Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

The Involvement of the Mammalian Target of Rapamycin, Protein Tyrosine Phosphatase 1b and Dipeptidase 4 Signaling Pathways in Cancer and Diabetes: A Narrative Review

Author(s): Jiajia Zhang, Ning Wu* and Dayong Shi*

Volume 21, Issue 7, 2021

Published on: 13 November, 2020

Page: [803 - 815] Pages: 13

DOI: 10.2174/1389557520666201113110406

Price: $65

Abstract

Background: The mammalian target of rapamycin (mTOR), protein tyrosine phosphatase 1b (PTP1B) and dipeptidase 4 (DPP4) signaling pathways regulate eukaryotic cell proliferation and metabolism. Previous researches described different transduction mechanisms in the progression of cancer and diabetes.

Methodology: We reviewed recent advances in the signal transduction pathways of mTOR, PTP1B and DPP4 regulation and determined the crosstalk and common pathway in diabetes and cancer.

Results: We showed that according to numerous past studies, the proteins participate in the signaling networks for both diseases.

Conclusion: There are common pathways and specific proteins involved in diabetes and cancer. This article demonstrates and explains the potential mechanisms of association and future prospects for targeting these proteins in pharmacological studies.

Keywords: Signaling pathway, mammalian target of rapamycin, protein tyrosine phosphatase 1b, dipeptidase 4, cancer, diabetes, pharmacology, target compounds.

Graphical Abstract
[1]
IDF diabetes atlas update 2019 International Diabetes Federation. 2019.https://diabetesatlas.org/across-the-globe.html
[2]
Shi, Y.; Hu, F.B. The global implications of diabetes and cancer. Lancet, 2014, 383(9933), 1947-1948.
[http://dx.doi.org/10.1016/S0140-6736(14)60886-2] [PMID: 24910221]
[3]
10 facts about cancer World Health Organization. https://www.who.int/features/factfiles/cancer/en/
[4]
Giovannucci, E.; Harlan, D.M.; Archer, M.C.; Bergenstal, R.M.; Gapstur, S.M.; Habel, L.A.; Pollak, M.; Regensteiner, J.G.; Yee, D. Diabetes and cancer: A consensus report. Diabetes Care, 2010, 33(7), 1674-1685.
[http://dx.doi.org/10.2337/dc10-0666] [PMID: 20587728]
[5]
Labbé, D.P.; Tremblay, M.L. PTP1B: From metabolism to cancer; Protein Tyrosine Phosphatases in Cancer, 2016, pp. 169-199.
[6]
Dazert, E.; Hall, M.N. mTOR signaling in disease. Curr. Opin. Cell Biol., 2011, 23(6), 744-755.
[http://dx.doi.org/10.1016/j.ceb.2011.09.003] [PMID: 21963299]
[7]
Hollande, C.; Boussier, J.; Ziai, J.; Nozawa, T.; Bondet, V.; Phung, W.; Lu, B.; Duffy, D.; Paradis, V.; Mallet, V.; Eberl, G.; Sandoval, W.; Schartner, J.M.; Pol, S.; Barreira da Silva, R.; Albert, M.L. Inhibition of the dipeptidyl peptidase DPP4 (CD26) reveals IL-33-dependent eosinophil-mediated control of tumor growth. Nat. Immunol., 2019, 20(3), 257-264.
[http://dx.doi.org/10.1038/s41590-019-0321-5] [PMID: 30778250]
[8]
Saxton, R.A.; Sabatini, D.M. mTOR signaling in growth, metabolism, and disease. Cell, 2017, 168(6), 960-976.
[http://dx.doi.org/10.1016/j.cell.2017.02.004] [PMID: 28283069]
[9]
Hu, F.B.; Manson, J.E.; Liu, S.; Hunter, D.; Colditz, G.A.; Michels, K.B.; Speizer, F.E.; Giovannucci, E. Prospective study of adult onset diabetes mellitus (type 2) and risk of colorectal cancer in women. J. Natl. Cancer Inst., 1999, 91(6), 542-547.
[http://dx.doi.org/10.1093/jnci/91.6.542] [PMID: 10088625]
[10]
American Diabetes A. Standards of medical care in diabetes-2016 abridged for primary care providers. Clin. Diabetes, 2016, 34(1), 3-21.
[PMID: 26807004]
[11]
Yaribeygi H, Butler AE, Barreto GE, Sahebkar A. Antioxidative potential of antidiabetic agents: A possible protective mechanism against vascular complications in diabetic patients. J. Cell. Physiol., 2019, 234(3), 2436-2446.
[http://dx.doi.org/10.1002/jcp.27278] [PMID: 30191997]
[12]
Livi, G.P. Halcyon days of TOR: Reflections on the multiple independent discovery of the yeast and mammalian TOR proteins. Gene, 2019, 692, 145-155.
[http://dx.doi.org/10.1016/j.gene.2018.12.046] [PMID: 30639424]
[13]
Jacinto, E.; Loewith, R.; Schmidt, A.; Lin, S.; Rüegg, M.A.; Hall, A.; Hall, M.N. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol., 2004, 6(11), 1122-1128.
[http://dx.doi.org/10.1038/ncb1183] [PMID: 15467718]
[14]
Cornu, M.; Albert, V.; Hall, M.N. mTOR in aging, metabolism, and cancer. Curr. Opin. Genet. Dev., 2013, 23(1), 53-62.
[http://dx.doi.org/10.1016/j.gde.2012.12.005] [PMID: 23317514]
[15]
Shimobayashi, M.; Hall, M.N. Making new contacts: The mTOR network in metabolism and signalling crosstalk. Nat. Rev. Mol. Cell Biol., 2014, 15(3), 155-162.
[http://dx.doi.org/10.1038/nrm3757] [PMID: 24556838]
[16]
Grabiner, B.C.; Nardi, V.; Birsoy, K.; Possemato, R.; Shen, K.; Sinha, S.; Jordan, A.; Beck, A.H.; Sabatini, D.M. A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discov., 2014, 4(5), 554-563.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0929] [PMID: 24631838]
[17]
Yecies, J.L.; Manning, B.D. Transcriptional control of cellular metabolism by mTOR signaling. Cancer Res., 2011, 71(8), 2815-2820.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-4158] [PMID: 21487041]
[18]
Bar-Peled, L.; Chantranupong, L.; Cherniack, A.D.; Chen, W.W.; Ottina, K.A.; Grabiner, B.C.; Spear, E.D.; Carter, S.L.; Meyerson, M.; Sabatini, D.M. A tumor suppressor complex with GAP activity for the Rag GTPases that signal amino acid sufficiency to mTORC1. Science, 2013, 340(6136), 1100-1106.
[http://dx.doi.org/10.1126/science.1232044] [PMID: 23723238]
[19]
Hsieh, A.C.; Liu, Y.; Edlind, M.P.; Ingolia, N.T.; Janes, M.R.; Sher, A.; Shi, E.Y.; Stumpf, C.R.; Christensen, C.; Bonham, M.J.; Wang, S.; Ren, P.; Martin, M.; Jessen, K.; Feldman, M.E.; Weissman, J.S.; Shokat, K.M.; Rommel, C.; Ruggero, D. The translational landscape of mTOR signalling steers cancer initiation and metastasis. Nature, 2012, 485(7396), 55-61.
[http://dx.doi.org/10.1038/nature10912] [PMID: 22367541]
[20]
Alain, T.; Morita, M.; Fonseca, B.D.; Yanagiya, A.; Siddiqui, N.; Bhat, M.; Zammit, D.; Marcus, V.; Metrakos, P.; Voyer, L.A.; Gandin, V.; Liu, Y.; Topisirovic, I.; Sonenberg, N. eIF4E/4E-BP ratio predicts the efficacy of mTOR targeted therapies. Cancer Res., 2012, 72(24), 6468-6476.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2395] [PMID: 23100465]
[21]
Tabernero, J.; Rojo, F.; Calvo, E.; Burris, H.; Judson, I.; Hazell, K.; Martinelli, E.; Ramon y Cajal, S.; Jones, S.; Vidal, L.; Shand, N.; Macarulla, T.; Ramos, F.J.; Dimitrijevic, S.; Zoellner, U.; Tang, P.; Stumm, M.; Lane, H.A.; Lebwohl, D.; Baselga, J. Dose- and schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: A phase I tumor pharmacodynamic study in patients with advanced solid tumors. J. Clin. Oncol., 2008, 26(10), 1603-1610.
[http://dx.doi.org/10.1200/JCO.2007.14.5482] [PMID: 18332469]
[22]
Palm, W.; Park, Y.; Wright, K.; Pavlova, N.N.; Tuveson, D.A.; Thompson, C.B. The utilization of extracellular proteins as nutrients is suppressed by mTORC1. Cell, 2015, 162(2), 259-270.
[http://dx.doi.org/10.1016/j.cell.2015.06.017] [PMID: 26144316]
[23]
Rodrik-Outmezguine, V.S.; Chandarlapaty, S.; Pagano, N.C.; Poulikakos, P.I.; Scaltriti, M.; Moskatel, E.; Baselga, J.; Guichard, S.; Rosen, N. mTOR kinase inhibition causes feedback-dependent biphasic regulation of AKT signaling. Cancer Discov., 2011, 1(3), 248-259.
[http://dx.doi.org/10.1158/2159-8290.CD-11-0085] [PMID: 22140653]
[24]
Mori, H.; Inoki, K.; Opland, D.; Münzberg, H.; Villanueva, E.C.; Faouzi, M.; Ikenoue, T.; Kwiatkowski, D.J.; Macdougald, O.A.; Myers, M.G., Jr; Guan, K.L. Critical roles for the TSC-mTOR pathway in β-cell function. Am. J. Physiol. Endocrinol. Metab., 2009, 297(5), E1013-E1022.
[http://dx.doi.org/10.1152/ajpendo.00262.2009] [PMID: 19690069]
[25]
Sarbassov, D.D.; Guertin, D.A.; Ali, S.M.; Sabatini, D.M. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science, 2005, 307(5712), 1098-1101.
[http://dx.doi.org/10.1126/science.1106148] [PMID: 15718470]
[26]
Guertin, D.A.; Stevens, D.M.; Thoreen, C.C.; Burds, A.A.; Kalaany, N.Y.; Moffat, J.; Brown, M.; Fitzgerald, K.J.; Sabatini, D.M. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev. Cell, 2006, 11(6), 859-871.
[http://dx.doi.org/10.1016/j.devcel.2006.10.007] [PMID: 17141160]
[27]
García-Martínez, J.M.; Alessi, D.R. mTOR complex 2 (mTORC2) controls hydrophobic motif phosphorylation and activation of serum- and glucocorticoid-induced protein kinase 1 (SGK1). Biochem. J., 2008, 416(3), 375-385.
[http://dx.doi.org/10.1042/BJ20081668] [PMID: 18925875]
[28]
Guertin, D.A.; Stevens, D.M.; Saitoh, M.; Kinkel, S.; Crosby, K.; Sheen, J.H.; Mullholland, D.J.; Magnuson, M.A.; Wu, H.; Sabatini, D.M. mTOR complex 2 is required for the development of prostate cancer induced by Pten loss in mice. Cancer Cell, 2009, 15(2), 148-159.
[http://dx.doi.org/10.1016/j.ccr.2008.12.017] [PMID: 19185849]
[29]
Roy, S.K.; Srivastava, R.K.; Shankar, S. Inhibition of PI3K/AKT and MAPK/ERK pathways causes activation of FOXO transcription factor, leading to cell cycle arrest and apoptosis in pancreatic cancer. J. Mol. Signal., 2010, 5, 10.
[http://dx.doi.org/10.1186/1750-2187-5-10] [PMID: 20642839]
[30]
Wolfgang, C.L.; Herman, J.M.; Laheru, D.A.; Klein, A.P.; Erdek, M.A.; Fishman, E.K.; Hruban, R.H. Recent progress in pancreatic cancer. CA Cancer J. Clin., 2013, 63(5), 318-348.
[http://dx.doi.org/10.3322/caac.21190] [PMID: 23856911]
[31]
Hagiwara, A.; Cornu, M.; Cybulski, N.; Polak, P.; Betz, C.; Trapani, F.; Terracciano, L.; Heim, M.H.; Rüegg, M.A.; Hall, M.N. Hepatic mTORC2 activates glycolysis and lipogenesis through Akt, glucokinase, and SREBP1c. Cell Metab., 2012, 15(5), 725-738.
[http://dx.doi.org/10.1016/j.cmet.2012.03.015] [PMID: 22521878]
[32]
Kumar, A.; Lawrence, J.C., Jr; Jung, D.Y.; Ko, H.J.; Keller, S.R.; Kim, J.K.; Magnuson, M.A.; Harris, T.E. Fat cell-specific ablation of rictor in mice impairs insulin-regulated fat cell and whole-body glucose and lipid metabolism. Diabetes, 2010, 59(6), 1397-1406.
[http://dx.doi.org/10.2337/db09-1061] [PMID: 20332342]
[33]
Tonks, N.K.; Diltz, C.D.; Fischer, E.H. Characterization of the major protein-tyrosine-phosphatases of human placenta. J. Biol. Chem., 1988, 263(14), 6731-6737.
[PMID: 2834387]
[34]
Chernoff, J.; Schievella, A.R.; Jost, C.A.; Erikson, R.L.; Neel, B.G. Cloning of a cDNA for a major human protein-tyrosine-phosphatase. Proc. Natl. Acad. Sci. USA, 1990, 87(7), 2735-2739.
[http://dx.doi.org/10.1073/pnas.87.7.2735] [PMID: 2157211]
[35]
Seely, B.L.; Staubs, P.A.; Reichart, D.R.; Berhanu, P.; Milarski, K.L.; Saltiel, A.R.; Kusari, J.; Olefsky, J.M. Protein tyrosine phosphatase 1B interacts with the activated insulin receptor. Diabetes, 1996, 45(10), 1379-1385.
[http://dx.doi.org/10.2337/diab.45.10.1379] [PMID: 8826975]
[36]
Evans, J.L.; Jallal, B. Protein tyrosine phosphatases: Their role in insulin action and potential as drug targets. Expert Opin. Investig. Drugs, 1999, 8(2), 139-160.
[http://dx.doi.org/10.1517/13543784.8.2.139] [PMID: 15992069]
[37]
Li, L.; Dixon, J.E. Form, function, and regulation of protein tyrosine phosphatases and their involvement in human diseases. Semin. Immunol., 2000, 12(1), 75-84.
[http://dx.doi.org/10.1006/smim.2000.0209] [PMID: 10723800]
[38]
Le, HT.; Ponniah, S; Pallen, C.J. Insulin signaling and glucose homeostasis in mice lacking protein tyrosine phosphatase α. Biochem. Biophys. Res. Commun., 2004, 314(2), 321-329.
[PMID: 14733908]
[39]
Elchebly, M.; Payette, P.; Michaliszyn, E.; Cromlish, W.; Collins, S.; Loy, A.L.; Normandin, D.; Cheng, A.; Himms-Hagen, J.; Chan, C.C.; Ramachandran, C.; Gresser, M.J.; Tremblay, M.L.; Kennedy, B.P. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science, 1999, 283(5407), 1544-1548.
[http://dx.doi.org/10.1126/science.283.5407.1544] [PMID: 10066179]
[40]
Ahmad, F.; Goldstein, B.J. Increased abundance of specific skeletal muscle protein-tyrosine phosphatases in a genetic model of insulin-resistant obesity and diabetes mellitus. Metabolism, 1995, 44(9), 1175-1184.
[http://dx.doi.org/10.1016/0026-0495(95)90012-8] [PMID: 7666792]
[41]
Bandyopadhyay, D.; Kusari, A.; Kenner, K.A.; Liu, F.; Chernoff, J.; Gustafson, T.A.; Kusari, J. Protein-tyrosine phosphatase 1B complexes with the insulin receptor in vivo and is tyrosine-phosphorylated in the presence of insulin. J. Biol. Chem., 1997, 272(3), 1639-1645.
[http://dx.doi.org/10.1074/jbc.272.3.1639] [PMID: 8999839]
[42]
Zhou, L.; Yi, Y.; Yuan, Q.; Zhang, J.; Li, Y.; Wang, P.; Xu, M.; Xie, S. VAOS, a novel vanadyl complexes of alginate saccharides, inducing apoptosis via activation of AKT-dependent ROS production in NSCLC. Free Radic. Biol. Med., 2018, 129, 177-185.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.09.016] [PMID: 30223019]
[43]
Li, J.; Teng, Y.; Liu, S.; Wang, Z.; Chen, Y.; Zhang, Y.; Xi, S.; Xu, S.; Wang, R.; Zou, X. Cinnamaldehyde affects the biological behavior of human colorectal cancer cells and induces apoptosis via inhibition of the PI3K/Akt signaling pathway. Oncol. Rep., 2016, 35(3), 1501-1510.
[http://dx.doi.org/10.3892/or.2015.4493] [PMID: 26677144]
[44]
Tenev, T.; Keilhack, H.; Tomic, S.; Stoyanov, B.; Stein-Gerlach, M.; Lammers, R.; Krivtsov, A.V.; Ullrich, A.; Böhmer, F.D. Both SH2 domains are involved in interaction of SHP-1 with the epidermal growth factor receptor but cannot confer receptor-directed activity to SHP-1/SHP-2 chimera. J. Biol. Chem., 1997, 272(9), 5966-5973.
[http://dx.doi.org/10.1074/jbc.272.9.5966] [PMID: 9038217]
[45]
Thiyagarajan, G.; Muthukumaran, P.; Sarath Kumar, B.; Muthusamy, V.S.; Lakshmi, B.S. Selective inhibition of PTP1B by vitalboside A from Syzygium cumini enhances insulin sensitivity and attenuates lipid accumulation via partial agonism to PPARγ: In vitro and in silico investigation. Chem. Biol. Drug Des., 2016, 88(2), 302-312.
[http://dx.doi.org/10.1111/cbdd.12757] [PMID: 26989847]
[46]
Chu, J-X.; Wang, Z-L.; Han, S-Y. The effects of total flavonoids from buckwheat flowers and leaves on renal damage and PTP1B expression in type 2 diabetic rats. Iran. J. Pharm. Res., 2011, 10(3), 511-517.
[PMID: 24250383]
[47]
Yasir, M.; Das, S.; Kharya, M.D. The phytochemical and pharmacological profile of Persea americana Mill. Pharmacogn. Rev., 2010, 4(7), 77-84.
[http://dx.doi.org/10.4103/0973-7847.65332] [PMID: 22228945]
[48]
Zhao, B.T.; Nguyen, D.H.; Le, D.D.; Choi, J.S.; Min, B.S.; Woo, M.H. Protein tyrosine phosphatase 1B inhibitors from natural sources. Arch. Pharm. Res., 2018, 41(2), 130-161.
[http://dx.doi.org/10.1007/s12272-017-0997-8] [PMID: 29214599]
[49]
Zabolotny, J.M.; Kim, Y-B.; Welsh, L.A.; Kershaw, E.E.; Neel, B.G.; Kahn, B.B. Protein-tyrosine phosphatase 1B expression is induced by inflammation in vivo. J. Biol. Chem., 2008, 283(21), 14230-14241.
[http://dx.doi.org/10.1074/jbc.M800061200] [PMID: 18281274]
[50]
Panzhinskiy, E.; Ren, J.; Nair, S. Protein tyrosine phosphatase 1B and insulin resistance: Role of endoplasmic reticulum stress/reactive oxygen species/nuclear factor kappa B axis. PLoS One, 2013, 8(10)e77228
[http://dx.doi.org/10.1371/journal.pone.0077228] [PMID: 24204775]
[51]
Nakamura, Y.; Patrushev, N.; Inomata, H.; Mehta, D.; Urao, N.; Kim, H.W.; Razvi, M.; Kini, V.; Mahadev, K.; Goldstein, B.J.; McKinney, R.; Fukai, T.; Ushio-Fukai, M. Role of protein tyrosine phosphatase 1B in vascular endothelial growth factor signaling and cell-cell adhesions in endothelial cells. Circ. Res., 2008, 102(10), 1182-1191.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.167080]] [PMID: 18451337]
[52]
Zhang, J.; Li, L.; Li, J.; Liu, Y.; Zhang, C.Y.; Zhang, Y.; Zen, K. Protein tyrosine phosphatase 1B impairs diabetic wound healing through vascular endothelial growth factor receptor 2 dephosphorylation. Arterioscler. Thromb. Vasc. Biol., 2015, 35(1), 163-174.
[http://dx.doi.org/10.1161/ATVBAHA.114.304705] [PMID: 25395617]
[53]
Zhao, R.; Xie, C.; Chen, G.; Gong, Y.; Dong, H. Expression of PTP1B in ER-positive breast cancer and the relationship between PTP1B expression and the prognosis of breast cancer. Chin. J. Clin. Experiment. Pathol., 2016, 32(5), 492-495.
[54]
Liu, X.; Chen, Q.; Hu, X-G.; Zhang, X-C.; Fu, T-W.; Liu, Q. PTP1B promotes aggressiveness of breast cancer cells by regulating PTEN but not EMT. Tumour Biol., 2016, 37(10), 13479-13487.
[55]
Liu, H.; Wu, Y.; Zhu, S.; Liang, W.; Wang, Z.; Wang, Y. PTP1B promotes cell proliferation and metastasis through activating src and ERK1/2 in non-small cell lung cancer. Cancer Lett., 2015, 359(2), 218-225.
[56]
Renehan, A.G.; Roberts, D.L.; Dive, C. Obesity and cancer: Pathophysiological and biological mechanisms. Arch. Physiol. Biochem., 2008, 114(1), 71-83.
[http://dx.doi.org/10.1080/13813450801954303] [PMID: 18465361]
[57]
Ramamurthy, V.P.; Ramalingam, S.; Kwegyir-Afful, A.K.; Hussain, A.; Njar, V.C. Targeting of protein translation as a new treatment paradigm for prostate cancer. Curr. Opin. Oncol., 2017.
[http://dx.doi.org/10.1097/CCO.0000000000000367] [PMID: 28282343]
[58]
Tanner, M.M.; Tirkkonen, M.; Kallioniemi, A.; Isola, J.; Kuukasjärvi, T.; Collins, C.; Kowbel, D.; Guan, X.Y.; Trent, J.; Gray, J.W.; Meltzer, P.; Kallioniemi, O.P. Independent amplification and frequent co-amplification of three nonsyntenic regions on the long arm of chromosome 20 in human breast cancer. Cancer Res., 1996, 56(15), 3441-3445.
[PMID: 8758909]
[59]
Yang, S.H.; Seo, M.Y.; Jeong, H.J.; Jeung, H-C.; Shin, J.; Kim, S.C.; Noh, S.H.; Chung, H.C.; Rha, S.Y. Gene copy number change events at chromosome 20 and their association with recurrence in gastric cancer patients. Clin. Cancer Res., 2005, 11(2 Pt 1), 612-620.
[PMID: 15701848]
[60]
Mahlamäki, E.H.; Bärlund, M.; Tanner, M.; Gorunova, L.; Höglund, M.; Karhu, R.; Kallioniemi, A. Frequent amplification of 8q24, 11q, 17q, and 20q-specific genes in pancreatic cancer. Genes Chromosomes Cancer, 2002, 35(4), 353-358.
[http://dx.doi.org/10.1002/gcc.10122] [PMID: 12378529]
[61]
Bar-Shira, A; Pinthus, JH; Rozovsky, U; Goldstein, M; Sellers, WR; Yaron, Y Multiple genes in human 20q13 chromosomal region are involved in an advanced prostate cancer xenograft. Cancer Res., 2011, 62(23), 6803-6807.
[62]
Warabi, M.; Nemoto, T.; Ohashi, K.; Kitagawa, M.; Hirokawa, K. Expression of protein tyrosine phosphatases and its significance in esophageal cancer. Exp. Mol. Pathol., 2000, 68(3), 187-195.
[http://dx.doi.org/10.1006/exmp.2000.2303] [PMID: 10816386]
[63]
Wiener, J.R.; Kerns, B.J.; Harvey, E.L.; Conaway, M.R.; Iglehart, J.D.; Berchuck, A.; Bast, R.C., Jr Overexpression of the protein tyrosine phosphatase PTP1B in human breast cancer: Association with p185c-erbB-2 protein expression. J. Natl. Cancer Inst., 1994, 86(5), 372-378.
[http://dx.doi.org/10.1093/jnci/86.5.372] [PMID: 7905928]
[64]
Lessard, L.; Labbé, D.P.; Deblois, G.; Bégin, L.R.; Hardy, S.; Mes-Masson, A-M.; Saad, F.; Trotman, L.C.; Giguère, V.; Tremblay, M.L. PTP1B is an androgen receptor-regulated phosphatase that promotes the progression of prostate cancer. Cancer Res., 2012, 72(6), 1529-1537.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-2602] [PMID: 22282656]
[65]
Wiener, J.R.; Hurteau, J.A.; Kerns, B.J.; Whitaker, R.S.; Conaway, M.R.; Berchuck, A.; Bast, R.C., Jr Overexpression of the tyrosine phosphatase PTP1B is associated with human ovarian carcinomas. Am. J. Obstet. Gynecol., 1994, 170(4), 1177-1183.
[http://dx.doi.org/10.1016/S0002-9378(94)70118-0] [PMID: 8166206]
[66]
Wang, J.; Liu, B.; Chen, X.; Su, L.; Wu, P.; Wu, J.; Zhu, Z. PTP1B expression contributes to gastric cancer progression. Med. Oncol., 2012, 29(2), 948-956.
[http://dx.doi.org/10.1007/s12032-011-9911-2] [PMID: 21442314]
[67]
Gherardi, E.; Birchmeier, W.; Birchmeier, C.; Vande Woude, G. Targeting MET in cancer: Rationale and progress. Nat. Rev. Cancer, 2012, 12(2), 89-103.
[http://dx.doi.org/10.1038/nrc3205] [PMID: 22270953]
[68]
Suwaki, N.; Vanhecke, E; Atkins, KM; Graf, M; Swabey, K; Huang, P A HIF-regulated VHL-PTP1B-Src signaling axis identifies a therapeutic target in renal cell carcinoma. Sci. Transl. Med., 2011, 3(85)
[http://dx.doi.org/10.1126/scitranslmed.3002004]
[69]
Lanahan, A.A.; Hermans, K.; Claes, F.; Kerley-Hamilton, J.S.; Zhuang, Z.W.; Giordano, F.J.; Carmeliet, P.; Simons, M. VEGF receptor 2 endocytic trafficking regulates arterial morphogenesis. Dev. Cell, 2010, 18(5), 713-724.
[http://dx.doi.org/10.1016/j.devcel.2010.02.016] [PMID: 20434959]
[70]
Schubbert, S.; Shannon, K.; Bollag, G. Hyperactive RAS in developmental disorders and cancer. Nat. Rev. Cancer, 2007, 7(4), 295-308.
[http://dx.doi.org/10.1038/nrc2109] [PMID: 17384584]
[71]
Soysal, S.; Obermann, E.C.; Gao, F.; Oertli, D.; Gillanders, W.E.; Viehl, C.T.; Muenst, S. PTP1B expression is an independent positive prognostic factor in human breast cancer. Breast Cancer Res. Treat., 2013, 137(2), 637-644.
[http://dx.doi.org/10.1007/s10549-012-2373-1] [PMID: 23242616]
[72]
Li, J.M.; Li, Y.C.; Kong, L.D.; Hu, Q.H. Curcumin inhibits hepatic protein-tyrosine phosphatase 1B and prevents hypertriglyceridemia and hepatic steatosis in fructose-fed rats. Hepatology, 2010, 51(5), 1555-1566.
[http://dx.doi.org/10.1002/hep.23524] [PMID: 20222050]
[73]
Aggarwal, B.B.; Kumar, A.; Bharti, A.C. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res., 2003, 23(1A), 363-398.
[PMID: 12680238]
[74]
Zhu, R.; Liu, H.; Liu, C.; Wang, L.; Ma, R.; Chen, B.; Li, L.; Niu, J.; Fu, M.; Zhang, D.; Gao, S. Cinnamaldehyde in diabetes: A review of pharmacology, pharmacokinetics and safety. Pharmacol. Res., 2017, 122, 78-89.
[http://dx.doi.org/10.1016/j.phrs.2017.05.019] [PMID: 28559210]
[75]
Hong, S.H.; Ismail, I.A.; Kang, S.M.; Han, D.C.; Kwon, B.M. Cinnamaldehydes in cancer chemotherapy. Phytother. Res., 2016, 30(5), 754-767.
[http://dx.doi.org/10.1002/ptr.5592] [PMID: 26890810]
[76]
Cabello, C.M.; Bair, W.B., III; Lamore, S.D.; Ley, S.; Bause, A.S.; Azimian, S.; Wondrak, G.T. The cinnamon-derived Michael acceptor cinnamic aldehyde impairs melanoma cell proliferation, invasiveness, and tumor growth. Free Radic. Biol. Med., 2009, 46(2), 220-231.
[http://dx.doi.org/10.1016/j.freeradbiomed.2008.10.025] [PMID: 19000754]
[77]
Hopsu-Havu, V.K.; Glenner, G.G. A new dipeptide naphthylamidase hydrolyzing glycyl-prolyl-β-naphthylamide. Histochemie, 1966, 7(3), 197-201.
[http://dx.doi.org/10.1007/BF00577838] [PMID: 5959122]
[78]
Lambeir, A-M.; Durinx, C.; Scharpé, S.; De Meester, I. Dipeptidyl-peptidase IV from bench to bedside: An update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit. Rev. Clin. Lab. Sci., 2003, 40(3), 209-294.
[http://dx.doi.org/10.1080/713609354] [PMID: 12892317]
[79]
Röhrborn, D.; Eckel, J.; Sell, H. Shedding of dipeptidyl peptidase 4 is mediated by metalloproteases and up-regulated by hypoxia in human adipocytes and smooth muscle cells. FEBS Lett., 2014, 588(21), 3870-3877.
[http://dx.doi.org/10.1016/j.febslet.2014.08.029] [PMID: 25217834]
[80]
Lamers, D.; Famulla, S.; Wronkowitz, N.; Hartwig, S.; Lehr, S.; Ouwens, D.M.; Eckardt, K.; Kaufman, J.M.; Ryden, M.; Müller, S.; Hanisch, F.G.; Ruige, J.; Arner, P.; Sell, H.; Eckel, J. Dipeptidyl peptidase 4 is a novel adipokine potentially linking obesity to the metabolic syndrome. Diabetes, 2011, 60(7), 1917-1925.
[http://dx.doi.org/10.2337/db10-1707] [PMID: 21593202]
[81]
Sell, H.; Blüher, M.; Klöting, N.; Schlich, R.; Willems, M. Ruppe, F Adipose dipeptidyl peptidase-4 and obesity: Correlation with insulin resistance and depot-specific release from adipose tissue in vivo and in vitro. Diabetes Care, 2013, 36(12), 4083-4090.
[82]
Cordero, OJ; Salgado, FJ; Nogueira, M On the origin of serum CD26 and its altered concentration in cancer patients. Cancer Immunol. Immunother., 2009, 58(11), 1723-1747.
[PMID: 19557413]
[83]
Ryskjaer, J.; Deacon, C.F.; Carr, R.D.; Krarup, T.; Madsbad, S.; Holst, J.; Vilsbøll, T. Plasma dipeptidyl peptidase-IV activity in patients with type-2 diabetes mellitus correlates positively with HbAlc levels, but is not acutely affected by food intake. Eur. J. Endocrinol., 2006, 155(3), 485-493.
[http://dx.doi.org/10.1530/eje.1.02221] [PMID: 16914604]
[84]
Ahmed, R.H.; Huri, H.Z.; Muniandy, S.; Al-Hamodi, Z.; Al-Absi, B.; Alsalahi, A.; Razif, M.F. Altered circulating concentrations of active glucagon-like peptide (GLP-1) and dipeptidyl peptidase 4 (DPP4) in obese subjects and their association with insulin resistance. Clin. Biochem., 2017, 50(13-14), 746-749.
[http://dx.doi.org/10.1016/j.clinbiochem.2017.03.008] [PMID: 28288852]
[85]
Baumeier, C.; Saussenthaler, S.; Kammel, A.; Jähnert, M.; Schlüter, L.; Hesse, D.; Canouil, M.; Lobbens, S.; Caiazzo, R.; Raverdy, V.; Pattou, F.; Nilsson, E.; Pihlajamäki, J.; Ling, C.; Froguel, P.; Schürmann, A.; Schwenk, R.W. Hepatic DPP4 DNA methylation associates with fatty liver. Diabetes, 2017, 66(1), 25-35.
[http://dx.doi.org/10.2337/db15-1716] [PMID: 27999105]
[86]
Holst, J.J. The physiology of glucagon-like peptide 1. Physiol. Rev., 2007, 87(4), 1409-1439.
[http://dx.doi.org/10.1152/physrev.00034.2006] [PMID: 17928588]
[87]
Kim, W.; Egan, J.M. The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol. Rev., 2008, 60(4), 470-512.
[http://dx.doi.org/10.1124/pr.108.000604] [PMID: 19074620]
[88]
Campbell, R.K. Rationale for dipeptidyl peptidase 4 inhibitors: A new class of oral agents for the treatment of type 2 diabetes mellitus. Ann. Pharmacother., 2007, 41(1), 51-60.
[http://dx.doi.org/10.1345/aph.1H459] [PMID: 17190843]
[89]
Wronkowitz, N.; Görgens, S.W.; Romacho, T.; Villalobos, L.A.; Sánchez-Ferrer, C.F.; Peiró, C.; Sell, H.; Eckel, J. Soluble DPP4 induces inflammation and proliferation of human smooth muscle cells via protease-activated receptor 2. Biochim. Biophys. Acta, 2014, 1842(9), 1613-1621.
[http://dx.doi.org/10.1016/j.bbadis.2014.06.004] [PMID: 24928308]
[90]
Lee, D-S.; Lee, E-S.; Alam, M.M.; Jang, J-H.; Lee, H-S.; Oh, H.; Kim, Y.C.; Manzoor, Z.; Koh, Y.S.; Kang, D.G.; Lee, D.H. Soluble DPP-4 up-regulates toll-like receptors and augments inflammatory reactions, which are ameliorated by vildagliptin or mannose-6-phosphate. Metabolism, 2016, 65(2), 89-101.
[http://dx.doi.org/10.1016/j.metabol.2015.10.002] [PMID: 26773932]
[91]
Omar, B.A.; Liehua, L.; Yamada, Y.; Seino, Y.; Marchetti, P.; Ahrén, B. Dipeptidyl peptidase 4 (DPP-4) is expressed in mouse and human islets and its activity is decreased in human islets from individuals with type 2 diabetes. Diabetologia, 2014, 57(9), 1876-1883.
[http://dx.doi.org/10.1007/s00125-014-3299-4] [PMID: 24939431]
[92]
Pratley, R.E.; Salsali, A. Inhibition of DPP-4: A new therapeutic approach for the treatment of type 2 diabetes. Curr. Med. Res. Opin., 2007, 23(4), 919-931.
[http://dx.doi.org/10.1185/030079906X162746] [PMID: 17407649]
[93]
Kos, K.; Baker, A.R.; Jernas, M.; Harte, A.L.; Clapham, J.C.; O’Hare, J.P.; Carlsson, L.; Kumar, S.; McTernan, P.G. DPP-IV inhibition enhances the antilipolytic action of NPY in human adipose tissue. Diabetes Obes. Metab., 2009, 11(4), 285-292.
[http://dx.doi.org/10.1111/j.1463-1326.2008.00909.x] [PMID: 19175376]
[94]
Bostick, B.; Habibi, J.; Ma, L.; Aroor, A.; Rehmer, N.; Hayden, M.R.; Sowers, J.R. Dipeptidyl peptidase inhibition prevents diastolic dysfunction and reduces myocardial fibrosis in a mouse model of Western diet induced obesity. Metabolism, 2014, 63(8), 1000-1011.
[http://dx.doi.org/10.1016/j.metabol.2014.04.002] [PMID: 24933400]
[95]
Gonzalez-Quesada, C.; Cavalera, M.; Biernacka, A.; Kong, P.; Lee, D.W.; Saxena, A.; Frunza, O.; Dobaczewski, M.; Shinde, A.; Frangogiannis, N.G. Thrombospondin-1 induction in the diabetic myocardium stabilizes the cardiac matrix in addition to promoting vascular rarefaction through angiopoietin-2 upregulation. Circ. Res., 2013, 113(12), 1331-1344.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.302593] [PMID: 24081879]
[96]
Wang, X.; Ding, Z.; Yang, F.; Dai, Y.; Chen, P.; Theus, S.; Singh, S.; Budhiraja, M.; Mehta, J.L. Modulation of myocardial injury and collagen deposition following ischaemia-reperfusion by linagliptin and liraglutide, and both together. Clin. Sci. (Lond.), 2016, 130(15), 1353-1362.
[http://dx.doi.org/10.1042/CS20160061] [PMID: 27129181]
[97]
Onoyama, T.; Koda, M.; Okamoto, T.; Kishina, M.; Matono, T.; Sugihara, T.; Murawaki, Y. Therapeutic effects of the dipeptidyl peptidase-IV inhibitor, sitagliptin, on non-alcoholic steatohepatitis in FLS-ob/ob male mice. Mol. Med. Rep., 2015, 12(5), 6895-6902.
[http://dx.doi.org/10.3892/mmr.2015.4329] [PMID: 26397061]
[98]
Zhang, J.; Gao, Z.; Yin, J.; Quon, M.J.; Ye, J. S6K directly phosphorylates IRS-1 on Ser-270 to promote insulin resistance in response to TNF-(alpha) signaling through IKK2. J. Biol. Chem., 2008, 283(51), 35375-35382.
[http://dx.doi.org/10.1074/jbc.M806480200] [PMID: 18952604]
[99]
Qiao, S.; Mao, G.; Li, H.; Ma, Z.; Hong, L.; Zhang, H.; Wang, C.; An, J. DPP-4 inhibitor Sitagliptin improves cardiac function and glucose homeostasis and ameliorates β-cell dysfunction together with reducing S6K1 ativation and IRS-1 and IRS-2 degradation in obesity female mice. J. Diabetes Res., 2018, 20183641516
[http://dx.doi.org/10.1155/2018/3641516] [PMID: 30116740]
[100]
Deepashree, G; Charles, BK; Guido, L Over-nutrition, obesity and insulin resistance in the development of β-cell dysfunction. Curr. Diabetes Rev., 2012, 8(2), 76-83.
[PMID: 22229253]
[101]
Vanheule, V.; Metzemaekers, M.; Janssens, R.; Struyf, S.; Proost, P. How post-translational modifications influence the biological activity of chemokines. Cytokine, 2018, 109, 29-51.
[http://dx.doi.org/10.1016/j.cyto.2018.02.026] [PMID: 29903573]
[102]
Barreira da Silva, R.; Laird, M.E.; Yatim, N.; Fiette, L.; Ingersoll, M.A.; Albert, M.L. Dipeptidylpeptidase 4 inhibition enhances lymphocyte trafficking, improving both naturally occurring tumor immunity and immunotherapy. Nat. Immunol., 2015, 16(8), 850-858.
[http://dx.doi.org/10.1038/ni.3201] [PMID: 26075911]
[103]
Casrouge, A.; Decalf, J.; Ahloulay, M.; Lababidi, C.; Mansour, H.; Vallet-Pichard, A.; Mallet, V.; Mottez, E.; Mapes, J.; Fontanet, A.; Pol, S.; Albert, M.L. Evidence for an antagonist form of the chemokine CXCL10 in patients chronically infected with HCV. J. Clin. Invest., 2011, 121(1), 308-317.
[http://dx.doi.org/10.1172/JCI40594] [PMID: 21183794]
[104]
Cho, S.Y.; Xu, M.; Roboz, J.; Lu, M.; Mascarenhas, J.; Hoffman, R. The effect of CXCL12 processing on CD34+ cell migration in myeloproliferative neoplasms. Cancer Res., 2010, 70(8), 3402-3410.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3977] [PMID: 20388788]
[105]
Yamaguchi, U.; Nakayama, R.; Honda, K.; Ichikawa, H.; Hasegawa, T.; Shitashige, M.; Ono, M.; Shoji, A.; Sakuma, T.; Kuwabara, H.; Shimada, Y.; Sasako, M.; Shimoda, T.; Kawai, A.; Hirohashi, S.; Yamada, T. Distinct gene expression-defined classes of gastrointestinal stromal tumor. J. Clin. Oncol., 2008, 26(25), 4100-4108.
[http://dx.doi.org/10.1200/JCO.2007.14.2331] [PMID: 18757323]
[106]
Matuszak, M.; Lewandowski, K.; Czyż, A.; Kiernicka-Parulska, J.; Przybyłowicz-Chalecka, A.; Jarmuż-Szymczak, M.; Lewandowska, M.; Komarnicki, M. The prognostic significance of surface dipeptidylpeptidase IV (CD26) expression in B-cell chronic lymphocytic leukemia. Leuk. Res., 2016, 47, 166-171.
[http://dx.doi.org/10.1016/j.leukres.2016.06.002] [PMID: 27376546]
[107]
Aoe, K.; Amatya, V.J.; Fujimoto, N.; Ohnuma, K.; Hosono, O.; Hiraki, A.; Fujii, M.; Yamada, T.; Dang, N.H.; Takeshima, Y.; Inai, K.; Kishimoto, T.; Morimoto, C. CD26 overexpression is associated with prolonged survival and enhanced chemosensitivity in malignant pleural mesothelioma. Clin. Cancer Res., 2012, 18(5), 1447-1456.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1990] [PMID: 22261805]
[108]
Okamoto, T.; Yamazaki, H.; Hatano, R.; Yamada, T.; Kaneko, Y.; Xu, C.W.; Dang, N.H.; Ohnuma, K.; Morimoto, C. Targeting CD26 suppresses proliferation of malignant mesothelioma cell via downmodulation of ubiquitin-specific protease 22. Biochem. Biophys. Res. Commun., 2018, 504(2), 491-498.
[http://dx.doi.org/10.1016/j.bbrc.2018.08.193] [PMID: 30197002]
[109]
Qin, C.J.; Zhao, L.H.; Zhou, X.; Zhang, H.L.; Wen, W.; Tang, L.; Zeng, M.; Wang, M.D.; Fu, G.B.; Huang, S.; Huang, W.J.; Yang, Y.; Bao, Z.J.; Zhou, W.P.; Wang, H.Y.; Yan, H.X. Inhibition of dipeptidyl peptidase IV prevents high fat diet-induced liver cancer angiogenesis by downregulating chemokine ligand 2. Cancer Lett., 2018, 420, 26-37.
[http://dx.doi.org/10.1016/j.canlet.2018.01.064] [PMID: 29409972]
[110]
Arendt, L.M.; McCready, J.; Keller, P.J.; Baker, D.D.; Naber, S.P.; Seewaldt, V.; Kuperwasser, C. Obesity promotes breast cancer by CCL2-mediated macrophage recruitment and angiogenesis. Cancer Res., 2013, 73(19), 6080-6093.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-0926] [PMID: 23959857]
[111]
Qian, B.Z.; Li, J.; Zhang, H.; Kitamura, T.; Zhang, J.; Campion, L.R.; Kaiser, E.A.; Snyder, L.A.; Pollard, J.W. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature, 2011, 475(7355), 222-225.
[http://dx.doi.org/10.1038/nature10138] [PMID: 21654748]
[112]
Yorifuji, N.; Inoue, T.; Iguchi, M.; Fujiwara, K.; Kakimoto, K.; Nouda, S.; Okada, T.; Kawakami, K.; Abe, Y.; Takeuchi, T.; Higuchi, K. The dipeptidyl peptidase-4 inhibitor sitagliptin suppresses mouse colon tumorigenesis in type 2 diabetic mice. Oncol. Rep., 2016, 35(2), 676-682.
[http://dx.doi.org/10.3892/or.2015.4429] [PMID: 26573958]
[113]
Femia, A.P.; Raimondi, L.; Maglieri, G.; Lodovici, M.; Mannucci, E.; Caderni, G. Long-term treatment with Sitagliptin, a dipeptidyl peptidase-4 inhibitor, reduces colon carcinogenesis and reactive oxygen species in 1,2-dimethylhydrazine-induced rats. Int. J. Cancer, 2013, 133(10), 2498-2503.
[http://dx.doi.org/10.1002/ijc.28260] [PMID: 23649733]
[114]
Jang, J.H.; Baerts, L.; Waumans, Y.; De Meester, I.; Yamada, Y.; Limani, P.; Gil-Bazo, I.; Weder, W.; Jungraithmayr, W. Suppression of lung metastases by the CD26/DPP4 inhibitor Vildagliptin in mice. Clin. Exp. Metastasis, 2015, 32(7), 677-687.
[http://dx.doi.org/10.1007/s10585-015-9736-z] [PMID: 26233333]
[115]
Nishina, S.; Yamauchi, A.; Kawaguchi, T.; Kaku, K.; Goto, M.; Sasaki, K.; Hara, Y.; Tomiyama, Y.; Kuribayashi, F.; Torimura, T.; Hino, K. Dipeptidyl peptidase 4 inhibitors reduce hepatocellular carcinoma by activating lymphocyte chemotaxis in mice. Cell. Mol. Gastroenterol. Hepatol., 2018, 7(1), 115-134.
[http://dx.doi.org/10.1016/j.jcmgh.2018.08.008] [PMID: 30510994]
[116]
Choi, H.J.; Kim, J.Y.; Lim, S.C.; Kim, G.; Yun, H.J.; Choi, H.S. Dipeptidyl peptidase 4 promotes epithelial cell transformation and breast tumourigenesis via induction of PIN1 gene expression. Br. J. Pharmacol., 2015, 172(21), 5096-5109.
[http://dx.doi.org/10.1111/bph.13274] [PMID: 26267432]
[117]
Lee, J.J.; Wang, T.Y.; Liu, C.L.; Chien, M.N.; Chen, M.J.; Hsu, Y.C.; Leung, C.H.; Cheng, S.P. Dipeptidyl peptidase IV as a prognostic marker and therapeutic target in papillary thyroid carcinoma. J. Clin. Endocrinol. Metab., 2017, 102(8), 2930-2940.
[http://dx.doi.org/10.1210/jc.2017-00346] [PMID: 28575350]
[118]
Yang, X.; Zhang, X.; Wu, R.; Huang, Q.; Jiang, Y.; Qin, J.; Yao, F.; Jin, G.; Zhang, Y. DPPIV promotes endometrial carcinoma cell proliferation, invasion and tumorigenesis. Oncotarget, 2017, 8(5), 8679-8692.
[http://dx.doi.org/10.18632/oncotarget.14412] [PMID: 28060721]
[119]
Arwert, E.N.; Mentink, R.A.; Driskell, R.R.; Hoste, E.; Goldie, S.J.; Quist, S.; Watt, F.M. Upregulation of CD26 expression in epithelial cells and stromal cells during wound-induced skin tumour formation. Oncogene, 2012, 31(8), 992-1000.
[http://dx.doi.org/10.1038/onc.2011.298] [PMID: 21765471]
[120]
Hayashi, M.; Madokoro, H.; Yamada, K.; Nishida, H.; Morimoto, C.; Sakamoto, M.; Yamada, T. A humanized anti-CD26 monoclonal antibody inhibits cell growth of malignant mesothelioma via retarded G2/M cell cycle transition. Cancer Cell Int., 2016, 16, 35.
[http://dx.doi.org/10.1186/s12935-016-0310-9] [PMID: 27134571]
[121]
Overbeek, J.A.; Bakker, M.; van der Heijden, A.A.W.A.; van Herk-Sukel, M.P.P.; Herings, R.M.C.; Nijpels, G. Risk of dipeptidyl peptidase-4 (DPP-4) inhibitors on site-specific cancer: A systematic review and meta-analysis. Diabetes Metab. Res. Rev., 2018, 34(5)e3004
[http://dx.doi.org/10.1002/dmrr.3004] [PMID: 29573125]
[122]
Shamriz, O; Leiba, M; Levine, H; Derazne, E; Keinan-Boker, L; Kark, JD Higher body mass index in 16-19 year-old Jewish adolescents of North African, Middle Eastern and European origins is a predictor of acute myeloid leukemia: A cohort of 2.3 million Israelis. Cancer Causes Control, 2017, 28(4), 331-339.
[PMID: 28258513]
[123]
Miraldi, ER; Sharfi, H; Friedline, RH; Johnson, H; Zhang, T; Lau, KS Molecular network analysis of phosphotyrosine and lipid metabolism in hepatic PTP1b deletion mice., Integ. Biol.: Quantitative biosciences from nano to macro., 2013, 5(7), 940-63..
[124]
Mulvihill, E.E.; Drucker, D.J. Pharmacology, physiology, and mechanisms of action of dipeptidyl peptidase-4 inhibitors. Endocr. Rev., 2014, 35(6), 992-1019.
[http://dx.doi.org/10.1210/er.2014-1035] [PMID: 25216328]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy