Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Machine Learning Methods in Prediction of Protein Palmitoylation Sites: A Brief Review

Author(s): Yanwen Li, Feng Pu, Jingru Wang, Zhiguo Zhou, Chunhua Zhang, Fei He*, Zhiqiang Ma* and Jingbo Zhang*

Volume 27, Issue 18, 2021

Published on: 12 November, 2020

Page: [2189 - 2198] Pages: 10

DOI: 10.2174/1381612826666201112142826

Price: $65

Abstract

Protein palmitoylation is a fundamental and reversible post-translational lipid modification that involves a series of biological processes. Although a large number of experimental studies have explored the molecular mechanism behind the palmitoylation process, the computational methods has attracted much attention for its good performance in predicting palmitoylation sites compared with expensive and time-consuming biochemical experiments. The prediction of protein palmitoylation sites is helpful to reveal its biological mechanism. Therefore, the research on the application of machine learning methods to predict palmitoylation sites has become a hot topic in bioinformatics and promoted the development in the related fields. In this review, we briefly introduced the recent development in predicting protein palmitoylation sites by using machine learningbased methods and discussed their benefits and drawbacks. The perspective of machine learning-based methods in predicting palmitoylation sites was also provided. We hope the review could provide a guide in related fields.

Keywords: Palmitoylation, machine learning methods, benchmark, feature extraction, bioinformatics, post-translational, post-translational lipid modification.

[1]
He W, Wei L, Zou Q. Research progress in protein posttranslational modification site prediction. Brief Funct Genomics 2018; 18(4): 220-9.
[http://dx.doi.org/10.1093/bfgp/ely039] [PMID: 30576418]
[2]
Mann M, Jensen ON. Proteomic analysis of post-translational modifications. Nat Biotechnol 2003; 21(3): 255-61.
[http://dx.doi.org/10.1038/nbt0303-255] [PMID: 12610572]
[3]
Khoury GA, Baliban RC, Floudas CA. Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Sci Rep 2011; 1: 1.
[http://dx.doi.org/10.1038/srep00090] [PMID: 22034591]
[4]
Tate EW, Kalesh KA, Lanyon-Hogg T, Storck EM, Thinon E. Global profiling of protein lipidation using chemical proteomic technologies. Curr Opin Chem Biol 2015; 24: 48-57.
[http://dx.doi.org/10.1016/j.cbpa.2014.10.016] [PMID: 25461723]
[5]
Triola G. The Protein Lipidation and Its Analysis. J Glycomics Lipidomics 2011.
[6]
Cheng L, Zhuang H, Yang S, Jiang H, Wang S, Zhang J. Exposing the Causal Effect of C-Reactive Protein on the Risk of Type 2 Diabetes Mellitus: A Mendelian Randomization Study. Front Genet 2018; 9: 657.
[http://dx.doi.org/10.3389/fgene.2018.00657] [PMID: 30619477]
[7]
Cheng L, Hu Y. Human Disease System Biology. Curr Gene Ther 2018.
[http://dx.doi.org/10.2174/1566523218666181010101114]
[8]
Higgins JB, Casey PJ. The role of prenylation in G-protein assembly and function. Cell Signal 1996; 8(6): 433-7.
[http://dx.doi.org/10.1016/S0898-6568(96)00071-X] [PMID: 8958445]
[9]
Nadolski MJ, Linder ME. Protein lipidation. FEBS J 2007; 274(20): 5202-10.
[http://dx.doi.org/10.1111/j.1742-4658.2007.06056.x] [PMID: 17892486]
[10]
Dunphy JT, Linder ME. Signalling functions of protein palmitoylation. Biochim Biophys Acta 1998; 1436(1-2): 245-61.
[http://dx.doi.org/10.1016/S0005-2760(98)00130-1] [PMID: 9838145]
[11]
Aicart-Ramos C, Valero RA, Rodriguez-Crespo I. Protein palmitoylation and subcellular trafficking. Biochim Biophys Acta 2011; 1808(12): 2981-94.
[http://dx.doi.org/10.1016/j.bbamem.2011.07.009] [PMID: 21819967]
[12]
Cho E, Park M. Palmitoylation in Alzheimer’s disease and other neurodegenerative diseases. Pharmacol Res 2016; 111: 133-51.
[http://dx.doi.org/10.1016/j.phrs.2016.06.008] [PMID: 27293050]
[13]
Ahola T, Kujala P, Tuittila M, et al. Effects of palmitoylation of replicase protein nsP1 on alphavirus infection. J Virol 2000; 74(15): 6725-33.
[http://dx.doi.org/10.1128/JVI.74.15.6725-6733.2000] [PMID: 10888610]
[14]
Yeste-Velasco M, Linder ME, Lu YJ. Protein S-palmitoylation and cancer. Biochim Biophys Acta 2015; 1856(1): 107-20.
[PMID: 26112306]
[15]
Schlesinger MJ, Magee AI, Schmidt MF. Fatty acid acylation of proteins in cultured cells. J Biol Chem 1980; 255(21): 10021-4.
[PMID: 7430112]
[16]
Wang Q, Chan TR, Hilgraf R, Fokin VV, Sharpless KB, Finn MG. Bioconjugation by copper(I)-catalyzed azide-alkyne [3 + 2] cycloaddition. J Am Chem Soc 2003; 125(11): 3192-3.
[http://dx.doi.org/10.1021/ja021381e] [PMID: 12630856]
[17]
Ji Y, Leymarie N, Haeussler DJ, Bachschmid MM, Costello CE, Lin C. Direct detection of S-palmitoylation by mass spectrometry. Anal Chem 2013; 85(24): 11952-9.
[http://dx.doi.org/10.1021/ac402850s] [PMID: 24279456]
[18]
Xue Y, Chen H, Jin C, Sun Z, Yao X. NBA-Palm: prediction of palmitoylation site implemented in Naïve Bayes algorithm. BMC Bioinformatics 2006; 7: 458.
[http://dx.doi.org/10.1186/1471-2105-7-458] [PMID: 17044919]
[19]
Wang XB, Wu LY, Wang YC, Deng NY. Prediction of palmitoylation sites using the composition of k-spaced amino acid pairs. Protein Eng Des Sel 2009; 22(11): 707-12.
[http://dx.doi.org/10.1093/protein/gzp055] [PMID: 19783671]
[20]
Hu LL, Wan SB, Niu S, et al. Prediction and analysis of protein palmitoylation sites. Biochimie 2011; 93(3): 489-96.
[http://dx.doi.org/10.1016/j.biochi.2010.10.022] [PMID: 21075167]
[21]
Zhou F, Xue Y, Yao X, Xu Y. CSS-Palm: palmitoylation site prediction with a clustering and scoring strategy (CSS). Bioinformatics 2006; 22(7): 894-6.
[http://dx.doi.org/10.1093/bioinformatics/btl013] [PMID: 16434441]
[22]
Chou KC, Shen HB. Recent progress in protein subcellular location prediction. Anal Biochem 2007; 370(1): 1-16.
[http://dx.doi.org/10.1016/j.ab.2007.07.006] [PMID: 17698024]
[23]
Zhang T, Tan P, Wang L, et al. RNALocate: a resource for RNA subcellular localizations. Nucleic Acids Res 2017; 45(D1): D135-8.
[PMID: 27543076]
[24]
Liang ZY, Lai HY, Yang H, et al. Pro54DB: a database for experimentally verified sigma-54 promoters. Bioinformatics 2017; 33(3): 467-9.
[PMID: 28171531]
[25]
Liu B, Gao X, Zhang H. BioSeq-Analysis2.0: an updated platform for analyzing DNA, RNA and protein sequences at sequence level and residue level based on machine learning approaches. Nucleic Acids Res 2019; 47(20): e127.
[http://dx.doi.org/10.1093/nar/gkz740] [PMID: 31504851]
[26]
Cheng L, Yang H, Zhao H, et al. MetSigDis: a manually curated resource for the metabolic signatures of diseases. Brief Bioinform 2019; 20(1): 203-9.
[http://dx.doi.org/10.1093/bib/bbx103] [PMID: 28968812]
[27]
Cheng L, Wang P, Tian R, et al. LncRNA2Target v2.0: a comprehensive database for target genes of lncRNAs in human and mouse. Nucleic Acids Res 2019; 47(D1): D140-4.
[http://dx.doi.org/10.1093/nar/gky1051] [PMID: 30380072]
[28]
Cheng L, et al. gutMDisorder: a comprehensive database for dysbiosis of the gut microbiota in disorders and interventions. Nucleic Acids Res 2019.
[29]
Wang G, Luo X, Wang J, et al. MeDReaders: a database for transcription factors that bind to methylated DNA. Nucleic Acids Res 2018; 46(D1): D146-51.
[http://dx.doi.org/10.1093/nar/gkx1096] [PMID: 29145608]
[30]
Ren J, Wen L, Gao X, Jin C, Xue Y, Yao X. CSS-Palm 2.0: an updated software for palmitoylation sites prediction. Protein Eng Des Sel 2008; 21(11): 639-44.
[http://dx.doi.org/10.1093/protein/gzn039] [PMID: 18753194]
[31]
Kumari B, Kumar R, Kumar M. PalmPred: an SVM based palmitoylation prediction method using sequence profile information. PLoS One 2014; 9(2): e89246.
[http://dx.doi.org/10.1371/journal.pone.0089246] [PMID: 24586628]
[32]
Li S, Li J, Ning L, et al. In Silico Identification of Protein S-Palmitoylation Sites and Their Involvement in Human Inherited Disease. J Chem Inf Model 2015; 55(9): 2015-25.
[http://dx.doi.org/10.1021/acs.jcim.5b00276] [PMID: 26274591]
[33]
Liu B. BioSeq-Analysis: a platform for DNA, RNA and protein sequence analysis based on machine learning approaches. Brief Bioinform 2019; 20(4): 1280-94.
[http://dx.doi.org/10.1093/bib/bbx165] [PMID: 29272359]
[34]
Bairoch A, Apweiler R, Wu CH, et al. The Universal Protein Resource. (UniProt). Nucleic Acids Res 2005; 33(Database issue): D154-9.
[http://dx.doi.org/10.1093/nar/gki070] [PMID: 15608167]
[35]
Shi SP, Sun XY, Qiu JD, et al. The prediction of palmitoylation site locations using a multiple feature extraction method. J Mol Graph Model 2013; 40: 125-30.
[http://dx.doi.org/10.1016/j.jmgm.2012.12.006] [PMID: 23419766]
[36]
Fu L, et al. Combining random forest with multi-amino acid features to identify protein palmitoylation sites. Chemom Intell Lab Syst 2014; 135: 208-12.
[http://dx.doi.org/10.1016/j.chemolab.2014.04.009]
[37]
Altschul SF, Madden TL, Schäffer AA, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25(17): 3389-402.
[http://dx.doi.org/10.1093/nar/25.17.3389] [PMID: 9254694]
[38]
Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 2012; 28(23): 3150-2.
[http://dx.doi.org/10.1093/bioinformatics/bts565] [PMID: 23060610]
[39]
Zou Q, et al. Sequence clustering in bioinformatics: an empirical study. Brief Bioinform 2019.
[40]
Weng SL, Kao HJ, Huang CH, Lee TY. MDD-Palm: Identification of protein S-palmitoylation sites with substrate motifs based on maximal dependence decomposition. PLoS One 2017; 12(6): e0179529.
[http://dx.doi.org/10.1371/journal.pone.0179529] [PMID: 28662047]
[41]
Wang D, Liang Y, Xu D. Capsule network for protein post-translational modification site prediction. Bioinformatics 2019; 35(14): 2386-94.
[http://dx.doi.org/10.1093/bioinformatics/bty977] [PMID: 30520972]
[42]
Cheng L, Jiang Y, Ju H, et al. InfAcrOnt: calculating cross-ontology term similarities using information flow by a random walk. BMC Genomics 2018; 19(Suppl. 1): 919.
[http://dx.doi.org/10.1186/s12864-017-4338-6] [PMID: 29363423]
[43]
Cheng L, Hu Y, Sun J, Zhou M, Jiang Q. DincRNA: a comprehensive web-based bioinformatics toolkit for exploring disease associations and ncRNA function. Bioinformatics 2018; 34(11): 1953-6.
[http://dx.doi.org/10.1093/bioinformatics/bty002] [PMID: 29365045]
[44]
Lu CT, Huang KY, Su MG, et al. DbPTM 3.0: an informative resource for investigating substrate site specificity and functional association of protein post-translational modifications. Nucleic Acids Res 2013; 41(Database issue): D295-305.
[http://dx.doi.org/10.1093/nar/gks1229] [PMID: 23193290]
[45]
Huang KY, Su MG, Kao HJ, et al. dbPTM 2016: 10-year anniversary of a resource for post-translational modification of proteins. Nucleic Acids Res 2016; 44(D1): D435-46.
[http://dx.doi.org/10.1093/nar/gkv1240] [PMID: 26578568]
[46]
Cooper GM, Brown CD. Qualifying the relationship between sequence conservation and molecular function. Genome Res 2008; 18(2): 201-5.
[http://dx.doi.org/10.1101/gr.7205808] [PMID: 18245453]
[47]
Liu B, Jiang S, Zou Q. HITS-PR-HHblits: protein remote homology detection by combining PageRank and Hyperlink-Induced Topic Search. Brief Bioinform 2018.
[http://dx.doi.org/10.1093/bib/bby104] [PMID: 30403770]
[48]
Rao B, et al. ACPred-Fuse: fusing multi-view information improves the prediction of anticancer peptides. Brief Bioinform 2019.
[http://dx.doi.org/10.1093/bib/bbz088] [PMID: 31729528]
[49]
Cheng L, Zhao H, Wang P, et al. Computational Methods for Identifying Similar Diseases. Mol Ther Nucleic Acids 2019; 18: 590-604.
[http://dx.doi.org/10.1016/j.omtn.2019.09.019] [PMID: 31678735]
[50]
Wang G, Wang Y, Feng W, et al. Transcription factor and microRNA regulation in androgen-dependent and -independent prostate cancer cells. BMC Genomics 2008; 9(Suppl. 2): S22.
[http://dx.doi.org/10.1186/1471-2164-9-S2-S22] [PMID: 18831788]
[51]
Zhu XJ, et al. Predicting protein structural classes for low-similarity sequences by evaluating different features. Knowl Base Syst 2019; 163: 787-93.
[http://dx.doi.org/10.1016/j.knosys.2018.10.007]
[52]
Tan JX, Li SH, Zhang ZM, et al. Identification of hormone binding proteins based on machine learning methods. Math Biosci Eng 2019; 16(4): 2466-80.
[http://dx.doi.org/10.3934/mbe.2019123] [PMID: 31137222]
[53]
Cao R, Cheng J. Protein single-model quality assessment by feature-based probability density functions. Sci Rep 2016; 6: 23990.
[http://dx.doi.org/10.1038/srep23990] [PMID: 27041353]
[54]
Li SH, et al. iPhoPred: a predictor for identifying phosphorylation sites in human protein. IEEE Access 2019; 7: 177517-28.
[http://dx.doi.org/10.1109/ACCESS.2019.2953951]
[55]
Wei L, Xing P, Tang J, Zou Q. PhosPred-RF: a novel sequence-based predictor for phosphorylation sites using sequential information only. IEEE Trans Nanobioscience 2017; 16(4): 240-7.
[http://dx.doi.org/10.1109/TNB.2017.2661756] [PMID: 28166503]
[56]
Kawashima S, Pokarowski P, Pokarowska M, Kolinski A, Katayama T, Kanehisa M. AAindex: amino acid index database, progress report 2008. Nucleic Acids Res 2008; 36(Database issue): D202-5.
[PMID: 17998252]
[57]
Cid H, Bunster M, Canales M, Gazitúa F. Hydrophobicity and structural classes in proteins. Protein Eng 1992; 5(5): 373-5.
[http://dx.doi.org/10.1093/protein/5.5.373] [PMID: 1518784]
[58]
R., PONNUSWAMY PK. Positional flexibilities of amino acid residues in globular proteins. Int J Pept Protein Res 1988; 32(4): 241-55.
[59]
Charton M, Charton BI. The structural dependence of amino acid hydrophobicity parameters. J Theor Biol 1982; 99(4): 629-44.
[http://dx.doi.org/10.1016/0022-5193(82)90191-6] [PMID: 7183857]
[60]
Chothia C. The nature of the accessible and buried surfaces in proteins. J Mol Biol 1976; 105(1): 1-12.
[http://dx.doi.org/10.1016/0022-2836(76)90191-1] [PMID: 994183]
[61]
Pontius J, Richelle J, Wodak SJ. Deviations from standard atomic volumes as a quality measure for protein crystal structures. J Mol Biol 1996; 264(1): 121-36.
[http://dx.doi.org/10.1006/jmbi.1996.0628] [PMID: 8950272]
[62]
Fauchère JL, Charton M, Kier LB, Verloop A, Pliska V. Amino acid side chain parameters for correlation studies in biology and pharmacology. Int J Pept Protein Res 1988; 32(4): 269-78.
[http://dx.doi.org/10.1111/j.1399-3011.1988.tb01261.x] [PMID: 3209351]
[63]
Mansilla F, Birkenkamp-Demtroder K, Kruhøffer M, et al. Differential expression of DHHC9 in microsatellite stable and instable human colorectal cancer subgroups. Br J Cancer 2007; 96(12): 1896-903.
[http://dx.doi.org/10.1038/sj.bjc.6603818] [PMID: 17519897]
[64]
Atchley WR, Zhao J, Fernandes AD, Drüke T. Solving the protein sequence metric problem. Proc Natl Acad Sci USA 2005; 102(18): 6395-400.
[http://dx.doi.org/10.1073/pnas.0408677102] [PMID: 15851683]
[65]
Rubinstein ND, Mayrose I, Pupko T. A machine-learning approach for predicting B-cell epitopes. Mol Immunol 2009; 46(5): 840-7.
[http://dx.doi.org/10.1016/j.molimm.2008.09.009] [PMID: 18947876]
[66]
Venkatarajan MS, Braun W. New quantitative descriptors of amino acids based on multidimensional scaling of a large number of physical–chemical properties Molecular modeling annual 2001; 7(12): 445-53.
[67]
Kleuss C, Krause E. Galpha(s) is palmitoylated at the N-terminal glycine. EMBO J 2003; 22(4): 826-32.
[http://dx.doi.org/10.1093/emboj/cdg095] [PMID: 12574119]
[68]
Roth AF, Wan J, Bailey AO, et al. Global analysis of protein palmitoylation in yeast. Cell 2006; 125(5): 1003-13.
[http://dx.doi.org/10.1016/j.cell.2006.03.042] [PMID: 16751107]
[69]
Navarro-Lerida I, Alvarez-Barrientos A, Rodriguez-Crespo I. N-terminal palmitoylation within the appropriate amino acid environment conveys on NOS2 the ability to progress along the intracellular sorting pathways (vol 119, pg 1558, 2006). J Cell Sci 2006; 119(9): 1974-4.
[70]
Linder ME, Deschenes RJ. Palmitoylation: policing protein stability and traffic. Nat Rev Mol Cell Biol 2007; 8(1): 74-84.
[http://dx.doi.org/10.1038/nrm2084] [PMID: 17183362]
[71]
Papanayotou I, Sun B, Roth AF, Davis NG. Protein aggregation induced during glass bead lysis of yeast. Yeast 2010; 27(10): 801-16.
[http://dx.doi.org/10.1002/yea.1771] [PMID: 20641011]
[72]
Parenti M, Viganó MA, Newman CM, Milligan G, Magee AI. A novel N-terminal motif for palmitoylation of G-protein alpha subunits. Biochem J 1993; 291(Pt 2): 349-53.
[http://dx.doi.org/10.1042/bj2910349] [PMID: 8484716]
[73]
Koegl M, Zlatkine P, Ley SC, Courtneidge SA, Magee AI. Palmitoylation of multiple Src-family kinases at a homologous N-terminal motif. Biochem J 1994; 303(Pt 3): 749-53.
[http://dx.doi.org/10.1042/bj3030749] [PMID: 7980442]
[74]
Shenoy-Scaria AM, Dietzen DJ, Kwong J, Link DC, Lublin DM. Cysteine3 of Src family protein tyrosine kinase determines palmitoylation and localization in caveolae. J Cell Biol 1994; 126(2): 353-63.
[http://dx.doi.org/10.1083/jcb.126.2.353] [PMID: 7518463]
[75]
Zlatkine P, Mehul B, Magee AI. Retargeting of cytosolic proteins to the plasma membrane by the Lck protein tyrosine kinase dual acylation motif. J Cell Sci 1997; 110(Pt 5): 673-9.
[PMID: 9092949]
[76]
Peng H, Long F, Ding C. Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans Pattern Anal Mach Intell 2005; 27(8): 1226-38.
[http://dx.doi.org/10.1109/TPAMI.2005.159] [PMID: 16119262]
[77]
Conover M, et al. AngularQA: protein model quality assessment with LSTM networks. Computational and Mathematical Biophysics 2019; 7(1): 1-9.
[http://dx.doi.org/10.1515/cmb-2019-0001]
[78]
Hou J, et al. Protein tertiary structure modeling driven by deep learning and contact distance prediction in CASP13. Proteins: Structure, Function, and Bioinformatics 2019.
[http://dx.doi.org/10.1002/prot.25697]
[79]
Basith S, Manavalan B, Hwan Shin T, Lee G. Machine intelligence in peptide therapeutics: A next-generation tool for rapid disease screening. Med Res Rev 2020; 40(4): 1276-314.
[http://dx.doi.org/10.1002/med.21658] [PMID: 31922268]
[80]
Su R, et al. Empirical comparison and analysis of web-based cell-penetrating peptide prediction tools. Brief Bioinform 2019.
[http://dx.doi.org/10.1093/bib/bby124] [PMID: 30649170]
[81]
Yang W, et al. A brief survey of machine learning methods in protein sub-Golgi localization. Curr Bioinform 2019; 14: 234-40.
[http://dx.doi.org/10.2174/1574893613666181113131415]
[82]
Yang H, et al. A comparison and assessment of computational method for identifying recombination hotspots in Saccharomyces cerevisiae. Brief Bioinform 2019.
[http://dx.doi.org/10.1093/bib/bbz123] [PMID: 31633777]
[83]
Wei L, Zou Q, Liao M, Lu H, Zhao Y. A novel machine learning method for cytokine-receptor interaction prediction. Comb Chem High Throughput Screen 2016; 19(2): 144-52.
[http://dx.doi.org/10.2174/1386207319666151110122621] [PMID: 26552440]
[84]
Liu B, Li CC, Yan K. DeepSVM-fold: protein fold recognition by combining support vector machines and pairwise sequence similarity scores generated by deep learning networks. Brief Bioinform 2020; 21(5): 1733-41.
[http://dx.doi.org/10.1093/bib/bbz098] [PMID: 31665221]
[85]
Cao R, Wang Z, Wang Y, Cheng J. SMOQ: a tool for predicting the absolute residue-specific quality of a single protein model with support vector machines. BMC Bioinformatics 2014; 15(1): 120.
[http://dx.doi.org/10.1186/1471-2105-15-120] [PMID: 24776231]
[86]
Stephenson N, Shane E, Chase J, et al. Survey of Machine Learning Techniques in Drug Discovery. Survey of Machine Learning Techniques in Drug Discovery. Curr Drug Metab 2019; 20(3): 185-93.
[http://dx.doi.org/10.2174/1389200219666180820112457] [PMID: 30124147]
[87]
Chao L, Wei L, Zou Q. SecProMTB: A SVM-based Classifier for Secretory Proteins of Mycobacterium tuberculosis with Imbalanced Data Set. Proteomics 2019; 19: e1900007.
[http://dx.doi.org/10.1002/pmic.201900007]
[88]
Bu HD, et al. Predicting Enhancers from Multiple Cell Lines and Tissues across Different Developmental Stages Based On SVM Method. Curr Bioinform 2018; 13(6): 655-60.
[http://dx.doi.org/10.2174/1574893613666180726163429]
[89]
Liao ZJ, et al. Cancer Diagnosis Through IsomiR Expression with Machine Learning Method. Curr Bioinform 2018; 13(1): 57-63.
[http://dx.doi.org/10.2174/1574893611666160609081155]
[90]
Su R, Wu H, Xu B, Liu X, Wei L. Developing a Multi-Dose Computational Model for Drug-Induced Hepatotoxicity Prediction Based on Toxicogenomics Data. IEEE/ACM Trans Comput Biol Bioinformatics 2019; 16(4): 1231-9.
[http://dx.doi.org/10.1109/TCBB.2018.2858756] [PMID: 30040651]
[91]
Wei L, Zhou C, Chen H, Song J, Su R. ACPred-FL: a sequence-based predictor using effective feature representation to improve the prediction of anti-cancer peptides. Bioinformatics 2018; 34(23): 4007-16.
[http://dx.doi.org/10.1093/bioinformatics/bty451] [PMID: 29868903]
[92]
Manavalan B, Basith S, Shin TH, Choi S, Kim MO, Lee G. MLACP: machine-learning-based prediction of anticancer peptides. Oncotarget 2017; 8(44): 77121-36.
[http://dx.doi.org/10.18632/oncotarget.20365] [PMID: 29100375]
[93]
Manavalan B, Lee J. SVMQA: support-vector-machine-based protein single-model quality assessment. Bioinformatics 2017; 33(16): 2496-503.
[http://dx.doi.org/10.1093/bioinformatics/btx222] [PMID: 28419290]
[94]
Basith S, Manavalan B, Shin TH, Lee G. SDM6A: A Web-Based Integrative Machine-Learning Framework for Predicting 6mA Sites in the Rice Genome. Mol Ther Nucleic Acids 2019; 18: 131-41.
[http://dx.doi.org/10.1016/j.omtn.2019.08.011] [PMID: 31542696]
[95]
Boopathi V, Subramaniyam S, Malik A, Lee G, Manavalan B, Yang DC. mACPpred: A Support Vector Machine-Based Meta-Predictor for Identification of Anticancer Peptides. Int J Mol Sci 2019; 20(8): E1964.
[http://dx.doi.org/10.3390/ijms20081964] [PMID: 31013619]
[96]
Cortes C, Vapnik V. Support-vector networks. Mach Learn 1995; 20(3): 273-97.
[http://dx.doi.org/10.1007/BF00994018]
[97]
Chang CC, Lin CJ. LIBSVM: A Library for Support Vector Machines. ACM Trans Intell Syst Technol 2011; 2(3)
[http://dx.doi.org/10.1145/1961189.1961199]
[98]
Joachims T. Making large-scale SVM learning practical Technical report, SFB 475: Komplexitätsreduktion in Multivariaten. 1998.
[99]
Tang H, Zhao YW, Zou P, et al. HBPred: a tool to identify growth hormone-binding proteins. Int J Biol Sci 2018; 14(8): 957-64.
[http://dx.doi.org/10.7150/ijbs.24174] [PMID: 29989085]
[100]
Yang H, Tang H, Chen XX, et al. Identification of Secretory Proteins in Mycobacterium tuberculosis Using Pseudo Amino Acid Composition. BioMed Res Int 2016; 20165413903.
[http://dx.doi.org/10.1155/2016/5413903] [PMID: 27597968]
[101]
Chen W, Lv H, Nie F, Lin H. i6mA-Pred: identifying DNA N6-methyladenine sites in the rice genome. Bioinformatics 2019; 35(16): 2796-800.
[http://dx.doi.org/10.1093/bioinformatics/btz015] [PMID: 30624619]
[102]
Liu B, Li K. iPromoter-2L2.0: identifying promoters and their types by combining Smoothing Cutting Window algorithm and sequence-based features. Mol Ther Nucleic Acids 2019; 18: 80-7.
[http://dx.doi.org/10.1016/j.omtn.2019.08.008] [PMID: 31536883]
[103]
Wang G, Wang Y, Teng M, Zhang D, Li L, Liu Y. Signal transducers and activators of transcription-1 (STAT1) regulates microRNA transcription in interferon gamma-stimulated HeLa cells. PLoS One 2010; 5(7): e11794.
[http://dx.doi.org/10.1371/journal.pone.0011794] [PMID: 20668688]
[104]
Jiang Q, Wang G, Jin S, Li Y, Wang Y. Predicting human microRNA-disease associations based on support vector machine. Int J Data Min Bioinform 2013; 8(3): 282-93.
[http://dx.doi.org/10.1504/IJDMB.2013.056078] [PMID: 24417022]
[105]
Zhao Y, Wang F, Juan L. MicroRNA Promoter Identification in Arabidopsis Using Multiple Histone Markers. BioMed Res Int 2015; 2015861402.
[http://dx.doi.org/10.1155/2015/861402] [PMID: 26425556]
[106]
Breiman L. Random Forests. Mach Learn 2001; 45(1): 5-32.
[http://dx.doi.org/10.1023/A:1010933404324]
[107]
Lv H, et al. Evaluation of different computational methods on 5-methylcytosine sites identification. Brief Bioinform 2019.
[PMID: 31157855]
[108]
Su R, Liu X, Wei L, Zou Q. Deep-Resp-Forest: A deep forest model to predict anti-cancer drug response. Methods 2019; 166: 91-102.
[http://dx.doi.org/10.1016/j.ymeth.2019.02.009] [PMID: 30772464]
[109]
Ru X, Li L, Zou Q. Incorporating Distance-Based Top-n-gram and Random Forest To Identify Electron Transport Proteins. J Proteome Res 2019; 18(7): 2931-9.
[http://dx.doi.org/10.1021/acs.jproteome.9b00250] [PMID: 31136183]
[110]
Lv Z, Jin S, Ding H, Zou Q. A random forest sub-Golgi protein classifier optimized via dipeptide and amino acid composition features. Front Bioeng Biotechnol 2019; 7: 215.
[http://dx.doi.org/10.3389/fbioe.2019.00215] [PMID: 31552241]
[111]
Wei L, Xing P, Su R, Shi G, Ma ZS, Zou Q. CPPred-RF: a sequence-based predictor for identifying cell-penetrating peptides and their uptake efficiency. J Proteome Res 2017; 16(5): 2044-53.
[http://dx.doi.org/10.1021/acs.jproteome.7b00019] [PMID: 28436664]
[112]
Chen X-W, Liu M. Prediction of protein-protein interactions using random decision forest framework. Bioinformatics 2005; 21(24): 4394-400.
[http://dx.doi.org/10.1093/bioinformatics/bti721] [PMID: 16234318]
[113]
Cao R, Cheng J. Integrated protein function prediction by mining function associations, sequences, and protein-protein and gene-gene interaction networks. Methods 2016; 93: 84-91.
[http://dx.doi.org/10.1016/j.ymeth.2015.09.011] [PMID: 26370280]
[114]
Díaz-Uriarte R, Alvarez de Andrés S. Gene selection and classification of microarray data using random forest. BMC Bioinformatics 2006; 7: 3-3.
[http://dx.doi.org/10.1186/1471-2105-7-3] [PMID: 16398926]
[115]
Borgelt C, Kruse R. Graphical models: methods for data analysis and miningJohn Wiley & Sons, Inc. 2002.
[116]
Feng PM, Lin H, Chen W. Identification of antioxidants from sequence information using naïve Bayes. Comput Math Methods Med 2013; 2013567529.
[http://dx.doi.org/10.1155/2013/567529] [PMID: 24062796]
[117]
Feng PM, Ding H, Chen W, Lin H. Naïve Bayes classifier with feature selection to identify phage virion proteins. Comput Math Methods Med 2013; 2013530696.
[http://dx.doi.org/10.1155/2013/530696] [PMID: 23762187]
[118]
Kosylo N, et al. Artificial intelligence on job-hopping forecasting: AI on job-hopping. 2018 Portland International Conference on Management of Engineering and Technology (PICMET).
[http://dx.doi.org/10.23919/PICMET.2018.8481823]
[119]
Danielsson P-E. Euclidean distance mapping. Comput Graph Image Process 1980; 14(3): 227-48.
[http://dx.doi.org/10.1016/0146-664X(80)90054-4]
[120]
Mahalanobis PC. On the generalized distance in statistics. National Institute of Science of India 1936.
[121]
Martin N, Maes H. Multivariate analysis Academic press London 1979.
[122]
Hinton GE, Krizhevsky A, Wang SD. Transforming Auto-Encoders. Artificial Neural Networks and Machine Learning - Icann 2011. Pt I 2011; 6791: 44-51.
[123]
Hinton GE, Krizhevsky A, Wang SD. Neural machine translation by jointly learning to align and translate. arXiv preprint. 2011.
[124]
Dynamic Routing Between Capsules, Sabour S, Frosst N, Hinton GE. Advances in Neural Information Processing SystemsNips 2017; 30: 30.
[125]
Chou KC, Zhang CT. Prediction of protein structural classes. Crit Rev Biochem Mol Biol 1995; 30(4): 275-349.
[http://dx.doi.org/10.3109/10409239509083488] [PMID: 7587280]
[126]
Liu B, Li S. ProtDet-CCH: Protein remote homology detection by combining Long Short-Term Memory and ranking methods. IEEE/ACM Trans Comput Biol Bioinformatics 2019; 16(4): 1203-10.
[http://dx.doi.org/10.1109/TCBB.2018.2789880] [PMID: 29993950]
[127]
Wei L, Xing P, Shi G, Ji Z, Zou Q. Fast prediction of protein methylation sites using a sequence-based feature selection technique. IEEE/ACM Trans Comput Biol Bioinformatics 2019; 16(4): 1264-73.
[http://dx.doi.org/10.1109/TCBB.2017.2670558] [PMID: 28222000]
[128]
Wei L, Xing P, Zeng J, Chen J, Su R, Guo F. Improved prediction of protein-protein interactions using novel negative samples, features, and an ensemble classifier. Artif Intell Med 2017; 83: 67-74.
[http://dx.doi.org/10.1016/j.artmed.2017.03.001] [PMID: 28320624]
[129]
Wei L, Wan S, Guo J, Wong KK. A novel hierarchical selective ensemble classifier with bioinformatics application. Artif Intell Med 2017; 83: 82-90.
[http://dx.doi.org/10.1016/j.artmed.2017.02.005] [PMID: 28245947]
[130]
Wei L, Tang J, Zou Q. Local-DPP: An Improved DNA-binding Protein Prediction Method by Exploring Local Evolutionary Information. Inf Sci 2017; 384: 135-44.
[http://dx.doi.org/10.1016/j.ins.2016.06.026]
[131]
Basith S, Manavalan B, Shin TH, Lee G. iGHBP: Computational identification of growth hormone binding proteins from sequences using extremely randomised tree. Comput Struct Biotechnol J 2018; 16: 412-20.
[http://dx.doi.org/10.1016/j.csbj.2018.10.007] [PMID: 30425802]
[132]
Manavalan B, Basith S, Shin TH, Wei L, Lee G. AtbPpred: A Robust Sequence-Based Prediction of Anti-Tubercular Peptides Using Extremely Randomized Trees. Comput Struct Biotechnol J 2019; 17: 972-81.
[http://dx.doi.org/10.1016/j.csbj.2019.06.024] [PMID: 31372196]
[133]
Manavalan B, Basith S, Shin TH, Wei L, Lee G. Meta-4mCpred: A Sequence-Based Meta-Predictor for Accurate DNA 4mC Site Prediction Using Effective Feature Representation. Mol Ther Nucleic Acids 2019; 16: 733-44.
[http://dx.doi.org/10.1016/j.omtn.2019.04.019] [PMID: 31146255]
[134]
Manavalan B, Basith S, Shin TH, Wei L, Lee G. mAHTPred: a sequence-based meta-predictor for improving the prediction of anti-hypertensive peptides using effective feature representation. Bioinformatics 2019; 35(16): 2757-65.
[http://dx.doi.org/10.1093/bioinformatics/bty1047] [PMID: 30590410]
[135]
Lin H, Ding C, Song Q, et al. The prediction of protein structural class using averaged chemical shifts. J Biomol Struct Dyn 2012; 29(6): 643-9.
[http://dx.doi.org/10.1080/07391102.2011.672628] [PMID: 22545995]
[136]
Yang H, Lv H, Ding H, Chen W, Lin H. iRNA-2OM: A Sequence-Based Predictor for Identifying 2¢-O-Methylation Sites in Homo sapiens. J Comput Biol 2018; 25(11): 1266-77.
[http://dx.doi.org/10.1089/cmb.2018.0004] [PMID: 30113871]
[137]
Tang H, Chen W, Lin H. Identification of immunoglobulins using Chou’s pseudo amino acid composition with feature selection technique. Mol Biosyst 2016; 12(4): 1269-75.
[http://dx.doi.org/10.1039/C5MB00883B] [PMID: 26883492]
[138]
Ding H, Yang W, Tang H, et al. PHYPred: a tool for identifying bacteriophage enzymes and hydrolases. Virol Sin 2016; 31(4): 350-2.
[http://dx.doi.org/10.1007/s12250-016-3740-6] [PMID: 27151186]
[139]
Ding H, Li D. Identification of mitochondrial proteins of malaria parasite using analysis of variance. Amino Acids 2015; 47(2): 329-33.
[http://dx.doi.org/10.1007/s00726-014-1862-4] [PMID: 25385313]
[140]
Charoenkwan P, Kanthawong S, Schaduangrat N, Yana J, Shoombuatong W. PVPred-SCM: Improved Prediction and Analysis of Phage Virion Proteins Using a Scoring Card Method. Cells 2020; 9(2): E353.
[http://dx.doi.org/10.3390/cells9020353] [PMID: 32028709]
[141]
Charoenkwan P, Shoombuatong W, Lee HC, Chaijaruwanich J, Huang HL, Ho SY. SCMCRYS: predicting protein crystallization using an ensemble scoring card method with estimating propensity scores of P-collocated amino acid pairs. PLoS One 2013; 8(9): e72368.
[http://dx.doi.org/10.1371/journal.pone.0072368] [PMID: 24019868]
[142]
Hongjaisee S, Nantasenamat C, Carraway TS, Shoombuatong W. HIVCoR: A sequence-based tool for predicting HIV-1 CRF01_AE coreceptor usage. Comput Biol Chem 2019; 80: 419-32.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.05.006] [PMID: 31146118]
[143]
Laengsri V, Nantasenamat C, Schaduangrat N, Nuchnoi P, Prachayasittikul V, Shoombuatong W. TargetAntiAngio: A sequence-based tool for the prediction and analysis of anti-angiogenic peptides. Int J Mol Sci 2019; 20(12): 2950.
[http://dx.doi.org/10.3390/ijms20122950] [PMID: 31212918]
[144]
Schaduangrat N, Nantasenamat C, Prachayasittikul V, Shoombuatong W. ACPred: a computational tool for the prediction and analysis of anticancer peptides. Molecules 2019; 24(10): 1973.
[http://dx.doi.org/10.3390/molecules24101973] [PMID: 31121946]
[145]
Schaduangrat N, Nantasenamat C, Prachayasittikul V, Shoombuatong W. Meta-iAVP: A sequence-based meta-predictor for improving the prediction of antiviral peptides using effective feature representation. Int J Mol Sci 2019; 20(22): 5743.
[http://dx.doi.org/10.3390/ijms20225743] [PMID: 31731751]
[146]
Feng CQ, Zhang ZY, Zhu XJ, et al. iTerm-PseKNC: a sequence-based tool for predicting bacterial transcriptional terminators. Bioinformatics 2019; 35(9): 1469-77.
[http://dx.doi.org/10.1093/bioinformatics/bty827] [PMID: 30247625]
[147]
Dao FY, Lv H, Wang F, et al. Identify origin of replication in Saccharomyces cerevisiae using two-step feature selection technique. Bioinformatics 2019; 35(12): 2075-83.
[http://dx.doi.org/10.1093/bioinformatics/bty943] [PMID: 30428009]
[148]
Liu B, Chen S, Yan K, Weng F. iRO-PsekGCC: identify DNA replication origins based on Pseudo k-tuple GC Composition. Front Genet 2019; 10: 842.
[http://dx.doi.org/10.3389/fgene.2019.00842] [PMID: 31620165]
[149]
Shoombuatong W, Prachayasittikul V, Prachayasittikul V, Nantasenamat C. Prediction of aromatase inhibitory activity using the efficient linear method (ELM). EXCLI J 2015; 14: 452-64.
[PMID: 26535037]
[150]
Shoombuatong W, Schaduangrat N, Pratiwi R, Nantasenamat C. THPep: A machine learning-based approach for predicting tumor homing peptides. Comput Biol Chem 2019; 80: 441-51.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.05.008] [PMID: 31151025]
[151]
Simeon S, Shoombuatong W, Anuwongcharoen N, et al. osFP: a web server for predicting the oligomeric states of fluorescent proteins. J Cheminform 2016; 8(1): 72.
[http://dx.doi.org/10.1186/s13321-016-0185-8] [PMID: 28053671]
[152]
Win TS, Malik AA, Prachayasittikul V. S Wikberg JE, Nantasenamat C, Shoombuatong W. HemoPred: a web server for predicting the hemolytic activity of peptides. Future Med Chem 2017; 9(3): 275-91.
[http://dx.doi.org/10.4155/fmc-2016-0188] [PMID: 28211294]
[153]
Win TS, Schaduangrat N, Prachayasittikul V, Nantasenamat C, Shoombuatong W. PAAP: a web server for predicting antihypertensive activity of peptides. Future Med Chem 2018; 10(15): 1749-67.
[http://dx.doi.org/10.4155/fmc-2017-0300] [PMID: 30039980]
[154]
Blanc M, David FPA, van der Goot FG. SwissPalm 2: Protein S-Palmitoylation Database. Methods Mol Biol 2019; 2009: 203-14.
[http://dx.doi.org/10.1007/978-1-4939-9532-5_16] [PMID: 31152406]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy