardiovascular risk: proposed pathways and review of ongoing outcome trials. Diab Vasc Dis Res 2015; 12(2): 90-100.
[http://dx.doi.org/10.1177/1479164114559852] [PMID: 25589482]
[157]
Madaan T, Akhtar M, Najmi AK. Sodium glucose CoTransporter 2 (SGLT2) inhibitors: Current status and future perspective. Eur J Pharm Sci 2016; 93: 244-52.
[http://dx.doi.org/10.1016/j.ejps.2016.08.025] [PMID: 27531551]
[158]
Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med 2015; 373(22): 2117-28.
[http://dx.doi.org/10.1056/NEJMoa1504720] [PMID: 26378978]
[159]
Patorno E, Pawar A, Franklin JM, et al. Empagliflozin and the Risk of Heart Failure Hospitalization in Routine Clinical Care. Circulation 2019; 139(25): 2822-30.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.039177] [PMID: 30955357]
[160]
Mahaffey KW, Jardine MJ, Bompoint S, et al. Canagliflozin and Cardiovascular and Renal Outcomes in Type 2 Diabetes Mellitus and Chronic Kidney Disease in Primary and Secondary Cardiovascular Prevention Groups. Circulation 2019; 140(9): 739-50.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.119.042007] [PMID: 31291786]
[161]
Shao S-C, Chang K-C, Hung M-J, et al. Comparative risk evaluation for cardiovascular events associated with dapagliflozin vs. empagliflozin in real-world type 2 diabetes patients: a multi-institutional cohort study. Cardiovasc Diabetol 2019; 18(1): 120.
[http://dx.doi.org/10.1186/s12933-019-0919-9] [PMID: 31551068]
[162]
Kosiborod M, Cavender MA, Fu AZ, et al. Lower Risk of Heart Failure and Death in Patients Initiated on Sodium-Glucose Cotransporter-2 Inhibitors Versus Other Glucose-Lowering Drugs: The CVD-REAL Study (Comparative Effectiveness of Cardiovascular Outcomes in New Users of Sodium-Glucose Cotransporter-2 Inhibitors). Circulation 2017; 136(3): 249-59.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.029190] [PMID: 28522450]
[163]
Kosiborod M, Lam CSP, Kohsaka S, et al. Cardiovascular Events Associated With SGLT-2 Inhibitors Versus Other Glucose-Lowering Drugs: The CVD-REAL 2 Study. J Am Coll Cardiol 2018; 71(23): 2628-39.
[http://dx.doi.org/10.1016/j.jacc.2018.03.009] [PMID: 29540325]
[164]
Kaplan A, Abidi E, El-Yazbi A, Eid A, Booz GW, Zouein FA. Direct cardiovascular impact of SGLT2 inhibitors: mechanisms and effects. Heart Fail Rev 2018; 23(3): 419-37.
[http://dx.doi.org/10.1007/s10741-017-9665-9] [PMID: 29322280]
[165]
Lambers Heerspink HJ, de Zeeuw D, Wie L, Leslie B, List J. Dapagliflozin a glucose-regulating drug with diuretic properties in subjects with type 2 diabetes. Diabetes Obes Metab 2013; 15(9): 853-62.
[http://dx.doi.org/10.1111/dom.12127] [PMID: 23668478]
[166]
Mudaliar S, Alloju S, Henry RR. Can a Shift in Fuel Energetics Explain the Beneficial Cardiorenal Outcomes in the EMPA-REG OUTCOME Study? A Unifying Hypothesis. Diabetes Care 2016; 39(7): 1115-22.
[http://dx.doi.org/10.2337/dc16-0542] [PMID: 27289124]
[167]
Nassif ME, Windsor SL, Tang F, et al. Dapagliflozin Effects on Biomarkers, Symptoms, and Functional Status in Patients With Heart Failure With Reduced Ejection Fraction: The DEFINE-HF Trial. Circulation 2019; 140(18): 1463-76.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.119.042929] [PMID: 31524498]
[168]
Wang L, Voss EA, Weaver J, et al. Diabetic ketoacidosis in patients with type 2 diabetes treated with sodium glucose co-transporter 2 inhibitors versus other antihyperglycemic agents: An observational study of four US administrative claims databases. Pharmacoepidemiol Drug Saf 2019; 28(12): 1620-8.
[http://dx.doi.org/10.1002/pds.4887] [PMID: 31456304]
[169]
Yokoyama H. Incidence of severe urinary tract infections not increased by initiating sodium-glucose cotransporter 2 inhibitors. J Diabetes Investig 2020; 11(3): 530-1.
[http://dx.doi.org/10.1111/jdi.13189] [PMID: 31763787]
[170]
Fitchett D. A safety update on sodium glucose co-transporter 2 inhibitors. Diabetes Obes Metab 2019; 21(Suppl. 2): 34-42.
[http://dx.doi.org/10.1111/dom.13611] [PMID: 31081590]
[171]
Serneri GGN, Boddi M, Cecioni I, et al. Cardiac angiotensin II formation in the clinical course of heart failure and its relationship with left ventricular function. Circ Res 2001; 88(9): 961-8.
[http://dx.doi.org/10.1161/hh0901.089882] [PMID: 11349007]
[172]
Konstam MA, Neaton JD, Dickstein K, et al. Effects of high-dose versus low-dose losartan on clinical outcomes in patients with heart failure (HEAAL study): a randomised, double-blind trial. Lancet 2009; 374(9704): 1840-8.
[http://dx.doi.org/10.1016/S0140-6736(09)61913-9] [PMID: 19922995]
[173]
Solomon SD, Claggett B, Lewis EF, et al. Influence of ejection fraction on outcomes and efficacy of spironolactone in patients with heart failure with preserved ejection fraction. Eur Heart J 2016; 37(5): 455-62.
[http://dx.doi.org/10.1093/eurheartj/ehv464] [PMID: 26374849]
[174]
Lindholm LH, Ibsen H, Dahlöf B, et al. Cardiovascular morbidity and mortality in patients with diabetes in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 2002; 359(9311): 1004-10.
[http://dx.doi.org/10.1016/S0140-6736(02)08090-X] [PMID: 11937179]
[175]
Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001; 345(12): 861-9.
[http://dx.doi.org/10.1056/NEJMoa011161] [PMID: 11565518]
[176]
McMurray JJV, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 2014; 371(11): 993-1004.
[http://dx.doi.org/10.1056/NEJMoa1409077] [PMID: 25176015]
[177]
Zhao JV, Xu L, Lin SL, Schooling CM. Spironolactone and glucose metabolism, a systematic review and meta-analysis of randomized controlled trials. J Am Soc Hypertens 2016; 10(8): 671-82.
[http://dx.doi.org/10.1016/j.jash.2016.05.013] [PMID: 27372428]
[178]
Pitt B, Remme W, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 2003; 348(14): 1309-21.
[http://dx.doi.org/10.1056/NEJMoa030207] [PMID: 12668699]
[179]
O’Keefe JH, Abuissa H, Pitt B. Eplerenone improves prognosis in postmyocardial infarction diabetic patients with heart failure: results from EPHESUS. Diabetes Obes Metab 2008; 10(6): 492-7.
[http://dx.doi.org/10.1111/j.1463-1326.2007.00730.x] [PMID: 17490427]
[180]
Eschalier R, McMurray JJV, Swedberg K, et al. Safety and efficacy of eplerenone in patients at high risk for hyperkalemia and/or worsening renal function: analyses of the EMPHASIS-HF study subgroups (Eplerenone in Mild Patients Hospitalization And SurvIval Study in Heart Failure). J Am Coll Cardiol 2013; 62(17): 1585-93.
[http://dx.doi.org/10.1016/j.jacc.2013.04.086] [PMID: 23810881]
[181]
Zhou Q, Liao JK. Pleiotropic effects of statins - Basic research and clinical perspectives. Circ J 2010; 74(5): 818-26.
[http://dx.doi.org/10.1253/circj.CJ-10-0110] [PMID: 20424337]
[182]
Antonopoulos AS, Margaritis M, Lee R, Channon K, Antoniades C. Statins as anti-inflammatory agents in atherogenesis: molecular mechanisms and lessons from the recent clinical trials. Curr Pharm Des 2012; 18(11): 1519-30.
[http://dx.doi.org/10.2174/138161212799504803] [PMID: 22364136]
[183]
Amarenco P, Labreuche J, Lavallée P, Touboul PJ. Statins in stroke prevention and carotid atherosclerosis: systematic review and up-to-date meta-analysis. Stroke 2004; 35(12): 2902-9.
[http://dx.doi.org/10.1161/01.STR.0000147965.52712.fa] [PMID: 15514180]
[184]
Sattar N, Preiss D, Murray HM, et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet 2010; 375(9716): 735-42.
[http://dx.doi.org/10.1016/S0140-6736(09)61965-6] [PMID: 20167359]
[185]
Macedo AF, Douglas I, Smeeth L, Forbes H, Ebrahim S. Statins and the risk of type 2 diabetes mellitus: cohort study using the UK clinical practice pesearch datalink. BMC Cardiovasc Disord 2014; 14: 85.
[http://dx.doi.org/10.1186/1471-2261-14-85] [PMID: 25022519]
[186]
Corrao G, Ibrahim B, Nicotra F, et al. Statins and the risk of diabetes: evidence from a large population-based cohort study. Diabetes Care 2014; 37(8): 2225-32.
[http://dx.doi.org/10.2337/dc13-2215] [PMID: 24969582]
[187]
Angelidi AM, Stambolliu E, Adamopoulou KI, Kousoulis AA. Is Atorvastatin Associated with New Onset Diabetes or Deterioration of Glycemic Control? Systematic Review Using Data from 1.9 Million Patients. Int J Endocrinol 2018; •••20188380192
[http://dx.doi.org/10.1155/2018/8380192] [PMID: 30425742]
[188]
Rogers JK, Jhund PS, Perez A-C, et al. Effect of rosuvastatin on repeat heart failure hospitalizations: the CORONA Trial (Controlled Rosuvastatin Multinational Trial in Heart Failure). JACC Heart Fail 2014; 2(3): 289-97.
[http://dx.doi.org/10.1016/j.jchf.2013.12.007] [PMID: 24952697]
[189]
Kearney PM, Blackwell L, Collins R, et al. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet 2008; 371(9607): 117-25.
[http://dx.doi.org/10.1016/S0140-6736(08)60104-X] [PMID: 18191683]
[190]
Preiss D, Campbell RT, Murray HM, et al. The effect of statin therapy on heart failure events: a collaborative meta-analysis of unpublished data from major randomized trials Eur Heart J 2015; 36: 1536-46.
[191]
Shepherd J. Mechanism of action of fibrates. Postgrad Med J 1993; 69(Suppl. 1): S34-41.
[PMID: 8497455]
[192]
Nissen SE, Wolski K, Topol EJ. Effect of muraglitazar on death and major adverse cardiovascular events in patients with type 2 diabetes mellitus. JAMA 2005; 294(20): 2581-6.
[http://dx.doi.org/10.1001/jama.294.20.joc50147] [PMID: 16239637]
[193]
Goldstein BJ, Rosenstock J, Anzalone D, Tou C, Ohman KP. Effect of tesaglitazar, a dual PPAR α/γ agonist, on glucose and lipid abnormalities in patients with type 2 diabetes: a 12-week dose-ranging trial. Curr Med Res Opin 2006; 22(12): 2575-90.
[http://dx.doi.org/10.1185/030079906X154169] [PMID: 17166340]
[194]
Shetty SR, Kumar S, Mathur RP, Sharma KH, Jaiswal AD. Observational study to evaluate the safety and efficacy of saroglitazar in Indian diabetic dyslipidemia patients. Indian Heart J 2015; 67(1): 23-6.
[http://dx.doi.org/10.1016/j.ihj.2015.02.007] [PMID: 25820046]
[195]
Henry RR, Lincoff AM, Mudaliar S, Rabbia M, Chognot C, Herz M. Effect of the dual peroxisome proliferator-activated receptor-α/γ agonist aleglitazar on risk of cardiovascular disease in patients with type 2 diabetes (SYNCHRONY): a phase II, randomised, dose-ranging study. Lancet 2009; 374(9684): 126-35.
[http://dx.doi.org/10.1016/S0140-6736(09)60870-9] [PMID: 19515415]
[196]
Wikstrand J, Wedel H, Ghali J, et al. How should subgroup analyses affect clinical practice? Insights from the Metoprolol Succinate Controlled-Release/Extended-Release Randomized Intervention Trial in Heart Failure (MERIT-HF). Card Electrophysiol Rev 2003; 7(3): 264-75.
[http://dx.doi.org/10.1023/B:CEPR.0000012438.04416.00] [PMID: 14739726]
[197]
Bell DSH, Lukas MA, Holdbrook FK, Fowler MB. The effect of carvedilol on mortality risk in heart failure patients with diabetes: results of a meta-analysis. Curr Med Res Opin 2006; 22(2): 287-96.
[http://dx.doi.org/10.1185/030079906X80459] [PMID: 16466600]
[198]
Hjalmarson A, Goldstein S, Fagerberg B, et al. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL Randomised Intervention Trial in-Congestive Heart Failure (MERIT-HF). Lancet 1999; 353(9169): 2001-7.
[http://dx.doi.org/10.1016/S0140-6736(99)04440-2] [PMID: 10376614]
[199]
Wiklund RA. Effect of Carvedilol on Survival in Severe Chronic Heart Failure. Surv Anesthesiol 2002; 46: 227-8.
[http://dx.doi.org/10.1097/00132586-200208000-00043]
[200]
Torp-Pedersen C, Metra M, Charlesworth A, et al. Effects of metoprolol and carvedilol on pre-existing and new onset diabetes in patients with chronic heart failure: data from the Carvedilol Or Metoprolol European Trial (COMET). Heart 2007; 93(8): 968-73.
[http://dx.doi.org/10.1136/hrt.2006.092379] [PMID: 17237130]
[201]
Erdmann E, Lechat P, Verkenne P, Wiemann H. Results from post-hoc analyses of the CIBIS II trial: effect of bisoprolol in high-risk patient groups with chronic heart failure. Eur J Heart Fail 2001; 3(4): 469-79.
[http://dx.doi.org/10.1016/S1388-9842(01)00174-X] [PMID: 11511434]
[202]
Cole-Jeffrey CT, Pepine CJ, Katovich MJ, et al. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet 1999; 353(9146): 9-13.
[http://dx.doi.org/10.1016/S0140-6736(98)11181-9] [PMID: 10023943]
[203]
Viberti GC, Keen H, Bloom SR. Beta blockade and diabetes mellitus: effect of oxprenolol and metoprolol on the metabolic, cardiovascular, and hormonal response to insulin-induced hypoglycemia in normal subjects. Metabolism 1980; 29(9): 866-72.
[http://dx.doi.org/10.1016/0026-0495(80)90126-2] [PMID: 6106148]
[204]
Smith U, Blohmé G, Lager I, Lönnroth P. Can insulin-treated diabetics be given beta-adrenergic-blocking drugs? BMJ 1980; 281(6248): 1143-4.
[http://dx.doi.org/10.1136/bmj.281.6248.1143-a] [PMID: 6107166]
[205]
Kerr D, MacDonald IA, Heller SR, Tattersall RB. Beta-adrenoceptor blockade and hypoglycaemia. A randomised, double-blind, placebo controlled comparison of metoprolol CR, atenolol and propranolol LA in normal subjects. Br J Clin Pharmacol 1990; 29(6): 685-93.
[http://dx.doi.org/10.1111/j.1365-2125.1990.tb03689.x] [PMID: 1974143]
[206]
Wang Q, Liu Y, Fu Q, et al. Inhibiting Insulin-Mediated β2-Adrenergic Receptor Activation Prevents Diabetes-Associated Cardiac Dysfunction. Circulation 2017; 135(1): 73-88.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.022281] [PMID: 27815373]
[207]
Maury P, Rollin A, Galinier M, et al. Role of digoxin in controlling the ventricular rate during atrial fibrillation: a systematic review and a rethinking. Res Reports Clin Cardiol 2014; p. 93.
[208]
Chaggar PS, Shaw SM, Williams SG. Is foxglove effective in heart failure? Cardiovasc Ther 2015; 33(4): 236-41.
[http://dx.doi.org/10.1111/1755-5922.12130] [PMID: 25925484]
[209]
Vamos M, Erath JW, Hohnloser SH. Digoxin-associated mortality: a systematic review and meta-analysis of the literature. Eur Heart J 2015; 36(28): 1831-8.
[http://dx.doi.org/10.1093/eurheartj/ehv143] [PMID: 25939649]
[210]
Rationale, design, implementation, and baseline characteristics of patients in the DIG trial: a large, simple, long-term trial to evaluate the effect of digitalis on mortality in heart failure. Control Clin Trials 1996; 17(1): 77-97.
[http://dx.doi.org/10.1016/0197-2456(95)00065-8] [PMID: 8721804]
[211]
Garg R, Gorlin R, Smith T, et al. The effect of digoxin on mortality and morbidity in patients with heart failure. N Engl J Med 1997; 336(8): 525-33.
[http://dx.doi.org/10.1056/NEJM199702203360801] [PMID: 9036306]
[212]
Abdul-Rahim AH, MacIsaac RL, Jhund PS, Petrie MC, Lees KR, McMurray JJ. Efficacy and safety of digoxin in patients with heart failure and reduced ejection fraction according to diabetes status: An analysis of the Digitalis Investigation Group (DIG) trial. Int J Cardiol 2016; 209: 310-6.
[http://dx.doi.org/10.1016/j.ijcard.2016.02.074] [PMID: 26913372]
[213]
Bucchi A, Baruscotti M, DiFrancesco D. Current-dependent block of rabbit sino-atrial node I(f) channels by ivabradine. J Gen Physiol 2002; 120(1): 1-13.
[http://dx.doi.org/10.1085/jgp.20028593] [PMID: 12084770]
[214]
Canet E, Lerebours G, Vilaine J-P. Innovation in coronary artery disease and heart failure: clinical benefits of pure heart rate reduction with ivabradine. Ann N Y Acad Sci 2011; 1222: 90-9.
[http://dx.doi.org/10.1111/j.1749-6632.2011.05960.x] [PMID: 21434947]
[215]
Komajda M, Tavazzi L, Francq BG, et al. Efficacy and safety of ivabradine in patients with chronic systolic heart failure and diabetes: an analysis from the SHIFT trial. Eur J Heart Fail 2015; 17(12): 1294-301.
[http://dx.doi.org/10.1002/ejhf.347] [PMID: 26377342]
[216]
Swedberg K, Komajda M, Böhm M, et al. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet 2010; 376(9744): 875-85.
[http://dx.doi.org/10.1016/S0140-6736(10)61198-1] [PMID: 20801500]
[217]
Zuo G, Ren X, Qian X, et al. Inhibition of JNK and p38 MAPK-mediated inflammation and apoptosis by ivabradine improves cardiac function in streptozotocin-induced diabetic cardiomyopathy. J Cell Physiol 2019; 234(2): 1925-36.
[http://dx.doi.org/10.1002/jcp.27070] [PMID: 30067872]
[218]
Ritchie RH, Love JE, Huynh K, et al. Enhanced phosphoinositide 3-kinase(p110α) activity prevents diabetes-induced cardiomyopathy and superoxide generation in a mouse model of diabetes. Diabetologia 2012; 55(12): 3369-81.
[http://dx.doi.org/10.1007/s00125-012-2720-0] [PMID: 23001375]
[219]
Prakoso D, De Blasio MJ, Tate M, et al. Gene therapy targeting cardiac phosphoinositide 3-kinase (p110α) attenuates cardiac remodeling in type 2 diabetes. Am J Physiol Heart Circ Physiol 2020; 318(4): H840-52.
[http://dx.doi.org/10.1152/ajpheart.00632.2019] [PMID: 32142359]
[220]
Zheng L, Li B, Lin S, Chen L, Li H. Role and mechanism of cardiac insulin resistance in occurrence of heart failure caused by myocardial hypertrophy. Aging (Albany NY) 2019; 11(16): 6584-90.
[http://dx.doi.org/10.18632/aging.102212] [PMID: 31461405]
[221]
Gao Y, Kang L, Li C, et al. Resveratrol Ameliorates Diabetes-Induced Cardiac Dysfunction Through AT1R-ERK/p38 MAPK Signaling Pathway. Cardiovasc Toxicol 2016; 16(2): 130-7.
[http://dx.doi.org/10.1007/s12012-015-9321-3] [PMID: 25800751]
[222]
Meijles DN, Cull JJ, Markou T, et al. Redox Regulation of Cardiac ASK1 (Apoptosis Signal-Regulating Kinase 1) Controls p38-MAPK (Mitogen-Activated Protein Kinase) and Orchestrates Cardiac Remodeling to Hypertension. Hypertension 2020; 76(4): 1208-18.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.119.14556] [PMID: 32903101]
[223]
Pan Y, Wang Y, Zhao Y, et al. Inhibition of JNK phosphorylation by a novel curcumin analog prevents high glucose-induced inflammation and apoptosis in cardiomyocytes and the development of diabetic cardiomyopathy. Diabetes 2014; 63(10): 3497-511.
[http://dx.doi.org/10.2337/db13-1577] [PMID: 24848068]
[224]
Thandavarayan RA, Giridharan VV, Arumugam S, et al. Schisandrin B prevents doxorubicin induced cardiac dysfunction by modulation of DNA damage, oxidative stress and inflammation through inhibition of MAPK/p53 signaling. PLoS One 2015; 10(3)e0119214
[http://dx.doi.org/10.1371/journal.pone.0119214] [PMID: 25742619]
[225]
Liu Z, Zheng S, Wang X, Qiu C, Guo Y. Novel ASK1 inhibitor AGI-1067 improves AGE-induced cardiac dysfunction by inhibiting MKKs/p38 MAPK and NF-κB apoptotic signaling. FEBS Open Bio 2018; 8(9): 1445-56.
[http://dx.doi.org/10.1002/2211-5463.12499] [PMID: 30186746]
[226]
Zhang L, Guo Z, Wang Y, Geng J, Han S. The protective effect of kaempferol on heart via the regulation of Nrf2, NF-κβ, and PI3K/Akt/GSK-3β signaling pathways in isoproterenol-induced heart failure in diabetic rats. Drug Dev Res 2019; 80(3): 294-309.
[http://dx.doi.org/10.1002/ddr.21495] [PMID: 30864233]
[227]
Sharma S, Adrogue JV, Golfman L, et al. Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB J 2004; 18(14): 1692-700.
[http://dx.doi.org/10.1096/fj.04-2263com] [PMID: 15522914]
[228]
Aubert G, Martin OJ, Horton JL, et al. The failing heart relies on ketone bodies as a fuel. Circulation 2016; 133(8): 698-705.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.017355] [PMID: 26819376]
[229]
Ding F, Yu L, Wang M, Xu S, Xia Q, Fu G. O-GlcNAcylation involvement in high glucose-induced cardiac hypertrophy via ERK1/2 and cyclin D2. Amino Acids 2013; 45(2): 339-49.
[http://dx.doi.org/10.1007/s00726-013-1504-2] [PMID: 23665912]
[230]
Kronlage M, Dewenter M, Grosso J, et al. O-GlcNAcylation of Histone deacetylase 4 protects the diabetic heart from failure. Circulation 2019; 140(7): 580-94.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.031942] [PMID: 31195810]
[231]
Pei Z, Deng Q, Babcock SA, He EY, Ren J, Zhang Y. Inhibition of advanced glycation endproduct (AGE) rescues against streptozotocin-induced diabetic cardiomyopathy: Role of autophagy and ER stress. Toxicol Lett 2018; 284: 10-20.
[http://dx.doi.org/10.1016/j.toxlet.2017.11.018] [PMID: 29174818]
[232]
Kutsche HS, Schreckenberg R, Weber M, et al. Alterations in glucose metabolism during the transition to heart failure: the contribution of UCP-2. Cells 2020; 9(3): 552.
[http://dx.doi.org/10.3390/cells9030552] [PMID: 32120777]
[233]
Heinonen I, Sorop O, van Dalen BM, et al. Cellular, mitochondrial and molecular alterations associate with early left ventricular diastolic dysfunction in a porcine model of diabetic metabolic derangement. Sci Rep 2020; 10(1): 13173.
[http://dx.doi.org/10.1038/s41598-020-68637-4] [PMID: 32764569]
[234]
Diguet N, Trammell SAJ, Tannous C, et al. Nicotinamide riboside preserves cardiac function in a mouse model of dilated cardiomyopathy. Circulation 2018; 137(21): 2256-73.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.026099] [PMID: 29217642]
[235]
Xu W, Li L, Zhang L. NAD+ Metabolism as an emerging therapeutic target for cardiovascular diseases associated with sudden cardiac death. Front Physiol 2020; 11: 901.
[http://dx.doi.org/10.3389/fphys.2020.00901] [PMID: 32903597]
[236]
Dashwood A, Cheesman E, Beard N, Haqqani H, Wong YW, Molenaar P. Understanding how phosphorylation and redox modifications regulate cardiac ryanodine receptor type 2 activity to produce an arrhythmogenic phenotype in advanced heart failure. ACS Pharmacol Transl Sci 2020; 3(4): 563-82.
[http://dx.doi.org/10.1021/acsptsci.0c00003] [PMID: 32832863]
[237]
Shen X, Zheng S, Metreveli NS, Epstein PN. Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes 2006; 55(3): 798-805.
[http://dx.doi.org/10.2337/diabetes.55.03.06.db05-1039] [PMID: 16505246]
[238]
Tian JH, Wu Q, He YX, et al. Zonisamide, an antiepileptic drug, alleviates diabetic cardiomyopathy by inhibiting endoplasmic reticulum stress. Acta Pharmacol Sin 2020. In press
[http://dx.doi.org/10.1038/s41401-020-0461-z] [PMID: 32647341]
[239]
Hanna A, Frangogiannis NG. Inflammatory cytokines and chemokines as therapeutic targets in heart failure. Cardiovasc Drugs Ther 2020. In press
[http://dx.doi.org/10.1007/s10557-020-07071-0] [PMID: 32902739]
[240]
Kawaguchi M, Takahashi M, Hata T, et al. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation 2011; 123(6): 594-604.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.982777] [PMID: 21282498]
[241]
Dong B, Qi D, Yang L, et al. TLR4 regulates cardiac lipid accumulation and diabetic heart disease in the nonobese diabetic mouse model of type 1 diabetes. Am J Physiol Heart Circ Physiol 2012; 303(6): H732-42.
[http://dx.doi.org/10.1152/ajpheart.00948.2011] [PMID: 22842069]
[242]
Arslan F, Smeets MB, O’Neill LAJ, et al. Myocardial ischemia/reperfusion injury is mediated by leukocytic toll-like receptor-2 and reduced by systemic administration of a novel anti-toll-like receptor-2 antibody. Circulation 2010; 121(1): 80-90.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.880187] [PMID: 20026776]
[243]
Zhang Y, Shen X, Cheng L, et al. Toll-like receptor 4 knockout protects against diabetic-induced imbalance of bone metabolism via autophagic suppression. Mol Immunol 2020; 117: 12-9.
[http://dx.doi.org/10.1016/j.molimm.2019.10.025] [PMID: 31731054]
[244]
Bialik S, Dasari SK, Kimchi A. Autophagy-dependent cell death - where, how and why a cell eats itself to death. J Cell Sci 2018; 131(18)jcs215152
[http://dx.doi.org/10.1242/jcs.215152] [PMID: 30237248]
[245]
Kanamori H, Naruse G, Yoshida A, et al. Morphological characteristics in diabetic cardiomyopathy associated with autophagy. J Cardiol 2020; .S0914-5087(20): 30171-4.
[http://dx.doi.org/10.1016/j.jjcc.2020.05.009] [PMID: 32907780]
[246]
Rajesh M, Bátkai S, Kechrid M, et al. Cannabinoid 1 receptor promotes cardiac dysfunction, oxidative stress, inflammation, and fibrosis in diabetic cardiomyopathy. Diabetes 2012; 61(3): 716-27.
[http://dx.doi.org/10.2337/db11-0477] [PMID: 22315315]
[247]
Wu A, Hu P, Lin J, Xia W, Zhang R. Activating cannabinoid receptor 2 protects against diabetic cardiomyopathy through autophagy induction. Front Pharmacol 2018; 9: 1292.
[http://dx.doi.org/10.3389/fphar.2018.01292] [PMID: 30459625]
[248]
Dludla PV, Nyambuya TM, Orlando P, et al. The impact of coenzyme Q10 on metabolic and cardiovascular disease profiles in diabetic patients: A systematic review and meta-analysis of randomized controlled trials. Endocrinol Diabetes Metab 2020; 3(2)e00118
[http://dx.doi.org/10.1002/edm2.118] [PMID: 32318636]
[249]
Huynh K, Kiriazis H, Du X-J, et al. Coenzyme Q10 attenuates diastolic dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis in the db/db mouse model of type 2 diabetes. Diabetologia 2012; 55(5): 1544-53.
[http://dx.doi.org/10.1007/s00125-012-2495-3] [PMID: 22374176]
[250]
De Blasio MJ, Huynh K, Qin C, et al. Therapeutic targeting of oxidative stress with coenzyme Q10 counteracts exaggerated diabetic cardiomyopathy in a mouse model of diabetes with diminished PI3K(p110α) signaling. Free Radic Biol Med 2015; 87: 137-47.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.04.028] [PMID: 25937176]
[251]
Manson JE, Cook NR, Lee I-M, et al. Marine n-3 fatty acids and prevention of cardiovascular disease and cancer. N Engl J Med 2019; 380(1): 23-32.
[http://dx.doi.org/10.1056/NEJMoa1811403] [PMID: 30415637]
[252]
Lemaitre RN, Sitlani C, Song X, et al. Circulating and dietary α-linolenic acid and incidence of congestive heart failure in older adults: the Cardiovascular Health Study. Am J Clin Nutr 2012; 96(2): 269-74.
[http://dx.doi.org/10.3945/ajcn.112.037960] [PMID: 22743310]
[253]
Dauriz M, Targher G, Temporelli PL, et al. Prognostic impact of diabetes and prediabetes on survival outcomes in patients with chronic heart failure: a post-hoc analysis of the GISSI-HF (Gruppo Italiano per lo Studio della Sopravvivenza nella Insufficienza Cardiaca-Heart Failure) Trial. J Am Heart Assoc 2017; 6(7): 1-16.
[http://dx.doi.org/10.1161/JAHA.116.005156] [PMID: 28679559]
[254]
Strand E, Pedersen ER, Svingen GFT, et al. Dietary intake of n-3 long-chain polyunsaturated fatty acids and risk of myocardial infarction in coronary artery disease patients with or without diabetes mellitus: a prospective cohort study. BMC Med 2013; 11: 216.
[http://dx.doi.org/10.1186/1741-7015-11-216] [PMID: 24103380]
[255]
Bowman L, Mafham M, Wallendszus K, et al. Effects of n-3 fatty acid supplements in diabetes mellitus. N Engl J Med 2018; 379(16): 1540-50.
[http://dx.doi.org/10.1056/NEJMoa1804989] [PMID: 30146932]
[256]
Fraty M, Velho G, Gand E, et al. Prognostic value of plasma MR-proADM vs NT-proBNP for heart failure in people with type 2 diabetes: the SURDIAGENE prospective study. Diabetologia 2018; 61(12): 2643-53.
[http://dx.doi.org/10.1007/s00125-018-4727-7] [PMID: 30232509]
[257]
Pfister R, Sharp S, Luben R, et al. Mendelian randomization study of B-type natriuretic peptide and type 2 diabetes: evidence of causal association from population studies. PLoS Med 2011; 8(10)e1001112
[http://dx.doi.org/10.1371/journal.pmed.1001112] [PMID: 22039354]
[258]
Miyashita K, Itoh H, Tsujimoto H, et al. Natriuretic peptides/cGMP/cGMP-dependent protein kinase cascades promote muscle mitochondrial biogenesis and prevent obesity. Diabetes 2009; 58(12): 2880-92.
[http://dx.doi.org/10.2337/db09-0393] [PMID: 19690065]
[259]
Plante E, Menaouar A, Danalache BA, Broderick TL, Jankowski M, Gutkowska J. Treatment with brain natriuretic peptide prevents the development of cardiac dysfunction in obese diabetic db/db mice. Diabetologia 2014; 57(6): 1257-67.
[http://dx.doi.org/10.1007/s00125-014-3201-4] [PMID: 24595856]
[260]
O’Connor CM, Starling RC, Hernandez AF, et al. Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med 2011; 365(1): 32-43.
[http://dx.doi.org/10.1056/NEJMoa1100171] [PMID: 21732835]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy